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Abstract. Under the assumption that the PEL datum involves no factor of

type D and that the integral model has good reduction, we show that all
boundary strata of the toroidal or minimal compactifications of the integral

model (constructed in earlier works of the author) have nonempty pullbacks

to connected components of geometric fibers, even in positive characteristics.
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A.1. Introduction. Toroidal and minimal compactifications of Shimura varieties
and their integral models have played important roles in the study of arithmetic
properties of cohomological automorphic representations. While all known models
of them are equipped with natural stratifications, they often suffer from some im-
precisions or redundancies due to their constructions. The situation is especially
subtle in positive or mixed characteristics, or when we need purely algebraic con-
structions even in characteristic zero (for example, when we study the degeneration
of abelian varieties), where the constructions are much less direct than algebraizing
complex manifolds created by unions of explicit double coset spaces.

For example, integral models of Shimura varieties defined by moduli problems of
PEL structures suffer from the so-called failure of Hasse’s principle, because there
is no known way to tell the difference between two moduli problems associated with
algebraic groups which are everywhere locally isomorphic to each other. Similarly,
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when their toroidal and minimal compactifications are constructed using the theory
of degeneration, the data for describing them are also local in nature. Unlike in the
complex analytic construction, one cannot just express all the boundary points as
the disjoint unions of some double coset spaces labeled by certain standard maximal
(rational) parabolic subgroups. (Even the nonemptiness of the whole boundaries in
positive characteristics was not straightforward—see the introduction to [9].) As
we shall see (in Example A.7.2), when factors of type D are allowed, it is unrealistic
to expect that the boundary stratifications in the algebraic and complex analytic
constructions match with each other.

Our goal here is a simple-minded one—to show that the strata of good reduction
integral models of toroidal and minimal compactifications constructed as in [11]
have nonempty pullbacks to each connected component of each geometric fiber,
under the assumption that the data defining them involve no factors of type D
(in a sense we will make precise). We will also answer the analogous question for
the integral models constructed by normalization in [12], allowing arbitrarily deep
levels and ramifications (that is, bad reductions in general).

This goal is motivated by the study of p-adic families of Eisenstein series, for
which it is crucial to know that the strata on connected components of the charac-
teristic p fibers are all nonempty. For example, this is useful for the consideration
of algebraic Fourier–Jacobi expansions. We expect it to play foundational roles in
other applications of a similar nature.

A.2. Main result. We shall formulate our results in the notation system of [11],
which we shall briefly review. (We shall follow [11, Notation and Conventions] unless
otherwise specified. While for practical reasons we cannot explain everything we
need from [11], we recommend the reader to make use of the reasonably detailed
index and table of contents there, when looking for the numerous definitions.)

Let (O, ?, L, 〈 · , · 〉, h0) be an integral PEL datum, where O, ?, and (L, 〈 · , · 〉, h0)
are as in [11, Def. 1.2.1.3], satisfying [11, Cond. 1.4.3.10], which defines a group
functor G over Z as in [11, Def. 1.2.1.6], and the reflex field F0 (as a subfield of C)
as in [11, Def. 1.2.5.4], with ring of integers OF0

. Let p be any good prime as in [11,

Def. 1.4.1.1]. Let Hp be any open compact subgroup of G(Ẑp) that is neat as in [11,
Def. 1.4.1.8]. Then we have a moduli problem MHp over S0 = Spec(OF0,(p)) as in
[11, Def. 1.4.1.4], which is representable by a scheme quasi-projective and smooth
over S0 by [11, Thm. 1.4.1.11 and Cor. 7.2.3.10]. By [11, Thm. 7.2.4.1 and Prop.
7.2.4.3], we have the minimal compactification Mmin

Hp of MHp , which is a scheme
projective and flat over S0, with geometrically normal fibers. Moreover, for each
compatible collection Σp of cone decompositions for MHp as in [11, Def. 6.3.3.4],
we also have the toroidal compactification Mtor

Hp,Σp of MHp , which is an algebraic

space proper and smooth over S0, by [11, Thm. 6.4.1.1], which is representable by a
scheme projective over M0 when Σp is projective as in [11, Def. 7.3.1.3], by [11, Thm.
7.3.3.4]. Any such Mtor

Hp,Σp admits a canonical surjection
∮
Hp : Mtor

Hp,Σp → Mmin
Hp ,

which is constructed by Stein factorization as in [11, Sec. 7.2.3], whose fibers are
all geometrically connected. (The superscript “p” indicates that the objects are
defined using level structures “away from p”. We will also encounter their variants
without the superscript “p”, which also involve level structures “at p”.)

By [11, Thm. 7.2.4.1(4)], there is a stratification of Mmin
Hp by locally closed sub-

schemes Z[(ΦHp ,δHp )], where [(ΦHp , δHp)] runs through the (finite) set of cusp labels
for MHp (see [11, Def. 5.4.2.4]). The open dense subscheme MHp is the stratum
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labeled by [(0, 0)]; we call all the other strata the cusps of MHp . Similarly, by [11,
Thm. 6.4.1.1(2)], there is a stratification of Mtor

Hp,Σp by locally closed subschemes

Z[(ΦHp ,δHp ,σp)], where [(ΦHp , δHp , σp)] runs through equivalence classes as in [11,

Def. 6.2.6.1] with σp ⊂ P+
ΦHp

and σp ∈ ΣΦHp ∈ Σp. By [11, Thm. 7.2.4.1(5)], the

surjection
∮
Hp induces a surjection from the [(ΦHp , δHp , σp)]-stratum Z[(ΦHp ,δHp ,σp)]

of Mtor
Hp,Σp to the [(ΦHp , δHp)]-stratum Z[(ΦHp ,δHp )] of Mmin

Hp .

Let s → S0 be any geometric point with residue field k(s), and let U be any
connected component of the fiber MHp ×

S0

s. Since Mmin
Hp → S0 is proper and has

geometrically normal fibers, the closure Umin of U in Mmin
Hp ×

S0

s is a connected com-

ponent of Mmin
Hp ×

S0

s. Similarly, since Mtor
Hp,Σp → S0 is proper and smooth, the closure

U tor of U in Mtor
Hp,Σp ×

S0

s is a connected component of Mtor
Hp,Σp ×

S0

s. (In these cases the

connected components are also the irreducible components of the ambient spaces.)
The stratifications of Mmin

Hp and Mtor
Hp,Σp induce stratifications of Umin and U tor,

respectively, by pullback. We shall denote the pullback of Z[(ΦHp ,δHp )] to Umin

by U[(ΦHp ,δHp )], and call it the [(ΦHp , δHp)]-stratum of Umin. Similarly, we shall
denote the pullback of Z[(ΦHp ,δHp ,σp)] to U tor by U[(ΦHp ,δHp ,σp)], and call it the

[(ΦHp , δHp , σp)]-stratum of U tor. By construction, the surjection
∮
Hp induces a

surjection U tor → Umin, which maps the [(ΦHp , δHp , σp)]-stratum U[(ΦHp ,δHp ,σp)] of

U tor surjectively onto the [(ΦHp , δHp)]-stratum U[(ΦHp ,δHp )] of Umin. It is natural

to ask whether a particular stratum of Umin or U tor is nonempty.
From now on, we shall assume the following:

Assumption A.2.1. The semisimple algebra O⊗
Z
Q over Q involves no factor of

type D (in the sense of [11, Def. 1.2.1.15]).

Our main result is the following:

Theorem A.2.2. With the setting as above, all strata of Umin are nonempty.

An immediate consequence is the following:

Corollary A.2.3. With the setting as above, all strata of U tor are nonempty.

Proof. Since the canonical morphism U[(ΦHp ,δHp ,σp)] → U[(ΦHp ,δHp )] is surjective for
each equivalence class [(ΦHp , δHp , σp)] with underlying cusp label [(ΦHp , δHp)] as
above, the nonemptiness of U[(ΦHp ,δHp )] implies that of U[(ΦHp ,δHp ,σp)]. �

Remark A.2.4. Each stratum Z[(ΦHp ,ZHp )] (resp. Z[(ΦHp ,ZHp ,σp)]) is nonempty by
[11, Thm. 7.2.4.1 (4) and (5), Cor. 6.4.1.2, and the explanation of the existence of
complex points as in Rem. 1.4.3.14]. The question is whether its pullback to Umin

(resp. U tor) is still nonempty for every U as above.

Remark A.2.5. It easily follows from Theorem A.2.2 and Corollary A.2.3 that their
analogues are also true when the geometric point s→ S0 is replaced with morphisms
from general schemes, although we shall omit their statements. In particular, we
can talk about connected components of fibers rather than geometric fibers.

The proof of Theorem A.2.2 will be carried out in Sections A.3, A.4, and A.5.
In Sections A.5 and A.6, we will also state and prove analogues of Theorem A.2.2
in zero and arbitrarily ramified characteristics, respectively (see Theorems A.5.1
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and A.6.1). We will give some examples in Section A.7, including one (see Exam-
ple A.7.2) showing that we cannot expect Theorem A.2.2 to be true without the
requirement (in Assumption A.2.1) that O⊗

Z
Q involves no factor of type D.

A.3. Reduction to the case of characteristic zero. The goal of this section is
to prove the following:

Proposition A.3.1. Suppose Theorem A.2.2 is true when char(k(s)) = 0. Then
it is also true when char(k(s)) = p > 0.

Remark A.3.2. Proposition A.3.1 holds regardless of Assumption A.2.1.

Remark A.3.3. It might seem that everything in characteristic zero is well known
and straightforward. But Proposition A.3.1, which is insensitive to the crucial
Assumption A.2.1, shows that the key difficulty is in fact in characteristic zero.

By [11, Thm. 7.2.4.1(4)], each Z[(ΦHp ,δHp )] is isomorphic to a boundary moduli

problem MZHp

Hp defined in the same way as MHp (but with certain integral PEL
datum associated with ZHp). Then it makes sense to consider the minimal com-
pactification Zmin

[(ΦHp ,δHp )] of Z[(ΦHp ,δHp )], which is proper flat and has geometrically

normal fibers over MH, as in [11, Thm. 7.2.4.1 and Prop. 7.2.4.3]. (So the con-
nected components of the geometric fibers of Zmin

[(ΦHp ,δHp )] → S0 are closures of

those of Z[(ΦHp ,δHp )] → S0.) By considering the Stein factorizations of the struc-

tural morphisms Zmin
[(ΦHp ,δHp )] → S0 (see [7, III-1, 4.3.3 and 4.3.4]), we obtain the

following:

Lemma A.3.4 (cf. [11, Cor. 6.4.1.2] and [5, Thm. 4.17]). Suppose char(k(s)) =
p > 0. Then there exists some discrete valuation ring R flat over OF0,(p), with
fraction field K and residue field k(s), the latter lifting the structural homomorphism
OF0,(p) → k(s), such that, for each cusp label [(ΦHp , δHp)], and for each connected
component V of Z[(ΦHp ,δHp )] ⊗

OF0,(p)

R, the induced flat morphism V → Spec(R) has

connected special fiber over Spec(k(s)).

Proof of Proposition A.3.1. Let R be as in Lemma A.3.4. Let Ũ denote the
connected component of MHp ⊗

OF0,(p)

R = Z[(0,0)] ⊗
OF0,(p)

R such that Ũ ⊗
R
k(s) = U

as subsets of MHp ⊗
OF0,(p)

k(s) = MHp ×
S0

s, and let Ũmin denote its closure

in Mmin
Hp ⊗
OF0,(p)

R, which is a connected component of Mmin
Hp ⊗
OF0,(p)

R because

Mmin
Hp ⊗
OF0,(p)

R is normal by [11, Prop. 7.2.4.3(4)]. For each cusp label

[(ΦHp , δHp)], let Ũ[(ΦHp ,δHp )] denote the pullback of Z[(ΦHp ,δHp )] to Ũmin. Then

Ũ[(ΦHp ,δHp )] is an open and closed subscheme of Z[(ΦHp ,δHp )] ⊗
OF0,(p)

R such that

Ũ[(ΦHp ,δHp )]⊗
R
k(s) = U[(ΦHp ,δHp )] as subsets of Mmin

Hp ⊗
OF0,(p)

k(s). By Lemma A.3.4,

it suffices to show that Ũ[(ΦHp ,δHp )]⊗
R
K̄ 6= ∅ for some algebraic closure K̄ of

K. Also by Lemma A.3.4, Ũ ⊗
R
K̄ 6= ∅, and so Ũmin⊗

R
K̄ contains at least one

connected component of Mmin
Hp ⊗
OF0,(p)

K̄. Thus, Ũ[(ΦHp ,δHp )]⊗
R
K̄ 6= ∅ under the

assumption of the proposition, as desired. �
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A.4. Comparison of cusp labels. Let Hp := G(Zp) and H := HpHp, the latter

being a neat open compact subgroup of G(Ẑ). By the same references to [11] as
in Section A.2, we have the moduli problem MH and its minimal compactification
Mmin
H over S0,Q := S0⊗

Z
Q ∼= Spec(F0). For each compatible collection Σ′ of cone

decompositions for MH, we also have a toroidal compactification Mtor
H,Σ′ , together

with a canonical morphism
∮
H : Mtor

H,Σ′ → Mmin
H , over S0,Q. (Here Σ′ does not have

to be related to the Σp above.)
Each cusp label [(ZH,ΦH, δH)] for MH (where ZH has been suppressed in the

notation for simplicity) can be described as an equivalence class of the H-orbit
(ZH,ΦH, δH) of some triple (Z,Φ, δ), where:

(1) Z = {Z−i}i∈Z is an admissible filtration on L⊗
Z
Ẑ that is fully symplectic as

in [11, Def. 5.2.7.1]. In particular, Z−i = (Z−i⊗
Z
Q)∩(L⊗

Z
Ẑ); the symplectic

filtration Z⊗
Z
Q on L⊗

Z
A∞ extends to a symplectic filtration ZA on Z⊗

Z
A;

and each graded piece of Z or Z⊗
Z
Q is integrable as in [11, Def. 1.2.1.23],

that is, it is the base extension of some O-lattice.
(2) Φ = (X,Y, φ, ϕ−2, ϕ0) is a torus argument as in [11, Def. 5.4.1.3], where

φ : Y ↪→ X is an embedding of O-lattices with finite cokernel, and where
ϕ−2 : GrZ−2

∼→ HomẐ(X ⊗
Z
Ẑ, Ẑ(1)) and ϕ0 : GrZ0

∼→ Y ⊗
Z
Ẑ are isomorphisms

matching the pairing 〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ(1) induced by 〈 · , · 〉 with

the pairing 〈 · , · 〉φ : HomẐ(X ⊗
Z
Ẑ, Ẑ(1))×(Y ⊗

Z
Ẑ)→ Ẑ(1) induced by φ.

(3) δ : GrZ
∼→ L is an O-equivariant splitting of the filtration Z.

(4) Two triples (ZH,ΦH, δH) and (Z′H,Φ
′
H, δ

′
H) are equivalent (as in [11, Def.

5.4.2.2]) if ZH = Z′H and if there exists a pair of isomorphisms (γX : X ′
∼→

X, γY : Y
∼→ Y ′) matching ΦH with Φ′H.

Since H = HpHp, it makes sense to consider the p-part of (ZH,ΦH, δH), which
is the Hp-orbit of some triple (ZZp

, (ϕ−2,Zp
, ϕ0,Zp

), δZp
), where:

(1) ZZp
= {ZZp,−i}i∈Z is a symplectic admissible filtration on L⊗

Z
Zp,

which determines and is determined by a symplectic admissible
filtration ZQp = {ZQp,−i}i∈Z of L⊗

Z
Qp by ZQp,−i = ZZp,−i⊗Z

Q and

ZZp,−i = ZQp,−i ∩(L⊗
Z
Zp), for all i ∈ Z.

(2) ϕ−2,Zp
: Gr

ZZp
−2

∼→ HomZp
(X ⊗

Z
Zp,Zp(1)) and ϕ0 : Gr

ZZp
0

∼→
Y ⊗

Z
Zp are isomorphisms matching the pairing 〈 · , · 〉20,Zp

:

Gr
ZZp
−2 ×Gr

ZZp
0 → Zp(1) induced by 〈 · , · 〉 with the pairing

〈 · , · 〉φ,Zp : HomZp(X ⊗
Z
Zp,Zp(1))×(Y ⊗

Z
Zp) → Zp(1) induced by

φ.
(3) δZp

: GrZZp
∼→ L⊗

Z
Zp is a splitting of the filtration ZZp

.

By forgetting its p-part, each representative (ZH,ΦH, δH) for MH induces a rep-
resentative (ZHp ,ΦHp , δHp) for MHp , and this assignment is compatible with the
formation of equivalence classes. Therefore, we have well-defined assignments

(A.4.1) (ZH,ΦH, δH) 7→ (ZHp ,ΦHp , δHp)
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and

(A.4.2) [(ZH,ΦH, δH)] 7→ [(ZHp ,ΦHp , δHp)].

By construction, these assignments are compatible with surjections on their both
sides (see [11, Def. 5.4.2.12]). We would like to show that they are both bijective.

Lemma A.4.3. Let k be any field over Z(p). Consider the assignment to each
flag W of totally isotropic O⊗

Z
k-submodules of L⊗

Z
k (with respect to 〈 · , · 〉⊗

Z
k)

its stabilizer subgroup PW in G⊗
Z
k. Then each such PW is a parabolic subgroup

of G⊗
Z
k, and the assignment is bijective. Moreover, given any minimal parabolic

subgroup PW0 of G⊗
Z
k, which is the stabilizer of some maximal flag W0 of totally

isotropic O⊗
Z
k-submodules of L⊗

Z
k, every parabolic subgroup of G⊗

Z
k is conjugate

under the action of G(k) to some parabolic subgroup of G⊗
Z
k containing PW0

, which

is the stabilizer of some subflag of W0.

Although the assertions in this lemma are well known, we provide a proof because
we cannot find a convenient reference in the literature in the generality we need.

Proof of Lemma A.4.3. Let ksep be a separable closure of k. Since the character-
istic of k is either 0 or p, the latter being a good prime by assumption, it follows
from [11, Prop. 1.2.3.11] that each of the simple factors of the adjoint quotient of
G⊗

Z
ksep is isomorphic to one of the groups of standard type listed in the proof of

[11, Prop. 1.2.3.11]. Then we can make an explicit choice of a Borel subgroup B
of G⊗

Z
ksep stabilizing a flag of totally isotropic submodules, with a maximal torus

T of G⊗
Z
ksep contained in B which is isomorphic to the group of automorphisms

of the graded pieces of this flag. By [16, Thm. 6.2.7 and Thm. 8.4.3(iv)], since
all parabolic subgroups of G⊗

Z
ksep are conjugate to one containing B, the para-

bolic subgroups of G⊗
Z
ksep are exactly the stabilizers of flags of totally isotropic

O⊗
Z
ksep-submodules of L⊗

Z
ksep. Then the analogous assertion over k follows, be-

cause the assignment of maximal parabolic subgroups of G⊗
Z
ksep is compatible

with the actions of Gal(ksep/k) on the set of flags of totally isotropic submodules
of L⊗

Z
ksep and on the set of parabolic subgroups of G⊗

Z
ksep. The last assertion of

the lemma follows from [16, Thm. 15.1.2(ii) and Thm. 15.4.6(i)]. �

Lemma A.4.4. The assignment

(A.4.5) ZH 7→ ZHp

is bijective.

Proof. Let ZZp
= {ZZp,−i}i∈Z be a symplectic admissible filtration on L⊗

Z
Zp

as above, which determines and is determined by a symplectic filtration
ZQp

= {ZQp,−i}i∈Z on L⊗
Z
Qp. By Lemma A.4.3, the action of G(Qp) on the set of

such filtrations ZQp is transitive, because the O-multirank (see [11, Def. 1.2.1.25])
of the bottom piece ZQp,−2 of any such ZQp

is determined by the existence of some

isomorphism ϕ−2,Zp
: Gr

ZZp
−2

∼→ HomZp
(X ⊗

Z
Zp,Zp(1)). Let P denote the parabolic
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subgroup of G⊗
Z
Qp stabilizing any such ZQp

(see Lemma A.4.3). Since p is a good

prime by assumption, the pairing 〈 · , · 〉⊗
Z
Zp is self-dual, and hence G(Zp) is a

maximal open compact subgroup of G(Qp) by [3, Cor. 3.3.2]. Since G⊗
Z
Qp is

connected under Assumption A.2.1 (because the kernel of the similitude character
of G⊗

Z
Qp factorizes over an algebraic closure of Qp as a product of connected

groups, by the proof of [11, Prop. 1.2.3.11]), we have the Iwasawa decomposition
G(Qp) = G(Zp)P(Qp), by [3, Prop. 4.4.3] (see also [4, (18) on p. 392] for a more
explicit statement). Consequently, Hp = G(Zp) acts transitively on the set of
possible filtrations ZZp as above, and hence the assignment (A.4.5) is injective.

As for the surjectivity of (A.4.5), it suffices to show that, for some symplectic

admissible filtration ZZp
, an isomorphism ϕ−2,Zp

: Gr
ZZp
−2

∼→ HomZp
(X ⊗

Z
Zp,Zp(1))

exists. By [14, Thm. 18.10] and [11, Cor. 1.1.2.6], it suffices to show that there
exists some symplectic filtration ZQp

such that ZQp,−2 and HomQp
(X ⊗

Z
Qp,Qp(1))

have the same O-multirank. Or rather, we just need to notice that the O-multirank
of a totally isotropic O⊗

Z
Qp-submodule can be any O-multirank below a maximal

one (with respect to the natural partial order), by Assumption A.2.1 and by the
classification in [11, Prop. 1.2.3.7 and Cor. 1.2.3.10]. �

Lemma A.4.6. The assignment (A.4.1) is bijective.

Proof. It is already explained in the proof of Lemma A.4.4 that an isomorphism

ϕ−2,Zp
: Gr

ZZp
−2

∼→ HomZp
(X ⊗

Z
Zp,Zp(1)) exists for any ZZp

considered there. Since

p is a good prime, which forces both [L# : L] and [X : φ(Y )] to be prime to p, any

choice of ϕ−2,Zp
above uniquely determines an isomorphism ϕ0 : Gr

ZZp
0

∼→ Y ⊗
Z
Zp.

Also by the explicit classification in [11, Prop. 1.2.3.7 and Cor. 1.2.3.10] as in the

proof of Lemma A.4.4, there exists a splitting δZp
: GrZZp

∼→ L⊗
Z
Zp, and the action

of G(Zp)∩P(Qp) acts transitively on the set of possible triples (ϕ−2,Zp
, ϕ0,Zp

, δZp
).

Hence the assignment (A.4.1) is bijective, as desired. �

Lemma A.4.7. The assignment (A.4.2) is bijective.

Proof. By Lemma A.4.6, it suffices to show that (A.4.2) is injective. Suppose two
representatives (ZH,ΦH, δH) and (Z′H,Φ

′
H, δ

′
H) with ΦH = (X,Y, φ, ϕ−2,H, ϕ0,H)

and Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ
′
0,H) are such that the induced (ZHp ,ΦHp , δHp) and

(Z′Hp ,Φ′Hp , δ′Hp) are equivalent to each other. By definition, ZHp = Z′Hp , so that

ZH = Z′H by Lemma A.4.4; and there exists a pair (γX : X ′
∼→ X, γY : Y

∼→ Y ′)
matching ΦHp with Φ′Hp . Hence we may assume that (X,Y, φ) = (X ′, Y ′, φ′), take

any Z in ZHp = Z′Hp , and take any pairs (ϕ−2 : GrZ−2
∼→ HomẐ(X ⊗

Z
Ẑ, Ẑ(1)), ϕ0 :

GrZ0
∼→ Y ⊗

Z
Ẑ) and (ϕ′−2 : GrZ−2

∼→ HomẐ(X ⊗
Z
Ẑ, Ẑ(1)), ϕ′0 : GrZ0

∼→ Y ⊗
Z
Ẑ)

inducing (ϕ−2,H, ϕ0,H) and (ϕ′−2,H, ϕ
′
0,H), respectively, and inducing the same

(ϕ−2,Hp , ϕ0,Hp) and (ϕ′−2,Hp , ϕ′0,Hp). Then the injectivity of (A.4.2) follows from

that of (A.4.1). �
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Lemma A.4.8. If (ZHp ,ΦHp , δHp) is assigned to (ZH,ΦH, δH) under (A.4.1), then
we have a canonical isomorphism

(A.4.9) ΓΦH
∼→ ΓΦHp

(see [11, Def. 6.2.4.1]). Moreover, we have a canonical isomorphism

(A.4.10) SΦHp

∼→ SΦH ,

which induces a canonical isomorphism

(A.4.11) (SΦH)∨R
∼→ (SΦHp )∨R

matching PΦH (resp. P+
ΦH

) with PΦHp (resp. P+
ΦHp

), both isomorphisms being equi-

variant with the actions of the two sides of (A.4.9) above.

Proof. Since p is a good prime, with Hp = G(Zp), the levels at p are not needed
in the constructions of ΓΦH and SΦH in [11, Sec. 6.2.3–6.2.4], and hence we have
the desired isomorphisms (A.4.9) and (A.4.10). The induced morphism (A.4.11)
matches PΦH (resp. P+

ΦH
) with PΦHp (resp. P+

ΦHp
) because both sides of (A.4.11)

can be canonically identified with the space of Hermitian forms over Y ⊗
Z
R, as

explained in the beginning of [11, Sec. 6.2.5], regardless of the levels H and Hp. �

Therefore, we also have assignments

(A.4.12) (ΦH, δH, σ) 7→ (ΦHp , δHp , σp)

and

(A.4.13) [(ΦH, δH, σ)] 7→ [(ΦHp , δHp , σp)]

(see [11, Def. 6.2.6.2]), which are compatible with (A.4.1) and (A.4.2), where we
have suppressed ZH and ZHp from the notation, where σ ⊂ (SΦH)∨R , and where
σp ⊂ (SΦHp )∨R is the image of σ under isomorphism (A.4.11).

Lemma A.4.14. The assignment (A.4.12) is bijective.

Proof. This follows from Lemma A.4.6 and the definition of (A.4.12) based on
Lemma A.4.8. �

Lemma A.4.15. The assignment (A.4.13) is bijective.

Proof. By [11, Def. 6.2.6.2], given any representative (ΦH, δH) of a cusp label, the
collection of the cones σ ⊂ (SΦH)∨R defining the same equivalence class [(ΦH, δH, σ)]
form a ΓΦH -orbit. Similarly, the collection of the cones σp ⊂ (SΦHp )∨R defining the
same equivalence class [(ΦHp , δHp , σp)] form a ΓΦHp -orbit. Hence, given (A.4.9),
the lemma follows from Lemma A.4.7. �

Definition A.4.16. We say that Σ is induced by Σp if, for each cusp
label [(ZH,ΦH, δH)] of MH represented by some (ZH,ΦH, δH), with assigned
(ZHp ,ΦHp , δHp) as in (A.4.1), the cone decomposition ΣΦH of PΦH is the pullback
of the cone decomposition ΣΦHp of PΦHp under (A.4.11).

By forgetting the p-parts of level structures, we obtain a canonical isomorphism

(A.4.17) MH
∼→ MHp ⊗

Z
Q

over S0,Q (as in [11, (1.4.4.1)]), by [11, Prop. 1.4.4.3 and Rem. 1.4.4.4] and by
Assumption A.2.1. Given any Σp for MHp , with induced Σ for MH as in Definition
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A.4.16, by comparing the universal properties of Mtor
H,Σ and Mtor

Hp,Σp as in [11, Thm.

6.4.1.1 (5) and (6)], the isomorphism (A.4.17) extends to a canonical isomorphism

(A.4.18) Mtor
H,Σ

∼→ Mtor
Hp,Σp ⊗

Z
Q

over S0,Q, mapping Z[(ΦH,δH,σ)] isomorphically to Z[(ΦHp ,δHp ,σp)]⊗
Z
Q when

[(ΦHp , δHp , σp)] is assigned to [(ΦH, δH, σ)] under (A.4.13), such that the pullback
of the tautological semi-abelian scheme over Mtor

Hp,Σp ⊗
Z
Q is canonically isomorphic

to the pullback of the tautological semi-abelian scheme over Mtor
H,Σ. Consequently,

by [11, Thm. 7.2.4.1 (3) and (4)], and by the fact that the pullback of the Hodge
invertible sheaf over Mtor

Hp,Σp ⊗
Z
Q is canonically isomorphic to the pullback of

the Hodge invertible sheaf over Mtor
H,Σ (because their definitions only use the

tautological semi-abelian schemes), the canonical isomorphism (A.4.18) induces a
canonical isomorphism

(A.4.19) Mmin
H

∼→ Mmin
Hp ⊗

Z
Q

over S0,Q, extending (A.4.17), compatible with (A.4.18) (under the canonical mor-
phisms

∮
H : Mtor

H,Σ → Mmin
H and

∮
Hp ⊗

Z
Q : Mtor

Hp,Σp ⊗
Z
Q → Mmin

Hp ⊗
Z
Q), and map-

ping Z[(ΦH,δH)] isomorphically to Z[(ΦHp ,δHp )]⊗
Z
Q when [(ΦHp , δHp)] is assigned to

[(ΦH, δH)] under (A.4.2) (where we have suppressed ZH and ZHp from the notation).

A.5. Complex analytic construction. By Proposition A.3.1, in order to prove
Theorem A.2.2, we may and we shall assume that char(k(s)) = 0. Thanks to the
isomorphisms (A.4.17) and (A.4.19), we shall identify U with a connected compo-
nent of MH ⊗

F0

k(s), identify Umin with the connected component of Mmin
H ⊗

F0

k(s)

that is the closure of U , and identify U[(ΦHp ,δHp )] with U[(ΦH,δH)], the pullback of

the stratum Z[(ΦH,δH)] of Mmin
H under the canonical morphism Umin → Mmin

H , when
[(ΦHp , δHp)] is assigned to [(ΦH, δH)] under (A.4.2).

Now in characteristic zero we no longer needH to be of the formH = HpHp as in

Section A.4. We shall allowH to be any neat open compact subgroup of G(Ẑ). Then
MH and Mmin

H are still defined over M0,Q = Spec(F0), with the stratification on the
latter by locally closed subschemes Z[(ΦH,δH)] labeled by cusp labels [(ΦH, δH)] for
MH (see the same references as in Section A.2). For any geometric point s→ S0,Q
with residue field k(s) and for any connected component U of the fiber MHp ×

S0

s,

we define Umin to be the closure of U in Mmin
H ×

S0

s, and define U[(ΦH,δH)] to be

the pullback of Z[(ΦH,δH)] to of Umin, for each cusp label [(ΦH, δH)]. (These are
consistent with what we have done before, when the settings overlap.)

Then we have the following analogue of Theorem A.2.2:

Theorem A.5.1. With the setting as above, every stratum U[(ΦH,δH)] is nonempty.

Since Mmin
H is projective over S0,Q, we may and we shall assume that k(s) ∼= C.

We shall denote base changes to C with a subscript, such as MH,C = MH ⊗
F0

C.

Let X denote the G(R)-orbit of h0, which is a finite disjoint union of Hermitian
symmetric domains, and let X0 denote the connected component of X contain-
ing h0. Let G(Q)0 denote the finite index subgroup of G(Q) stabilizing X0. Let
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ShH := G(Q)\X×G(A∞)/H. By [10, Lem. 2.5.1], we have a canonical bijection
G(Q)0\X0×G(A∞)/H → G(Q)\X×G(A∞)/H. Let {gi}i∈I be any finite set of
elements of G(A∞) such that G(A∞) =

∐
i∈I

G(Q)0hiH, which exists because of [2,

Thm. 5.1] and because G(Q)0 is of finite index in G(Q). Then we have

(A.5.2) ShH = G(Q)0\X0×G(A∞)/H =
∐
i∈I

Γ(gi)\X0,

where Γ(gi) := (giHg−1
i )∩G(Q)0 for each i ∈ I. By applying [1, 10.11] to each

Γ(gi)\X0, we obtain the minimal compactification Shmin
H of ShH, which is the com-

plex analytification of a normal projective variety Shmin
H,alg over C. Thus ShH is the

analytification of a quasi-projective variety ShH,alg (embedded in Shmin
H,alg).

By [10, Lem. 3.1.1], the rational boundary components XV of X0 (see [1, 3.5])
correspond to parabolic subgroups of G⊗

Z
Q stabilizing symplectic filtrations V on

L⊗
Z
Q with V−3 = 0 ⊂ V−2 ⊂ V−1 = V⊥−2 ⊂ V0 = L⊗

Z
Q. Consider the rational

boundary components of X×G(A∞) as in [10, Def. 3.1.2], which are G(Q)-orbits
of pairs (V, g), where V are as above and g ∈ G(A∞). Consider the bound-
ary components G(Q)\(G(Q)XV)×G(A∞)/H = G(Q)0\(G(Q)0XV)×G(A∞)/H of
ShH = G(Q)0\X0×G(A∞)/H. By the construction in [1], each such component
defines a nonempty locally closed subset and meets all connected components of
Shmin
H , corresponding to a nonempty locally closed subscheme of Shmin

H,alg which we
call its G(Q)(V, g)H-stratum. Thus, we obtain the following:

Proposition A.5.3 (Satake, Baily–Borel). Each G(Q)(V, g)H-stratum as above

meets every connected component of Shmin
H,alg.

For each g ∈ G(A∞), let L(g) denote the O-lattice in L⊗
Z
Q such that L(g)⊗

Z
Ẑ =

g(L⊗
Z
Ẑ) in L⊗

Z
A∞. Let r ∈ Q×>0 be the unique element such that ν(g) = ru for

some u ∈ Ẑ, and let 〈 · , · 〉(g) : L(g)×L(g) → Z(1) denote the pairing induced by

r〈 · , · 〉⊗
Z
Q (see [10, Sec. 2.4]; the key point being that 〈 · , · 〉(g) is valued in Z(1)).

Construction A.5.4. As explained in [10, Sec. 3.1], we have an assignment of a

fully symplectic admissible filtration Z(g) on Z⊗
Z
Ẑ and a torus argument Φ(g) =

(X(g), Y (g), φ(g), ϕ
(g)
−2, ϕ

(g)
0 ) to G(Q)(V, g), by setting:

(1) F(g) := {F(g)
−i := V−i ∩L(g)}i∈Z.

(2) Z(g) := {Z(g)
−i := g−1(F

(g)
−i ⊗Z

Ẑ)}i∈Z = {g−1(V−i⊗
Q
A∞)∩(L⊗

Z
Ẑ)}i∈Z.

(3) X(g) := HomZ(F
(g)
−2,Z(1)) = HomZ(GrF

(g)

−2 ,Z(1)).

(4) Y (g) := GrF
(g)

0 = F
(g)
0 /F

(g)
−1.

(5) φ(g) : Y (g) ↪→ X(g) is equivalent to the nondegenerate pairing

〈 · , · 〉(g)20 : GrF
(g)

−2 ×GrF
(g)

0 → Z(1)

induced by 〈 · , · 〉(g) : L(g)×L(g) → Z(1).
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(6) ϕ
(g)
−2 : GrZ

(g)

−2
∼→ HomẐ(X(g)⊗

Z
Ẑ, Ẑ(1)) is the composition

GrZ
(g)

−2

Gr−2(g)
∼→ GrF

(g)

−2 ⊗
Z
Ẑ ∼→ HomẐ(X(g)⊗

Z
Ẑ, Ẑ(1)).

(7) ϕ
(g)
0 : GrZ

(g)

0
∼→ Y (g)⊗

Z
Ẑ is the composition

GrZ
(g)

0

Gr0(g)
∼→ GrF

(g)

0 ⊗
Z
Ẑ ∼→ Y (g)⊗

Z
Ẑ.

By the assumption that our integral PEL datum satisfies [11, Cond. 1.4.3.10], and
by the fact that maximal orders over Dedekind domains are hereditary (see [14,

Thm. 21.4 and Cor. 21.5]), there exists some splitting ε(g) : GrF
(g) ∼→ L(g), whose

base extension from Z to Ẑ defines by pre- and post- compositions with Gr(g) and

g−1 a splitting δ(g) : GrZ
(g) ∼→ L⊗

Z
Ẑ. These define an assignment

(A.5.5) G(Q)(V, g) 7→ [(Z(g),Φ(g), δ(g))],

which is compatible with the formation of H-orbits and induces an assignment

(A.5.6) G(Q)(V, g)H 7→ [(Z
(g)
H ,Φ

(g)
H , δ

(g)
H )].

Definition A.5.7. For each cusp label [(ZH,ΦH, δH)], the [(ΦH, δH)]-stratum of

Shmin
H,alg is the union of all the G(Q)(V, g)H-strata such that [(ZH,ΦH, δH)] is as-

signed to G(Q)(V, g)H under (A.5.6).

Proposition A.5.8. Given the H-orbit ZH of any Z = {Z−i}i∈Z as above, there
exists some totally isotropic O⊗

Z
Q-submodule V−2 of L⊗

Z
Q such that V−2⊗

Q
A∞

lies in the H-orbit of Z−2⊗
Z
Q.

Proof. Up to replacing H with an open compact subgroup, which is harmless for
proving this proposition, we may and we shall assume that H = HSHS , where S is
a finite set of primes containing all bad ones for the integral PEL datum (see [11,

Def. 1.4.1.1]), such that HS = G(ẐS) =
∏
` 6∈S

G(Z`) and HS ⊂ G(ẐS) =
∏
`∈S

G(Z`),

where ` 6∈ S means that ` runs through all prime numbers not in S.
By Assumption A.2.1, by reduction to the case where O⊗

Z
Q is a product of

division algebras by Morita equivalence (see [11, Prop. 1.2.1.14]), and by the local-
global principle for isotropy in [15, table on p. 347, and its references], it follows
that, if Z−2⊗

Z
Q is nonzero and extends to some isotropic O⊗

Z
A-submodule of

L⊗
Z
A isomorphic to the base extension of some O-lattice, then there exists some

nonzero isotropic element in L⊗
Z
Q. By induction on the O-multirank of Z−2⊗

Z
Q—

by replacing L⊗
Z
Q (resp. L⊗

Z
A∞) with the orthogonal complement modulo the

span of a nonzero isotropic element in L⊗
Z
Q (resp. L⊗

Z
A∞)—there exists some

totally isotropic O⊗
Z
Q-submodule V0

−2 of L⊗
Z
Q such that V0

−2⊗
Q
A∞ and Z−2⊗

Z
Q

have the same O-multirank.
Let G′ denote the derived subgroup of G⊗

Z
Q (see [6, VIB, 7.2(vii) and 7.10]).

Then the pullback to G′ induces a bijection between the parabolic subgroups of
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G⊗
Z
Q and those of G′ (see [6, XXII, 6.2.4 and 6.2.8] and [16, Thm. 15.1.2(ii) and

Thm. 15.4.6(i)]), and they both are in bijection with the stabilizers of flags of to-
tally isotropic O⊗

Z
Q-submodules as in Lemma A.4.3. Therefore, there exists some

element h = (h`) ∈ G′(A∞), where the index ` runs through all prime numbers,
such that V0

−2⊗
Q
A∞ = h(Z−2⊗

Z
Q).

Since G′ is simply connected by Assumption A.2.1 (because the kernel of the
similitude character of G⊗

Z
Q factorizes over an algebraic closure of Q as a product

of groups with simply connected derived groups, by the proof of [11, Prop. 1.2.3.11]),
by weak approximation (see [13, Thm. 7.8]), there exists γ ∈ G′(Q) such that
γ(h`)`∈S ∈ HS . On the other hand, by using the Iwasawa decomposition at the
places ` ∈ S as in the proof of Lemma A.4.4, up to replacing h` with a right
multiple of h` by an element of G′(Q`) stabilizing Z−2⊗

Ẑ
Q`, we may assume that

γh` ∈ G(Z`) for all ` 6∈ S. Thus, we can conclude by taking V−2 := γ(V0
−2). �

Proposition A.5.9. For each cusp label [(ZH,ΦH, δH)], there exists some rational
boundary component G(Q)(V, g) of X×G(A∞) such that [(ZH,ΦH, δH)] is assigned
to G(Q)(V, g)H under (A.5.6).

Proof. Let (Z,Φ = (X,Y, φ, ϕ−2, ϕ0), δ) be any triple whose H-orbit induces
[(ZH,ΦH, δH)], and let V−2 be as in Proposition A.5.8. Up to replacing (Z,Φ, δ)
with another such triple, we may and we shall assume that

(A.5.10) Z−2 = (V−2⊗
Q
A∞)∩(L⊗

Z
Ẑ) = Z

(1)
−2,

where F(1) = {F(1)
−i }i∈Z, Z(1) = {Z(1)

−i }i∈Z, and Φ(1) = (X(1), Y (1), φ(1), ϕ
(1)
−2, ϕ

(1)
0 )

are assigned to (V, 1) as in Construction A.5.4, together with some noncanonical
choices of ε(1) and δ(1).

Let P denote the parabolic subgroup of G⊗
Z
Q stabilizing V−2 (see Lemma A.4.3).

By (A.5.10), the elements of P(A∞) also stabilize Z−2⊗
Z
Q. Therefore, for each

g ∈ P(A∞), the filtration Z(g) defined as in Construction A.5.4 coincides with Z.

Using (A.5.10) and the compatibility among the objects, both φ⊗
Z
Ẑ and φ(1)⊗

Z
Ẑ

can be identified (under (ϕ−2, ϕ0) and (ϕ
(1)
−2, ϕ

(1)
0 )) with the canonical morphism

(A.5.11) 〈 · , · 〉∗20 : GrZ0 → HomẐ(GrZ−2, Ẑ(1))

induced by the pairing 〈 · , · 〉, which induce compatible isomorphisms

(A.5.12) t(ϕ
(1)
−2 ◦ ϕ

−1
−2) : X(1)⊗

Z
Ẑ ∼→ X ⊗

Z
Ẑ

and

(A.5.13) ϕ
(1)
0 ◦ ϕ

−1
0 : Y ⊗

Z
Ẑ ∼→ Y (1)⊗

Z
Ẑ.

By [11, Cond. 1.4.3.10], there exists some maximal order O′ in O⊗
Z
Q,

containing O, such that the O-action on L extends to an O′-action; hence
the O-actions on Y and Y (1) also extend to O′-actions. Using the local
isomorphisms given by (A.5.13), by [14, Thm. 18.10] (which is applicable
because we are now considering modules of the maximal order O′) and [11, Cor.
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1.1.2.6], there exists an element g0 ∈ GLO⊗
Z
A∞(GrZ0⊗

Z
Q) and an O-equivariant

embedding h0 : Y (1) ↪→ Y ⊗
Z
Q such that (h0(Y (1)))⊗

Z
Ẑ = (ϕ0⊗

Z
Q)(g0(GrZ0))

in Y ⊗
Z
A∞. Let g−2 := tg−1

0 ∈ GLO⊗
Z
A∞(GrZ−2⊗

Z
Q), where the transpo-

sition is induced by (A.5.11). Then there is a corresponding O-equivariant
embedding h−2 : HomZ(X(1),Z(1)) ↪→ HomZ(X,Z(1))⊗

Z
Q such that

(h−2(HomZ(X(1),Z(1))))⊗
Z
Ẑ = (ϕ−2⊗

Z
Q)(g−2(GrZ−2)) in HomZ(X,Z(1))⊗

Z
A∞.

Take g ∈ P(A∞) such that Gr−2(g) = g−2, Gr0(g) = g0, and ν(g) = 1, which
exists thanks to the splitting δ. Then X(g) and Y (g) are realized as the preimages
of X and Y under th−2⊗

Z
Q and h−1

0 ⊗Z
Q, respectively; and the induced pair (γX :

X(g) ∼→ X, γY : Y
∼→ Y (g)) matches Φ(g) with Φ. Such a (V, g) is what we want. �

As explained in [10, Sec. 2.5], there is a canonical open and closed immersion

(A.5.14) ShH,alg ↪→ MH,C.

As explained in [8, §8, p. 399] (see also [11, Rem. 1.4.3.12]), MH,C is the disjoint

union of the images of morphisms like (A.5.14), from certain Sh
(j)
H,alg defined

by some (O, ?, L(j), 〈 · , · 〉(j), h0) such that (L(j), 〈 · , · 〉(j))⊗
Z
Ẑ ∼= (L, 〈 · , · 〉)⊗

Z
Ẑ

and (L(j), 〈 · , · 〉(j))⊗
Z
R ∼= (L, 〈 · , · 〉)⊗

Z
R, but not necessarily satisfying

(L(j), 〈 · , · 〉(j))⊗
Z
Q ∼= (L, 〈 · , · 〉)⊗

Z
Q, for all j in some index set J (whose

precise description is not important for our purpose). (Each (L(j), 〈 · , · 〉(j))
is determined by its rational version (L(j), 〈 · , · 〉(j))⊗

Z
Q by taking the

intersection of the latter with (L(j), 〈 · , · 〉(j))⊗
Z
Ẑ ∼= (L, 〈 · , · 〉)⊗

Z
Ẑ in

(L(j), 〈 · , · 〉(j))⊗
Z
A∞ ∼= (L, 〈 · , · 〉)⊗

Z
A∞. Due to the failure of Hasse’s principle,

J might have more than one element.)
By [10, Thm. 5.1.1], (A.5.14) extends to a canonical open and closed immersion

(A.5.15) Shmin
H,alg ↪→ Mmin

H,C,

respecting the stratifications on both sides labeled by cusp labels (see Definition
A.5.7). Again, Mmin

H,C is the disjoint union of the images of morphisms like (A.5.15),

from the minimal compactifications Sh
(j),min
H,alg of Sh

(j)
H,alg, for all j ∈ J .

Everything we have proved remains true after replacing the objects defined by
(L, 〈 · , · 〉) with those defined by (L(j), 〈 · , · 〉(j)), for each j ∈ J . Thus, in order
to show that U[(ΦH,δH)] is nonempty, it suffices to note that, by Propositions A.5.3

and A.5.9, the [(ΦH, δH)]-stratum of Sh
(j),min
H,alg meets every connected component of

Sh
(j),min
H,alg , for all j ∈ J . The proof of Theorem A.5.1 is now complete. �
By Proposition A.3.1, and by the explanations in Section A.4 and in the begin-

ning of this section, the proof of Theorem A.2.2 is also complete. �

A.6. Extension to cases of ramified characteristics. In this section, we
shall no longer assume that p is a good prime for the integral PEL datum
(O, ?, L, 〈 · , · 〉, h0), but we shall assume that the image Hp of H under the

canonical homomorphism G(Ẑ)→ G(Ẑp) is neat.
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Even for such general H and p, for any collections of lattices stabilized by H
as in [12, Sec. 2], we still have an integral model ~MH of MH flat over S0 con-
structed by “taking normalization” (see [12, Prop. 6.1; see also the introduction]).

Moreover, we have an integral model ~Mmin
H of Mmin

H projective and flat over S0

(see [12, Prop. 6.4]), with a stratification by locally closed subschemes ~Z[(ΦH,δH)]

labeled by cusp labels [(ΦH, δH)] for MH, which extends the stratification of MH
by the locally closed subschemes Z[(ΦH,δH)] (see [12, Thm. 12.1]). For certain (pos-
sibly nonsmooth) compatible collections Σ (not the same ones for which we can

construct Mtor
H,Σ over M0,Q), we also have the toroidal compactifications ~Mtor

H,Σ of
~MH projective and flat over S0 (see [12, Sec. 7]), with a stratification by locally

closed subschemes ~Z[(ΦH,δH,σ)] (see [12, Thm. 9.13]), and with a canonical surjec-

tion ~
∮
H : ~Mtor

H,Σ → ~Mmin
H with geometrically connected fibers (see [12, Lem. 12.9 and

its proof]), inducing surjections ~Z[(ΦH,δH,σ)] → ~Z[(ΦH,δH)] (see [12, Thm. 12.16]).
As in Section A.2, consider a geometric point s → S0 = Spec(OF0,(p)) with

algebraically closed residue field k(s), and consider a connected component Umin

of the fiber ~Mmin
H ×

S0

s. For each cusp label [(ΦH, δH)] for MH, we define U[(ΦH,δH)]

to be the pullback of ~Z[(ΦH,δH)] to Umin. Since the fibers of ~
∮
H are geometrically

connected, the preimage of Umin under ~∮
H×

S0

s is a connected component U tor

of ~Mtor
H,Σ×

S0

s. (In general neither ~Mmin
H ×

S0

s nor ~Mtor
H,Σ×

S0

s is normal.) For each

equivalence class [(ΦH, δH, σ)] defining a stratum ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ, we define

U[(ΦH,δH,σ)] to be the pullback of ~Z[(ΦH,δH,σ)]. Then we also have a canonical

surjection U[(ΦH,δH,σ)] → U[(ΦH,δH)] induced by ~
∮
H.

Theorem A.6.1. With the setting as above, all strata of Umin are nonempty.

By using the canonical surjection U[(ΦH,δH,σ)] → U[(ΦH,δH)] (as in the proof of
Corollary A.2.3), Theorem A.6.1 implies the following:

Corollary A.6.2. With the setting as above, all strata of U tor are nonempty.

As in Section A.3, it suffices to prove the following:

Proposition A.6.3. Suppose Theorem A.6.1 is true when char(k(s)) = 0. Then
it is also true when char(k(s)) = p > 0.

Remark A.6.4. Since ~MH⊗
Z
Q ∼= MH and ~Mmin

H ⊗
Z
Q ∼= Mmin

H by construction, by

Theorem A.5.1, the assumption in Proposition A.6.3 always holds. Nevertheless,
the proof of Proposition A.6.3 will clarify that the deduction of Theorem A.6.1 from
Theorem A.5.1 does not require Assumption A.2.1 (cf. Remark A.3.2).

The remainder of this section will be devoted to the proof of Proposition A.6.3.
We shall assume that char(k(s)) = p > 0.

While each Z[(ΦH,δH)] is isomorphic to some boundary moduli problem MZH
H , each

stratum ~Z[(ΦH,δH)] of ~Mmin
H is similarly isomorphic to some integral model ~MZH

H
defined by taking normalization (see [12, Prop. 7.4, and Thm. 12.1 and 12.16]).

Hence it also makes sense to consider the minimal compactification ~Zmin
[(ΦH,δH)] of

~Z[(ΦH,δH)], which is proper flat (with possibly non-normal geometric fibers) over S0,
and we obtain the following:
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Lemma A.6.5 (cf. Lemma A.3.4 and [5, Thm. 4.17(ii)]). There exists some discrete
valuation ring R flat over OF0,(p), with fraction field K and residue field k(s), the
latter lifting the structural homomorphism OF0,(p) → k(s), such that, for each cusp

label [(ΦH, δH)], and for each connected component V of ~Zmin
[(ΦH,δH)] ⊗

OF0,(p)

R, the

induced flat morphism V → Spec(R) has connected special fiber over Spec(k(s)).

Proof of Proposition A.6.3. By [12, Cor. 12.4], it suffices to show that U[(ΦH,δH)] 6=
∅ when [(ΦH, δH)] is maximal with respect to the surjection relations as in [11,

Def. 5.4.2.13]. In this case, by [12, Thm. 12.1], ~Z[(ΦH,δH)] is a closed stratum of
~Mmin
H , and so ~Z[(ΦH,δH)] = ~Zmin

[(ΦH,δH)]. Hence the lemma follows from Theorem A.5.1

and the same argument as in the proof of Proposition A.3.1, with the reference to
Lemma A.3.4 replaced with an analogous reference to Lemma A.6.5. �

As explained in Remark A.6.4, the proof of Theorem A.6.1 is now complete. �

A.7. Examples.

Example A.7.1. Suppose O⊗
Z
Q is a CM field F with maximal totally subfield F+,

with positive involution given by the complex conjugation of F over F+. Suppose
L = O⊕ a+b

F , where a ≥ b ≥ 0 are integers. Suppose (2π
√
−1)−1〈 · , · 〉 is the

skew-Hermitian pairing defined in block matrix form
(

1b

S
−1b

)
where S is some

(a− b)×(a− b) matrix over F such that
√
−1S is Hermitian and either positive or

negative definite. Then, for each 0 ≤ r ≤ b, the O-submodule Z
(r)
−2 of L = O⊕(a+b)

F

with the last a + b − r entries zero is totally isotropic, and V
(r)
−2 := F

(r)
−2⊗Z

Q is a

totally isotropic F -submodule of L⊗
Z
Q = F⊕(a+b), which is maximal when r = b.

The stabilizer of V
(r)
−2 either is the whole group (when r = 0) or defines a maximal

(proper) parabolic subgroup P(r) of G⊗
Z
Q (when r > 0), and all maximal parabolic

subgroups of G⊗
Z
Q are conjugate to one of these standard ones, by Lemma A.4.3.

Similarly, Z
(r)
−2 := F

(r)
−2⊗Z

Ẑ is a totally isotropic O⊗
Z
Ẑ-submodule of L⊗

Z
Ẑ, and

the left G(Q)- and right H- double orbits of Z
(r)
−2, for 0 ≤ r ≤ b, exhaust all the

possible ZH appearing in cusp labels [(ZH,ΦH, δH)] for MH, by Proposition A.5.8.
By Lemma A.4.7, by forgetting their p-parts, their left G(Q)- and right Hp- double
orbits also exhaust all possible ZHp ’s appearing in cusp labels [(ZHp ,ΦHp , δHp)] for
MHp . Let us say that a cusp label [(ZH,ΦH, δH)] for MH is of rank r if ZH is

in the double orbit of Z
(r)
−2, and that a cusp [(ZHp ,ΦHp , δHp)] for MHp is of rank

r if it is assigned to one of rank r under (A.4.1). (This is consistent with [11,
Def. 5.4.1.12 and 5.4.2.7].) On the other hand, as a byproduct of the proof of

Proposition A.5.9, any ZH in the double orbit of Z
(r)
−2 does extend to some cusp

label [(ZH,ΦH, δH)] for MH, inducing some cusp label [(ZHp ,ΦHp , δHp)] for MHp

under (A.4.1). Then Theorem A.2.2 shows that, in the boundary stratification of
every connected component of every geometric fiber of Mmin

Hp → S0 = Spec(OF0,(p)),
there exist nonempty strata labeled by cusp labels for MHp of all possible ranks
0 ≤ r ≤ b. (The theorem shows the more refined nonemptiness for strata labeled
by cusp labels, not just by ranks.)
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The next example shows that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that O⊗

Z
Q involves no factor of type D.

Example A.7.2. Suppose O⊗
Z
Q is a central division algebra D over a totally real

field F as in [11, Prop. 1.2.1.13] such that D ⊗
F,τ

R ∼= H, the real Hamiltonian

quaternion algebra, for every embedding τ : F → R, with ? = � given by x 7→ x� :=
TrD/F (x)−x. Suppose that D is nonsplit at strictly more than two places. Suppose

L is chosen such that L⊗
Z
Q ∼= D⊕ 2. By the Gram–Schmidt process as in [11, Sec.

1.2.4], and by [11, Cor. 1.1.2.6], there is up to isomorphism only one isotropic skew-
Hermitian pairing over L⊗

Z
Q. But we do know the failure of Hasse’s principle (see

[8, §7, p. 393]) in this case (see [15, Rem. 10.4.6]), which means there exists a choice
of (L, 〈 · , · 〉) as above that is globally anisotropic but locally isotropic everywhere.
Thus, even when k(s) ∼= C, there exists some connected component U of ShH,alg

and some nonzero cusp label [(ΦH, δH)] for MH such that U[(ΦH,δH)] = ∅.
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