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(1) In Sec. 3, our definition Gc following [Mil90, Ch. III] is incorrect in general,
when Z(G)◦ is not necessarily split over a CM field as in [Mil90, (II.2.1.4)].
The correct definition should be that Gc is the quotient of GQ by the min-
imal subtorus Zs(G) of the center Z(G) such that the torus Z(G)◦/Zs(G)
has the same split ranks over Q and R.

(2) In Sec. 3, the reference [Mil90, Ch. III, Sec. 6, Rem. 6.1], which claims
that the Galois finite étale cover XH(`r)⊗

Z
Q→ XH⊗

Z
Q in (3.2) has Galois

group exactly Hc
`/U`(`r)c, is incorrect in general. (We thank Yihang Zhu

for asking us about this reference and discussing with us about its validity.)
To see this, let T := ker(G→ Gc), which is the torus Zs() as above, by

the definition of Gc. (But we will not need to know the precise definition of
T.) The claim in [Mil90, Ch. III, Sec. 6, Rem. 6.1] would be valid only if, for
nontrivial T, the cardinalities of T(Q)\T(A∞)/HT (which is a finite set by
[Bor63, Thm. 5.1]) remain unchanged for all sufficiently small open compact

subgroups HT of T(A∞). This implies that the closure T(Q) of T(Q) has

finite index in T(A∞), but contradicts the fact that T(Q) has infinite index
in T(A∞) for every nontrivial torus T over Q. (See [PR94, Prop. 7.13(2)],
which explains that the same failure occurs, more generally, for algebraic
groups over number fields that are connected but not simply-connected.)

This does not affect the construction of automorphic étale sheaves for
representations of Gc, since all we need is that the Galois group is a quotient
of H`/U`(`r(m)) by construction, and admits Hc

`/U`(`r(m))c as a quotient.
In particular, in (3.3), the contraction product can be formed using the
action of H`/U`(`r(m)) instead, whose pullback to XH(`r(m))⊗

Z
Q is still iso-

morphic to V 0,`m by construction. The remainder of Sec. 3 is unaffected.
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