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Abstract. We review some recent results of ours on the nearby cycles of
automorphic étale sheaves, and record some improvements of the arguments.
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1. Introduction

In the context of the Langlands program, the étale cohomology of Shimura vari-
eties serves as an important source of Galois representations associated with auto-
morphic representations. Concretely, let X be a model of a Shimura variety defined
over some number field contained in C, which we temporarily assume to be Q, for
simplicity of exposition; let Q̄ denote the algebraic closure of Q in C; and let XQ̄
denote the base change of X to Q̄. Let ` be any prime number. Then the étale co-
homology Hi

ét(XQ̄,Q`) is canonically a representation of the absolute Galois group

Gal(Q̄/Q), and it is desirable to understand such a representation.
For this purpose, it is important to also understand the restrictions of such a

representation to the decomposition groups Gal(Q̄p/Qp), for all prime numbers
p. This can be achieved by considering the canonical action of Gal(Q̄p/Qp) on
Hi

ét(XQ̄p ,Q`) ∼= Hi
ét(XQ̄,Q`) (see [10, Arcata, V, 3.3]), where Q̄p is any algebraic
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closure of Qp containing Q̄. Then we can ask, for example, when p 6= `, whether
Hi

ét(XQ̄p ,Q`) is an unramified representation of Gal(Q̄p/Qp).
To answer such a question, a general method is to reduce it to the case where X

has some model over Zp, and consider the so-called nearby cycles over the geometric
special fiber of such a model. Let us explain this in more detail. (From now on,
the symbol X will no longer denote a model of Shimura variety over Q.)

Let us consider some more general base rings. Let R be a Henselian discrete
valuation ring of residue characteristic p > 0, with fraction field K = Frac(R). Let
K̄ be an algebraic closure of K, and let R̄ be the integral closure of R in K̄. Let k
denote the residue field of R, and let k̄ denote the residue field of R̄. Then we have
the following commutative diagram

s̄ := Spec(k̄)
ī //

��

S̄ := Spec(R̄)

��

η̄ := Spec(K̄)

��

j̄
oo

s := Spec(k)
i

// S := Spec(R) η := Spec(K)
j

oo

of canonical morphisms. We shall denote pullbacks with subscripts s̄ etc as usual.
Suppose ` is a prime number different from p, and suppose Λ is a coefficient ring

that is either Z/`mZ (for some integer m ≥ 1), Z`, Q`, Q̄`, or a finite extension of
any of these. (These are the coefficient rings accepted in, for example, [25, 3.1].)
For each scheme X separated and of finite type over S, we denote by Db

c(Xη,Λ)
the bounded derived category of Λ-étale constructible sheaves over Xη, and by
Db
c(Xs̄× η̄,Λ) the bounded derived category of Λ-étale constructible sheaves over

Xs̄ with compatible continuous Gal(K̄/K)-actions. (See [12, 1.1] and [14] when Λ
is not torsion.) Then we have the functor of nearby cycles:

(1.1) RΨX : Db
c(Xη,Λ)→ Db

c(Xs̄× η̄,Λ) : F 7→ ī∗Rj̄∗(Fη̄),

where Fη̄ denotes the pullback of F to Xη̄. (See [13, XIII], [10, Th. finitude, Sec.
3], and [25, Sec. 4] for more details.)

Suppose we have a morphism ϕ : X → Y of schemes of finite type over S. Then,
on one hand, we have the adjunction morphisms

(1.2) RΨY Rϕη,∗(F)→ Rϕs̄,∗RΨX(F)

and

(1.3) Rϕs̄,!RΨX(F)→ RΨY Rϕη,!(F)

for pushforwards, which are isomorphisms when ϕ is proper, by the proper base
change theorem (cf. [2, XII, 5.1] and [13, XIII, (2.1.7.1) and (2.1.7.3)]). On the
other hand, we have the adjunction morphism

(1.4) ϕ∗s̄ RΨY (F)→ RΨX ϕ
∗
η(F)

for pullbacks, which is an isomorphism when ϕ is smooth, by the smooth base
change theorem (see [2, XVI, 1.2] and [13, XIII, (2.1.7.2)]).

To see why these are useful, consider the special case where the structural mor-
phism X → S is both proper and smooth, let Y = S, and let ϕ be the above
structural morphism. Then we obtain from (1.4) and (1.2) the canonical isomor-
phisms

(1.5) Λ
∼→ RΨX(Λ)



NEARBY CYCLES OF AUTOMORPHIC ÉTALE SHEAVES, II 3

and

(1.6) Hi(Xη̄,Λ)
∼→ Hi(Xs̄, RΨX(Λ)),

respectively, and hence their combination

(1.7) Hi(Xη̄,Λ)
∼→ Hi(Xs̄,Λ),

which are compatible with actions of Gal(K̄/K). In particular, the action of
Gal(K̄/K) on the left-hand side Hi(Xη̄,Λ) of (1.7) is unramified, because the action
of Gal(K̄/K) on the right-hand side Hi(Xs̄,Λ) of (1.7) factors through Gal(k̄/k).

In this article, we shall consider the more general situation where ϕ : X → S
is some integral model of Shimura varieties that is neither proper nor smooth, and
we shall also allow the trivial coefficient Λ to be replaced with certain automorphic
étale sheaves valued in Λ-modules. (We will make these more precise in Sections 2
and 3.) Although we cannot expect an isomorphism as in (1.7) in such a generality,
we will show that, for most integral models we know, we still have an isomorphism
as in (1.6), despite the lack of the properness assumption. Intuitively speaking, this
means, at least for studying étale cohomology, the special fibers of these integral
models have as many points as there should be—there are no missing points.

We will review some results and ideas in our previous work [42], but with some
improvements of the statements and proofs. This is partly motivated by some recent
developments (such as [31]) after [42] was written. Compared with [42], the main
innovations of this article are the following: (i) a different argument in the proof of
the key Theorem 4.1 using torsion automorphic coefficients instead of using Kuga
families and their compactifications; and (ii) the inclusion of abelian-type cases in
Corollaries 4.6 and 4.10, and in Theorems 4.13, 4.19, and 4.23.

We shall follow [35, Notation and Conventions] unless otherwise specified. We
will sometimes use the terminologies introduced in [42] without repeating their
definitions in detail, when their meanings can be understood from the context.
(Nevertheless, we will still provide references to such definitions.)

Acknowledgements. It is our great honor and pleasure to dedicate this article
to Joachim Schwermer on the occasion of his 66th birthday. His many works on
the cohomology of noncompact locally symmetric spaces have been great sources
of information and inspiration for us. We would also like to thank the anonymous
referee for a careful reading and helpful suggestions.

2. Integral models we consider

Let us start by emphasizing that we cannot expect isomorphisms as in (1.6) to
be true for all kinds of nonproper integral models. For an extreme example, in the
context of Section 1, if we consider the trivially wrong model obtained by replacing
X with Xη, in which case the whole special fiber Xs is removed, then the right-
hand side of (1.6) is always zero, and this cannot be what we want. Thus, if we are
to have meaningful generalizations of (1.6) without the properness assumption, we
need to be precise about our choices of integral models.

Let us retain the notation K, R, etc in Section 1. Suppose K is of characteristic
zero, and suppose XH is the pullback to S = Spec(R) of one of the following models
of Shimura varieties (or related moduli problems), where H is an open compact
subgroup of G(A∞) for some group scheme G over Z associated with the various
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constructions, and where R is now also an OF0,(p)-algebra, with F0 denoting the
reflex field: (For more detailed references in the first four cases, see [42, Sec. 2.1].)

(Sm) A good reduction integral model defined by a smooth PEL moduli problem,
as in [32, Sec. 5] and [35, Sec. 1.4.1–1.4.2].

(Nm) A flat integral model defined by taking normalization, as in [36, Sec. 6], of
a characteristic zero PEL moduli problem over a product of good reduction
integral models in Case (Sm) above. (This includes all normalizations of
the PEL moduli defined by multichains of isogenies as in [56, Ch. 3 and 6].)

(Spl) A flat integral model defined by taking normalization, as in [40, Sec. 2.4], of
the pullback of a characteristic zero PEL moduli problem over the so-called
splitting models defined as in [53, Sec. 15].

(Hdg) A flat integral model defined by taking normalization, as in [44, Introduc-
tion], of a Hodge-type Shimura variety over some Siegel moduli scheme.

(Ab) A flat integral model defined as in [30], [29], or [31], of an abelian-type
Shimura variety.

We shall say that we are in Case (Sm), (Nm), (Spl), (Hdg), or (Ab) depending on
the case above from where XH is pulled back.

Remark 2.1. Let us be more precise about the levels (i.e., the open compact sub-
groups H of G(A∞)) allowed in these cases. For simplicity, we shall assume H to
be of the form H = HpHp for some neat open compact subgroup Hp of G(A∞,p)
and for some open compact subgroup Hp of G(Qp), and we say Hp and Hp are the
levels away from p and at p, respectively. In Case (Sm), the level at p is hyper-
special. (But p = 2 is excluded if simple factors of type D are involved, as in [35,
Def. 1.2.1.15].) In Cases (Nm) and (Spl), we emphasize that we allow not only the
parahoric levels at p as in [56, Ch. 3 and 6] and [53, Sec. 15] defined by certain
multichains of isogenies, but also arbitrarily higher levels and also arbitrary collec-
tions of isogenies. (Also, p = 2 is allowed.) In Case (Hdg), the level at p is exactly
the pullback of a hyperspecial level at p of a symplectic similitude group, which
can be the hyperspecial levels at p as in [30] and [29], by composing any Siegel em-
bedding as in [30, Sec. 2.3] and [29, Sec. 4] with the embedding given by “Zarhin’s
trick” as in [36, Lem. 4.9] or [39, Lem. 2.1.1.9]. (In fact, this was explained in an
earlier version of [44], but not in the 2015 version we cited.) However, there is
some subtlety for Hodge-type Shimura varieties at parahoric levels, in addition to
the requirements in [31] that p > 2 and that the group GQp is split over a tamely
ramified extension of Qp, when Hp = K◦p 6= Kp (in the notation of [31, Sec. 4.3]),
in which case we have to defer them to Case (Ab) below. (That is, we have to treat
some integral models of Hodge-type Shimura varieties with parahoric levels at p
only as integral models of abelian-type Shimura varieties.) In Case (Ab), the level
at p has to be either hyperspecial or parahoric at p, and in the latter case there
are the above-mentioned requirements in [31] that p > 2 and that the group GQp
is split over a tamely ramified extension of Qp.

Remark 2.2. None of the three PEL-type cases we consider is completely sub-
sumed by the Hodge-type case, and the Hodge-type case is not subsumed by the
abelian-type case either. We emphasize again that this is about the actual choices
of integral models, but not about the classification in characteristic zero. As we
consider more and more general Shimura varieties in characteristic zero, the integral
models that are available to us also become more and more restrictive, and there
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are some subtleties due to the fact that not everything available in the literature
has been written in the most generality or flexibility its arguments allowed.

In Cases (Sm), (Nm), (Spl), and (Hdg), we have a commutative diagram

(2.3) XH
� � Jtor

//

Jmin

''

Xtor
H

��

Xmin
H

of canonical morphisms between noetherian normal schemes over S = Spec(R),
where Xtor

H and Xmin
H denote some projective toroidal and minimal compactifications.

In Case (Sm), we use [35, Thm. 6.4.1.1, 7.2.4.1, and 7.3.3.4]. In Case (Nm), we use
[38, Thm. 6.1] and [36, Prop. 6.4, and Thm. 12.1 and 12.16]. In Case (Spl), we use
[40, Thm. 3.4.1 and 4.3.1]. In Case (Hdg), we use [44, Thm. 4.1.5 and 5.2.11]. (See
[42, Prop. 2.2] for a detailed qualitative description of these compactifications, and
see the proof there for further references to the literature.)

In Case (Ab), we expect similar results, but they are not yet available in the
literature. Nevertheless, we still have the following crude constructions:

Proposition 2.4. Given any XH in Case (Ab), there exists an open immersion

(2.5) Jmin : XH ↪→ Xmin
H

from a quasi-projective scheme to a normal projective scheme over S = Spec(R),
which we consider the minimal compactification of XH, with the following properties:

(1) There exists a Galois finite étale extension R → R+ of discrete valuation

rings of mixed characteristics (0, p) and an integral model X̃H̃ in Case (Hdg)

defined over a subring R̃ of R+ such that R+ is unramified over R̃ and
such that each connected component X+

H,R+ of the base change XH,R+ :=

XH⊗
R
R+ is noetherian normal and has geometrically connected fiber over

K+, where K+ := Frac(R+), and is isomorphic to the quotient by the
free action of a finite group ∆+ of some (noetherian normal) connected

component X̃+

H̃,R+
of the base change X̃H̃,R+ := X̃H̃⊗

R̃

R+. (The group ∆+

depends not only on the levels H and H̃, but also on the actual connected

components X+
H,R+ and X̃+

H̃,R+
.)

(2) Let X̃H̃ ↪→ X̃min
H̃

denote the minimal compactification of X̃H̃ as in (2.3).

Then the action of ∆+ on X̃+

H̃,R+
extends to a (possibly non-free) action

on the schematic closure X̃min,+

H̃,R+
of X̃+

H̃,R+
in X̃min

H̃,R+
:= X̃min

H̃
⊗
R̃

R+, and the

quotient of X̃min,+

H̃,R+
by ∆+ is isomorphic to the schematic closure Xmin,+

H,R+ of

X+
H,R+ in Xmin

H,R+ := Xmin
H ⊗

R
R+.

Remark 2.6. In Proposition 2.4, the quotients of quasi-projective schemes by finite
groups are defined by the same argument as in [50, Sec. 7, Thm. and Rem.] (see
also [20, V, 1.8]). Moreover, in (1) of Proposition 2.4, when the action of ∆+ on

X̃+

H̃,R+
is free, the canonically induced morphism X̃+

H̃,R+
→ X̃+

H̃,R+
/∆+ ∼= X+

H,R+ is

a Galois finite étale cover with Galois group ∆+ by the same argument as in the
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proof of the last assertion of [50, Sec. 7, Thm.] (if we use completions of strict local
rings instead of completions of local rings; see also [20, V, 2.4 and 2.6]).

Proof of Proposition 2.4. Note that (1) follows (up to slight reformulation) from
the constructions in [30, Sec. 3.4], [29, Thm. 3.10], and [31, Sec. 4.6]. We note that
we need [31, Prop. 4.3.7] (when Hp = K◦p 6= Kp in the notation there; cf. Remark
2.1) and “Zarhin’s trick” (as in [36, Lem. 4.9] or [39, Lem. 2.1.1.9]) to ensure that,
when working with connected components over a finite étale base ring extension,
we can indeed reduce to Case (Hdg) (where the level at p is exactly the pullback of
a hyperspecial level at p of a symplectic similitude group, as explained above).

Our main task is to prove (2). By [55, 12.3], we have a canonical open immersion

(2.7) XH,K := XH⊗
R
K ↪→ Xmin

H,K ,

where Xmin
H,K denotes the pullback to K of the canonical model of the minimal

compactification over the reflex field (which is a subfield of K by assumption),
and we would like to extend (2.7) to its analogue (2.5) over R (with the desired
properties).

Let us temporarily assume that Gad is simple as an algebraic group over Q. By
[31, the proof of Prop. 4.6.28], and by [37, the proof of Thm. 3.8], there exists
an ample invertible sheaf L0 over XH whose pullback to XH,K is isomorphic to
a positive tensor power of the canonical bundle ΩdXH,K/K

, where d := dim(XH,K).

Note that [31, Prop. 4.6.28] assumed that Gad is absolutely simple (not just simple),
and that the level at p is very special (as in [54, Sec. 10.3.2]). Let us explain
in the next two paragraphs why we can borrow their arguments without these
assumptions.

As for the assumption that the level at p is very special, it was made because the
goal of [31, Prop. 4.6.28] was to show that the integral models constructed there
are canonical, and detailed properties of local models were used to ensure that the
special fiber of each connected component is reduced and irreducible, so that L0 is
the unique extension of its pullback to XH,K . But since we have a rather different
goal here, we can drop this assumption.

As for the assumption that Gad is absolutely simple, it was made to ensure that,
in the Hodge-type case, in the notation of [31, Prop. 4.6.28], the pullback of the
Hodge invertible sheaf ωGSp under the Siegel embedding is a positive tensor power of
ωG. But we can drop this assumption because we know that a positive tensor power
of this pullback is isomorphic to a positive tensor power of the canonical bundle—let
us explain why. This pullback is an automorphic line bundle with a canonical model
over the reflex field (see [48]), and for our purpose (up to replacing the invertible
sheaf with a positive tensor power) we just have to identify its pullback from the
reflex field to C, which is associated with some one-dimensional representation of the
Levi of a parabolic subgroup P of GC defined by the Hodge cocharacter determined
by the Shimura datum. As explained in [11, 2.3.7] and [49, Sec. 10], on each simple
factor of GC, the pullback of the standard representation of the symplectic group
under the Siegel embedding is a multiple of the fundamental weight representation
associated with some underlined node in [11, Table 1.3.9] or starred node in [49, Sec.
10, pp. 528–531] (the latter reference containing one more case missing from the
former), and these multiplicities are the same on all the simple factors of GC. Each
such fundamental weight representations has a two-step filtration whose stabilizer
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is the corresponding factor of P, which corresponds to a direct summand of the
pullback of the Hodge filtration on the relative de Rham homology of the universal
abelian scheme over the Siegel moduli, and the dual of the top exterior power of
the top graded piece corresponds to a tensor factor of the pullback of the Hodge
invertible sheaf (as in [44, Def. 5.1.2]). It can be easily checked (using explicit
realizations in example-rich texts such as [17] or [19]) that, as a representation of
the Levi of this factor of P, the weight of this tensor factor is exactly the pullback
of the corresponding fundamental weight. Hence, it follows from [37, the proof
of Thm. 3.8] that h∨ times this weight, where h∨ is the dual Coxeter number of
the root system of this (and every other) simple factor of GC, is the weight of the
corresponding factor of the canonical bundle. Then the above assertion follows,
because the exponents of the tensor factors from the simple factors of GC are all
the same.

By [51, Prop. 3.4 b)] (whose assertion can be formulated in terms of the push-
forward of the log canonical bundle of any toroidal compactification, and therefore
is compatible with descent), L0⊗

R
K extends to an ample invertible sheaf L1 over

Xmin
H,K . Let XH,R+ = XH⊗

R
R+ and X+

H,R+ be as in (1) of Proposition 2.4. Let

XH,K+ := XH,K ⊗
K
K+ ∼= XH⊗

R
K+ and Xmin

H,K+ := Xmin
H,K ⊗

K
K+. Let us denote by U

the union of XH and Xmin
H,K (glued over the open subscheme XH,K), and by L the

invertible sheaf over U whose restrictions to XH and Xmin
H,K are L0 and L1, respec-

tively. Let X+
H,K+ := X+

H,R+ ⊗
R+

K+, and let Xmin,+
H,K+ denote the schematic closure of

X+
H,K+ in Xmin

H,K+ . Let U+
R+ denote the union of X+

H,R+ and Xmin,+
H,K+ (glued over the

open subscheme X+
H,K+), which is noetherian normal and is the connected compo-

nent of UR+ := U⊗
R
R+ containing X+

H,R+ . Let LR+ and L+
R+ denote the pullbacks

of L to UR+ and U+
R+ , respectively.

Let X̃+

H̃,R+
and X̃min,+

H̃,R+
be as in (1) and (2) of Proposition 2.4, respectively. Let

Ũ+
R+ denote the union of X̃+

H̃,R+
and X̃min,+

H̃,K+
:= X̃min,+

H̃,R+
⊗
R+

K+ in X̃min,+

H̃,R+
, whose

complement has codimension at least two because the morphism X̃H̃ ↪→ X̃min
H̃

is

fiberwise dense over R̃. As explained in [31, the proof of Prop. 4.6.28] (with adjust-
ments as explained above), up to replacing L with a positive tensor power, we may

and we shall assume that the pullback of L+
R+ to Ũ+

R+ , which we denote by L̃+
R+ ,

extends to an ample invertible sheaf over the whole X̃min,+

H̃,R+
, which we denote by

L̃min,+
R+ . Since X̃min,+

H̃,R+
is noetherian normal, and since L̃min,+

R+ is an invertible sheaf,

we have L̃min,+
R+

∼= (Ũ+
R+ ↪→ X̃min,+

H̃,R+
)∗L̃+

R+ . Consequently, we have

(2.8) X̃min,+

H̃,R+
∼= Proj

(
⊕
k≥0

Γ(X̃min,+

H̃,R+
, (L̃min,+

R+ )⊗ k)
)
∼= Proj

(
⊕
k≥0

Γ(Ũ+
R+ , (L̃+

R+)⊗ k)
)
,

and the same holds up to replacing L and L̃+
R+ with the same positive tensor power.

At this point, we can explain how to remove the assumption that Gad is simple
over Q, and drop this assumption. Since all we need is the ampleness and extensibil-
ity of certain invertible sheaves up to replacing them with the same positive tensor
powers, we may work at a higher level defined by a finite index subgroup of H, and
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pullback the desired sheaves from products of integral models of smaller Shimura
varieties and their minimal compactifications—we already have the desired sheaves
over the factors, as explained above. (The upshot is that we can use possibly dif-
ferent positive tensor powers of the Hodge invertible sheaves over different factors.
See [43, Sec. 7] for a prototypical example of such an argument in PEL-type cases.)

Note that the action of ∆+ on X̃+

H̃,K+
extends to an action on X̃min,+

H̃,K+
, which

induces an isomorphism X̃min,+

H̃,K+
/∆+ ∼→ Xmin,+

H,K+ , because X̃+

H̃,K+
and X+

H,K+ have

models over some number field whose pullbacks to C are arithmetic quotients of
the same Hermitian symmetric domain, and ∆+ is just the quotient of one such
arithmetic subgroup by another, whose action extends to the minimal compactifica-
tions in [3] by their very constructions. (The adelic construction in [55, 6.1–6.2] has
to be formulated in terms of finite disjoint unions of Hermitian symmetric domains,
but the connected components of the minimal compactifications thus obtained are
still the same projective normal varieties in [3]. We need the theory in [11] to relate
the constructions in [30, Sec. 3.4], [29, Thm. 3.10], and [31, Sec. 4.6] to the com-
plex analytic construction mentioned above, but we do not need to generalize the
theory in [11] to an analogous theory for minimal compactifications.) Hence, the

action of ∆+ on X̃+

H̃,R+
extends to an action on Ũ+

R+ , which induces an isomorphism

Ũ+
R+/∆

+ ∼→ U+
R+ extending the isomorphism X̃+

H̃,R+
/∆+ ∼→ X+

H,R+ . Consequently,

L̃+
R+ is canonically and compatibly isomorphic to its pullbacks under the actions of

the elements of ∆+, and it follows from (2.8) that the action of ∆+ on Ũ+
R+ extends

to the whole X̃min,+

H̃,R+
. Thus, L̃min,+

R+
∼= (Ũ+

R+ ↪→ X̃min,+

H̃,R+
)∗L̃+

R+ is also canonically and

compatibly isomorphic to its pullbacks under the actions of the elements of ∆+.

Let us form the quotient Xmin,+
H,R+ := X̃min,+

H̃,R+
/∆+, which is a noetherian normal

scheme over R+ containing U+
R+ as an open dense subscheme whose complement

has codimension at least two. Let {Ṽα}α∈A be an affine open covering of X̃min,+

H̃,R+

such that, for each α ∈ A, the action of ∆+ stabilizes Ṽα and there exists some

trivialization f̃α : OṼα
∼→ L̃min,+

R+ |Ṽα . Given any α, β ∈ A, we have a section

f̃αβ := f̃−1
β ◦ f̃α of O×

Ṽαβ
, where Ṽαβ := Ṽα∩ Ṽβ is affine because X̃min,+

H̃,R+
is projective

and hence separated. Then the collection {f̃αβ}α,β∈A (with respect to the open cov-

ering {Ṽα}α∈A) defines the class of L̃min,+
R+ in H1(X̃min,+

H̃,R+
,O×

X̃min,+

H̃,R+

) ∼= Pic(X̃min,+

H̃,R+
)

(cf. [21, 0I, 5.4.7]). Since δ∗(L̃min,+
R+ ) ∼= L̃min,+

R+ , for all δ ∈ ∆+, the collection

{
∏
δ∈∆+ δ∗(f̃αβ)}α,β∈A defines the class of (L̃min,+

R+ )⊗ |∆
+|. Given any α, β ∈ A,

let Vα := Ṽα/∆
+, and let Vαβ := Vα ∩ Vβ ∼= Ṽαβ/∆

+, which are affine open sub-

schemes of Xmin,+
H,R+ . Since the section

∏
δ∈∆+ δ∗(f̃αβ) of O×

Ṽαβ
is invariant under the

action of ∆+, it defines a section fαβ of O×Vαβ . Then the collection {fαβ}α,β∈A
(with respect to the open covering {Vα}α∈A) defines the class of an invertible sheaf

in Pic(Xmin,+
H,R+ ) ∼= H1(Xmin,+

H,R+ ,O
×
Xmin,+

H,R+

), whose pullbacks to X̃min,+

H̃,R+
and UR+ are

isomorphic to (L̃min,+
R+ )⊗ |∆

+| and (L+
R+)⊗ |∆

+|, respectively. For simplicity, let us

replace L+
R+ , L̃+

R+ , and L̃min,+
R+ with their respective |∆+|-th tensor powers, and
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denote the above descended invertible sheaf over Xmin,+
H,R+ by Lmin,+

R+ , whose pull-

back to X̃min,+

H̃,R+
is isomorphic to L̃min,+

R+ by construction. As before, since Xmin,+
H,R+

is noetherian normal, we have Lmin,+
R+

∼= (U+
R+ ↪→ Xmin,+

H,R+ )∗L+
R+ . Also, we have

((X̃min,+

H̃,R+
→ Xmin,+

H,R+ )∗(L̃min,+
R+ )⊗ k)∆+ ∼= (Lmin,+

R+ )⊗ k over Xmin,+
H,R+ , for all k. Hence,

⊕
k≥0

Γ(Xmin,+
H,R+ , (Lmin,+

R+ )⊗ k) ∼=
(
⊕
k≥0

Γ(X̃min,+

H̃,R+
, (L̃min,+

R+ )⊗ k)
)∆+

is finitely generated,

and therefore there exists some integer m ≥ 1 such that Γ(Xmin,+
H,R+ , (Lmin,+

R+ )⊗m)

generates ⊕
k≥0

Γ(Xmin,+
H,R+ , (Lmin,+

R+ )⊗mk), as algebras over R+. Consequently,

(2.9) Xmin,+
H,R+

∼= Proj
(
⊕
k≥0

Γ(Xmin,+
H,R+ , (Lmin,+

R+ )⊗ k)
)
∼= Proj

(
⊕
k≥0

Γ(U+
R+ , (L+

R+)⊗ k)
)

is projective over R+, and Lmin,+
R+ is ample because (Lmin,+

R+ )⊗m is very ample.
(The arguments in this paragraph are well known and already implicit in several
references given above, but we still decided to spell them out for the sake of clarity.)

The disjoint union of quotients Xmin,+
H,R+ = X̃min,+

H̃,R+
/∆+ extending U+

R+
∼= Ũ+

R+/∆
+

as above, which we abusively denote by Xmin
H,R+ , is a noetherian normal projective

scheme over R+ containing UR+ and carrying an ample invertible sheaf Lmin
R+ ex-

tending LR+ , whose pullback to each X̃min,+

H̃,R+
as above is isomorphic to L̃min,+

R+ (up

to replacement with a positive tensor power, to account for the replacements of
invertible sheaves with positive tensor powers on the connected components thus
far—this is feasible because there are only finitely many connected components).
By combining isomorphisms as in (2.9), we obtain

(2.10) Xmin
H,R+

∼= Proj
(
⊕
k≥0

Γ(Xmin
H,R+ , (Lmin

R+ )⊗ k)
)
∼= Proj

(
⊕
k≥0

Γ(UR+ , (LR+)⊗ k)
)
.

Since the pair (UR+ ,LR+) of a quasi-projective scheme and an ample invertible
sheaf has a model (U,L) over R, it carries descent data with respect to the finite
étale morphism R→ R+. Hence, it follows from (2.10) that Xmin

H,R+ carries induced

descent data and (by the theory of descent—see [20, VIII, 7.8]) has a model Xmin
H

over R, together with the open immersion (2.5) extending (2.7), as desired. �

Remark 2.11. There is also some crude construction of (integral models of) toroidal
compactifications in Case (Ab), if we combine the constructions in [44] and [38] in
Case (Hdg) and pursue a similar strategy as in the proof of Proposition 2.4. But
we have decided to omit it at the expense of excluding Case (Ab) in Theorem 4.1
below, not just because the details are more tedious to write up, but also because it
would be more desirable to have a construction of toroidal compactifications which
we can describe in as much detail as in other cases, and because we are still able
to include Case (Ab) in Corollary 4.6 below. On the other hand, while it would
also be more desirable to have a construction of minimal compactifications which
we can better describe, we do need some crude construction as in Proposition 2.4
to at least define the intersection complexes of nearby cycles as in Theorem 4.13
and Corollary 4.15 below. This is admittedly a compromise, but it still allows the
applications to the intersection cohomology in Theorems 4.19 and 4.23 below.
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3. Automorphic étale sheaves

Let ` > 0 be a rational prime number. Let us fix the choice of an algebraic
closure Q̄` of Q`. For simplicity of notation, let us assume the following:

(1) In Case (Sm), we have ` 6∈ 2 and H = H`H` in G(Ẑ2) for some open

compact subgroups H` ⊂ G(Ẑ2∪{`}) and H` ⊂ G(Z`). (Here 2 is a set of
rational primes as in [35, Notation and Conventions], which are the places
where we have level structures in the definition of PEL moduli problems.)

(2) In Cases (Nm), (Spl), (Hdg), and (Ab), we have H = H`H` in G(Ẑ) for

some open compact subgroups H` ⊂ G(Ẑ`) and H` ⊂ G(Z`).
Let us denote by Gc the quotient of GQ by the minimal subtorus Zs(G) of the

center Z(G) such that the torus Z(G)◦/Zs(G) has the same split ranks over Q and
R. (Our definition of Gc is equivalent to the one in [48, Ch. III] when Z(G)◦ is
split over a CM field, as in [48, (II.2.1.4)]. In Cases (Sm), (Nm), (Spl), and (Hdg),
we have GQ ∼= Gc, but in Case (Ab) this is not true in general.) For any subgroup

of G(A) (including those of G(Q), G(A∞), G(Ẑ), G(Z`), etc), we shall denote its
image in Gc(A) with an additional superscript c. (We are not introducing a model
of Gc over Z.) Therefore, for example, we have an open compact subgroup Hc of
Gc(A∞), which is of the form Hc = H`,cHc`.

For each integer r > 0, let U`(`r) := ker(G(Z`) → G(Z/`rZ)), and consider
H(`r) := H`U`(`r), which is contained in H when r is sufficiently large. For such
sufficiently large r, in all cases considered above, we have a finite cover

(3.1) XH(`r) → XH,

which induces a Galois finite étale cover

(3.2) XH(`r)⊗
Z
Q→ XH⊗

Z
Q,

where XH(`r) is defined as in the case of XH but with H replaced with its normal

subgroup H(`r). The Galois group of (3.2) is a quotient of H`/U`(`r(m)) by con-
struction, and admits Hc`/U`(`r(m))c as a further quotient. (The claim in [48, Ch.

III, Sec. 6, Rem. 6.1] that this Galois group is exactly Hc`/U`(`r(m))c is incorrect.
See the erratum for more details.) If ` 6= p, then the finite cover (3.1) is étale over
all of S. (In Cases (Sm), (Nm), (Spl), and (Hdg), this is because (3.1) relatively
represents a functor of level structures at ` 6= p. In Case (Ab), this is because (3.1)
can be étale locally identified with analogous morphisms in Case (Hdg); cf. (1) of
Proposition 2.4 and Remark 2.6.)

For any finite-dimensional algebraic representation V of Gc over Λ = Q̄`, which
we also view as an algebraic representation of G by pullback (whose restriction to
the maximal Q-anisotropic R-split subtorus of the center of GQ is trivial), there
exists a canonical étale sheaf V over XH (with stalks isomorphic to V ). Let us
briefly review the construction, because we will need it in our later argument.

As explained in [23, Sec. III.2], by the Baire category theorem (see, for example,
the proof of [6, 2.2.1.1] or the beginning of [58, Sec. 2]), there exists a finite extension
E of Q` in Q̄`, and an OE-lattice V0 with a continuous action of G(Z`) (with respect
to the `-adic topology), such that V ∼= V0 ⊗

OE
Q̄` as continuous representations of

G(Q`). For each m > 0, by the continuity of the action of G(Z`) on V0, there
exists an integer r(m) > 0 such that H(`r(m)) ⊂ H and U`(`r(m)) acts trivially
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on the finite quotient V0,`m := V0 ⊗
Z`

(Z/`mZ). By abuse of notation, let us also

denote by V 0,`m the constant group scheme over Z, which then carries an action

of Hc`/U`(`r(m))c induced by that of H`/U`(`r(m)). Let us define V0,`m to be the
torsion étale sheaf of sections over XH⊗

Z
Q of the contraction product

(3.3) (XH(`r(m))⊗
Z
Q)
H`/U`(`r(m))

× V 0,`m ,

whose pullback to XH(`r(m))⊗
Z
Q is isomorphic to V 0,`m by construction; and define

the étale sheaves

(3.4) V0 := lim←−
m

V0,`m

and

(3.5) V := V0 ⊗
OE

Q̄`

over XH⊗
Z
Q as usual. Then it is elementary (though tedious) to verify that such a

construction is independent of the various choices, is functorial in various natural
senses, and allows us to define the Hecke actions on the cohomology groups if we
take the limit over H. (See [32, Sec. 6] and [23, Sec. III.2] for more details.)

When ` 6= p, the same construction defines the étale sheaf extensions of V0 and
V to all of XH. This construction also works if we replace V with a continuous
representation of G(Z`)c on a (possibly torsion) finite Z`-module (or a Z̄`-module
if one prefers), without referring to any representation over Q̄`.

For simplicity, we shall often denote the pullbacks of V by the same symbol.
Let us record the following observation, based on the above construction:

Lemma 3.6. For any finite-dimensional algebraic representation V of Gc as above
over Λ = Q̄`, there exists a finite extension E of Q` in Q̄`, together with a projective
system of torsion étale sheaves V0,m of OE-modules indexed by integers m > 0 such
that V ∼= V0 ⊗

OE
Q̄` for V0 := lim←−

m

V0,m over XH⊗
Z
Q, and such that, for each m > 0,

there exist some integer r(m) > 0 such that H(`r(m)) ⊂ H and such that the pullback
of V0,m from XH⊗

Z
Q to XH(`r(m))⊗

Z
Q is a constant étale sheaf. When ` 6= p, the

same assertions are true with all sheaves V, V0, and V0,m, for all m > 0, defined
over all of XH. If we replace V with a continuous representations of G(Z`)c on a
(possibly torsion) finite Z`-module, then there exist a projective system of torsion
étale sheaves V0,m of Z`-modules indexed by integers m > 0 such that V ∼= lim←−

m

V0,m

and such that the remaining assertions as above concerning V0,m hold verbatim.

4. Main results

Let XH be as in Section 2, with the toroidal and minimal compactifications
J tor : XH ↪→ Xtor

H and Jmin : XH ↪→ Xmin
H as in (2.3), in Cases (Sm), (Nm), (Spl),

and (Hdg); or with the compactification Jmin : XH ↪→ Xmin
H as in Proposition 2.4,

in Case (Ab). Let V be as in Section 3, which is associated with either a finite-
dimensional algebraic representation V of Gc over Λ = Q̄`, or with a continuous
representations of G(Z`)c on a (possibly torsion) finite Z`-module with Λ = Z` (or
Z̄`, if one prefers). We will also consider the case with Λ = F` (resp. F̄`), which
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we view as a subcase of the case with Λ = Z` (resp. Z̄`). By abuse of language,
we shall indicate the type of V we consider by simply specifying the type of the
corresponding coefficient ring Λ. Let d := dim((XH)η).

Then we have the following results:

Theorem 4.1 (cf. [42, Thm. 5.15]). In Cases (Sm), (Nm), (Spl), and (Hdg), for
all V over Λ = Q̄` or Z` (or Z̄`), the adjunction morphisms

(4.2) RΨXtor
H
RJ tor

η,∗(V)→ RJ tor
s̄,∗ RΨXH(V)

and

(4.3) J tor
s̄,! RΨXH(V)→ RΨXtor

H
J tor
η,! (V)

(see (2.3) for the notation) are isomorphisms in Db
c((X

tor
H )s̄× η̄,Λ).

Remark 4.4. Compared with [42, Thm. 5.15], we note that, in the case of integral or
torsion coefficients, we no longer require V to be of the formW0,M over Λ = Z` as in
[42, Prop. 3.4] for some ` > cW . That is, roughly speaking, we no longer require the
integral or torsion coefficients to be defined by representations of `-small weights.

Remark 4.5. Theorem 4.1 is the logical foundation of all our other results in this
article. We will explain the proof of this key theorem in Section 5. As we shall
see, the main reason to consider the four kinds of integral models in Cases (Sm),
(Nm), (Spl), and (Hdg) as in Section 2 is that they are known to have good toroidal
compactifications, and Case (Ab) is not included in this theorem exactly because
good integral models of toroidal compactifications of abelian-type Shimura varieties
(with properties we need) are not yet available in the literature (cf. Remark 2.11).

Corollary 4.6 (cf. [42, Cor. 5.20]). In all Cases (Sm), (Nm), (Spl), (Hdg), and
(Ab), for all V over Λ = Q̄` or Z` (or Z̄`), the canonical adjunction morphisms

(4.7) Hi
ét((XH)η̄,V)→ Hi((XH)s̄, RΨXH(V))

and

(4.8) Hi
ét,c((XH)s̄, RΨXH(V))→ Hi

ét,c((XH)η̄,V)

of Gal(K̄/K)-modules are isomorphisms, for all i.

Proof. In Cases (Sm), (Nm), (Spl), and (Hdg), this follows from Theorem 4.1 and
the proper base change theorem, as in the proof of [42, Cor. 5.20].

In Case (Ab), the question is whether the morphisms (4.7) and (4.8) are isomor-
phisms, and we can ignore the Gal(K̄/K)-module structures when answering such
a question. Also, by first reducing to the torsion case by Lemma 3.6, and by duality
(see [25, 4.2]), it suffices to answer the question for the morphism (4.7). Hence,
we are free to replace K with a finite extension inside K̄ (and accordingly R with
its integral closure in this finite extension), and to replace XH with its connected
components. Because the construction of integral models in Case (Ab) (see (1) of
Proposition 2.4 and Remark 2.6) was achieved by descent and by taking quotients
of connected components of some integral models of Hodge-type Shimura varieties
by the free actions of some finite groups (which is compatible with the construction
of V in Section 3 when restricted to subgroups stabilizing the connected compo-
nents), by using the Hochschild–Serre spectral sequence for étale cohomology (see,
for example, [47, Ch. III, Sec. 2, Thm. 2.20] or [16, Ch. 9, Sec. 9.1, p. 501]), the
isomorphism assertion is reduced to the known one in Case (Hdg), as desired. �
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Remark 4.9 (cf. [42, Rem. 5.42]). There are closely related results in [26, Thm. 4.2]
and [27, Cor. 7.3] for the supercuspidal parts of cohomology. Concretely, although
they have not shown that (4.7) and (4.8) (in the PEL-type cases they consider) are
isomorphisms, they showed that the kernels and cokernels do not contain supercus-
pidal representations. Their method based on the consideration of adic spaces is
quite flexible and of some independent interest.

Corollary 4.10 (cf. [42, Cor. 5.23]). In all Cases (Sm), (Nm), (Spl), (Hdg), and
(Ab), for all V over Λ = Q̄` or Z` (or Z̄`), the adjunction morphisms

(4.11) RΨXmin
H

RJmin
η,∗ (V)→ RJmin

s̄,∗ RΨXH(V)

and

(4.12) Jmin
s̄,! RΨXH(V)→ RΨXmin

H
Jmin
η,! (V)

are isomorphisms in Db
c((X

min
H )s̄× η̄,Λ).

Proof. In Cases (Sm), (Nm), (Spl), and (Hdg), this follows from Theorem 4.1 and
the proper base change theorem, as in the proof of [42, Cor. 5.23].

In Case (Ab), by similar reduction steps as in the proof of Corollary 4.6, by
Proposition 2.4 and Remark 2.6, and by using the Hochschild–Serre spectral se-
quence (see, for example, [16, Ch. 9, Sec. 9.1, p. 501]) for the (derived) direct images

towards Xmin,+
H,R+ (which is now viewed as a base scheme for all other schemes), the

desired isomorphism assertion is reduced to the known one in Case (Hdg). �

Theorem 4.13 (cf. [42, Thm. 5.26]). In all Cases (Sm), (Nm), (Spl), (Hdg), and
(Ab), for all V over Λ = Q̄` or F` (or F̄`), we also have a canonically induced
isomorphism

(4.14) RΨXmin
H
Jmin
η,!∗ (V[d])

∼→ Jmin
s̄,!∗RΨXH(V[d])

in the category of perverse sheaves over (Xmin
H )s̄ with continuous Gal(K̄/K)-actions.

Proof. This follows from Corollary 4.10 by the same argument as in the proof of
[42, Thm. 5.26], using the t-exactness of nearby cycle functors (as in [25, 4.5]).
(Although [42, Thm. 5.26] was stated only in the case with Λ = Q̄`, the argument
in its proof also works in the case with Λ = F`.) �

Corollary 4.15 (cf. [42, Cor. 5.31]). In all Cases (Sm), (Nm), (Spl), (Hdg), and
(Ab), for all V over Λ = Q̄` or F` (or F̄`), we have a canonical isomorphism

(4.16) Hi
ét((X

min
H )η̄, (J

min
η̄,!∗ (V[d]))[−d])

∼→ Hi((Xmin
H )s̄, (J

min
s̄,!∗ (RΨXH(V[d])))[−d])

for the intersection cohomology, for all i.

Proof. This follows from Theorem 4.13 and the proper base change theorem, by
the same argument as in the proof of [42, Cor. 5.31]. �

Remark 4.17. For the compatibility of the isomorphisms in Theorem 4.1, Corollaries
4.6 and 4.10, Theorem 4.19, and Corollary 4.15 with Hecke actions (when they are
defined), we refer the readers to [42, Rem. 5.35 and 5.41].

Remark 4.18. In Cases (Sm), (Nm), (Spl), and (Hdg), we also have analogues of
Theorem 4.13 and Corollary 4.15 for J tor : XH → Xtor

H instead of Jmin : XH → Xmin
H ,

by essentially the same arguments, with Theorem 4.1 instead of Corollary 4.10 as
an input. The same would be true in Case (Ab) as soon as we have good toroidal
compactifications J tor : XH → Xtor

H for which Theorem 4.1 holds (cf. Remark 4.5).
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As an application, let us answer the question we raised in Section 1 about cases
where the étale cohomology of (possibly nonproper) Shimura varieties is unramified:

Theorem 4.19 (cf. [42, Thm. 6.1 and 6.7]). Suppose we are in Case (Sm), or in

Cases (Hdg) and (Ab) when the level at p is hyperspecial. Then V ∼→ RΨXH(V),
for all V over Λ = Q̄` or Z` (or Z̄`), because XH → S is a smooth morphism.
Moreover, we have the following canonical isomorphisms of Gal(K̄/K)-modules,
for each i: for the usual cohomology,

(4.20) Hi
ét((XH)η̄,V)

∼→ Hi
ét((XH)s̄,V);

for the compactly supported cohomology,

(4.21) Hi
ét,c((XH)s̄,V)

∼→ Hi
ét,c((XH)η̄,V);

and, when Λ = Q̄` or F` (or F̄`), for the intersection cohomology

(4.22) Hi
ét((X

min
H )η̄, (J

min
η̄,!∗ (V[d]))[−d])

∼→ Hi
ét((X

min
H )s̄, (J

min
s̄,!∗ (V[d]))[−d]).

In particular, these Gal(K̄/K)-modules are unramified (i.e., the inertia subgroup
IK := ker(Gal(K̄/K) → Gal(k̄/k)) acts trivially on them). If Λ = Q̄`, and if V is
pointwise pure of weight m (which is known, for example, in the cases considered in
[42, Prop. 3.2]), then both sides of (4.20) (resp. (4.21)) are mixed of weights ≥ i+m
(resp. ≤ i+m), and both sides of (4.22) are pure of weight i+m.

Proof. As in the proofs of [42, Thm. 6.1 and 6.7], these follow from the smooth
base change theorem, from Corollaries 4.6 and 4.15, and from [12, 3.3.4, 3.3.5, and
6.2.6] and [4, 5.3.2]. �

Theorem 4.23 (cf. [42, Thm. 6.8 and 6.13]). Suppose we are in Cases (Nm),
(Spl), (Hdg), and (Ab) where the levels at p are parahoric, and suppose p > 2.
(Note that, as explained in Remark 2.1, we have to treat some integral models of
Hodge-type Shimura varieties with parahoric levels at p only as abelian-type ones in
Case (Ab), although this is harmless for our purpose.) In Cases (Nm) and (Spl),

we consider the same cases as in [42, Thm. 6.8 and 6.13], with a field extension K̃

of K in K̄ defined there. In Cases (Hdg) and (Ab), we assume that K̃ is a tamely
ramified extension of K in K̄ over which GQp is split. Then, for each i, we have the

following canonical isomorphisms of Gal(K̄/K)-modules: for the usual cohomology,

(4.24) Hi
ét((XH)η̄,V)

∼→ Hi
ét((XH)s̄, RΨXH(V));

for the compactly supported cohomology,

(4.25) Hi
ét,c((XH)s̄, RΨXH(V))

∼→ Hi
ét,c((XH)η̄,V);

and, when Λ = Q̄` or F` (or F̄`), for the intersection cohomology,

(4.26) Hi
ét((X

min
H )η̄, (J

min
η̄,!∗ (V[d]))[−d])

∼→ Hi
ét((X

min
H )s̄, (J

min
s̄,!∗RΨXH(V[d]))[−d]).

Moreover, the restrictions of the Gal(K̄/K)-actions of these modules to the subgroup

IK̃ := ker(Gal(K̄/K̃)→ Gal(k̄/k)) (but not IK) of Gal(K̄/K) are all unipotent,
and even trivial when the level at p is very special (as in [54, Sec. 10.3.2]).

Proof. As in the proofs of [42, Thm. 6.8 and 6.13], these follow from Corollaries 4.6
and 4.15, and from the results of local models in [54, Thm. 1.4, and more detailed
results in Sec. 10.3] and [53, Thm. 13.1 and Rem. 13.2] (see also [52, Rem. 7.4]) in
Cases (Nm) and (Spl); and in [31, Cor. 0.5 and 4.7.3] in Cases (Hdg) and (Ab). �
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Remark 4.27 (cf. [42, Rem. 6.15]). The isomorphism (4.25) in Theorem 4.23 estab-
lished [22, Conj. 10.3] for all integral models of PEL-type Shimura varieties (with
parahoric levels at p) considered in [53] and [54]. Also, we have established its
analogue for all integral models of Hodge-type and abelian-type Shimura varieties
(with parahoric levels at p) considered in [31].

Remark 4.28. Theorems 4.19 and 4.23 might convey the impression that our main
results are only useful at hyperspecial and parahoric levels, in which case we have
good theories of local models, but this is not true. In fact, our initial motivation
was to generalize Mantovan’s formula (describing the cohomology of Shimura va-
rieties in terms of the cohomology of Igusa varieties and Rapoport–Zink spaces)
in [45] and [46], and also Scholze’s formula (in the context of Langlands–Kottwitz
method, describing the cohomology of Shimura varieties in terms of twisted or-
bital integrals) in [57], to the noncompact case (i.e., removing from their works the
assumption that the relevant Shimura varieties are compact). In these works, as
explained in the introduction of [42], the analyses of the cohomology of nearby cy-
cles were carried out without the compactness assumption. It is only in their initial
steps—or final steps, depending on one’s viewpoint—that they used the compact-
ness assumption and the proper base change theorem to relate their results to the
étale cohomology in characteristic zero, and our main results above removed the
need of the compactness assumption. We emphasize that these generalizations do
require our main results in Case (Nm) with arbitrarily high levels at p. See [42,
Sec. 6.3] (for the compactly supported cohomology) and [41, Sec. 4.4] (for the usual
cohomology, with boundary terms) for more details concerning the generalizations
of Mantovan’s formula, and see [42, Sec. 6.4] for more details concerning the gen-
eralization of Scholze’s formula. Moreover, a combination of the generalizations of
Mantovan’s formula in [41, Sec. 4.4] and of Morel’s formula in [41, Sec. 4.5] provides
a formula for certain intersection complexes over the partial minimal compactifi-
cations of Newton strata, which is potentially useful for generalizing Caraiani and
Scholze’s results in [7] to the noncompact case.

5. Proof of the key theorem

In this section, we explain how to prove Theorem 4.1. It suffices to show that
the globally defined morphisms (4.2) and (4.3) are isomorphisms étale locally.

The rough idea is that any toroidal compactification XH ↪→ Xtor
H we consider in

Cases (Sm), (Nm), (Spl), and (Hdg) is étale locally at each point a product of some
affine toroidal embedding E ↪→ E(σ), which we know everything about, and the
identity morphism IdC of some scheme C, which we do not need to know anything
about. Then we can try to reduce the problem to its analogues over the individual
factors E ↪→ E(σ) and IdC : C → C, by using the Künneth isomorphisms as in
[2, XVII, 5.4.3] and [4, 4.2.7], and by using Gabber’s theorem (see [25, 4.7]) on
nearby cycles over products of schemes of finite type over S. (We will explain
these in more details. This idea can be traced back to the lemma [18, 7.1.4] due to
Laumon. See also [42, Rem. 5.33]. Now we can do more because we have a much
better understanding of integral models of Shimura varieties and their toroidal
compactifications.) To carry out this idea, we need to have a better control on the
étale sheaf V. (What we are about to do is different from what we did in [42, Sec.
4–5]. We will comment on the difference in Remark 5.14 below.)



16 KAI-WEN LAN AND BENOÎT STROH

By Lemma 3.6, we may assume that V is torsion and associated with some finite
Z`-module (with Λ = Z`), and that there exists some r > 0 such that H(`r) ⊂ H
and such that the pullback of V from XH to XH(`r) is a constant étale sheaf. Let
Xtor
H(`r) be defined using the collection of cone decompositions induced by that for

Xtor
H , so that Xtor

H(`r) → Xtor
H is finite. (In Case (Sm), this might move us from

the context of [35] into that of [36], because the former assumed that the cone
decompositions are always smooth, but this is harmless in practice.)

To understand this finite morphism better, we have the following proposition, in
which we shall freely use the notation in [42, Prop. 2.2]: (First-time readers might
assume that V = Λ is trivial, and skip all materials in Propositions 5.1 and 5.3
below involving objects at level Xtor

H(`r), which are denoted with a prime.)

Proposition 5.1. Let x be a point of a stratum Z[σ] of Xtor
H . Then there exists an

étale neighborhood U → Xtor
H of x such that, if we denote by U

′
the pullback of U

to Xtor
H(`r), then there is a commutative diagram

(5.2) Xtor
H(`r)

��

U
′

oo

��

//
∐

Z′
[σ′] lying above Z[σ]

(
E′(σ′)×

S
C ′
)

��

Xtor
H Uoo // E(σ)×

S
C

with the following properties:

(1) All objects denoted with a prime are at level H(`r).
(2) The vertical morphisms are equipped with compatible actions of the finite

group H/H(`r) ∼= H`/U`(`r) (see Section 3—note that GQ ∼= Gc now) that
are trivial on the targets and induce isomorphisms from quotients of the
sources to the targets.

(3) The horizontal morphisms are étale, and the squares are Cartesian.
(4) The morphism C ′ → C is finite étale.
(5) The E(σ) is defined by an affine toroidal embedding E ↪→ E(σ) for a split

torus E, and the E′(σ′)’s are all defined by similar affine toroidal embed-
dings E′ ↪→ E′(σ′) for a split tori E′. (For simplicity, we only define the
tori E and E′ over S here.) The morphisms E′(σ′)→ E(σ) are finite flat
and tamely ramified, extending isogenies E′ → E of tori of `-power degrees.

(6) The preimages of XH and E×
S
C in U are the same open subscheme U , and

the preimages of U , XH(`r), and
∐

Z′
[σ′] lying above Z[σ]

(
E′×

S
C ′
)

in U
′

are the

same subscheme U ′.

Consequently, the pullback of V to U descends to an étale sheaf over E×
S
C, which

we abusively still denote by V, and the pullback of V to
∐

Z′
[σ′] lying above Z[σ]

(
E′×

S
C ′
)

is constant, whose further pullback to U ′ is the same pullback of V from XH.

Proof. First note that the morphisms C ′ → C, E′ → E, and E′(σ′) → E(σ) are
defined regardless of the étale neighborhood U . The morphisms C ′ → C are finite
étale because we can define them alternatively as morphisms relatively representing
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functors defining certain level structures at ` 6= p, which are finite étale and hence
must coincide with the construction by normalizations, by Zariski’s main theorem
(see [21, III-1, 4.4.3, 4.4.11]), since they already agree in characteristic zero (see
[35, Sec. 6.2.4; see also the errata] and the reinterpretations in [39, Sec. 1.3.2] in
Case (Sm); see [36, Sec. 8] in Case (Nm); see [40, Sec. 3.2] in Case (Spl); and see
[44, Sec. 2.1.7 and 4.1–4.2] in Case (Hdg)). The morphisms E′ → E are isogenies
of tori of `-power degrees, which are dual to homomorphisms S → S′ of character
groups that are in turn dual to inclusions of lattices of `-power indices induced by
H(`r) ↪→ H (see [35, Lem. 6.2.4.4] and [33, Cor. 3.6.10] in Cases (Sm), (Nm), and
(Spl); and see [44, Sec. 2.1.11] in Case (Hdg)). Consequently, because the collection
of cone decompositions for Xtor

H(`r) is induced by that for Xtor
H , the induced morphisms

E′(σ′)→ E(σ) are finite flat and tamely ramified. The rest of the proposition then
follows from an analogue of the approximation argument in the proofs of [42, Prop.
2.2 and Cor. 2.4], by also approximating the objects at level H(`r) and the action
of the finite group H/H(`r) ∼= H`/U`(`r) on these objects. �

Proposition 5.3. In the context of Proposition 5.1, we have the following com-
mutative diagram

(5.4)
∐

Z′
[σ′] lying above Z[σ]

(
E′×

S
C ′
) � � //

��

∐
Z′
[σ′] lying above Z[σ]

(
E′(σ′)×

S
C ′
)

��∐
Z′
[σ′] lying above Z[σ]

(
E×

S
C ′
) � � //

��

∐
Z′
[σ′] lying above Z[σ]

(
E(σ)×

S
C ′
)

��

E×
S
C // E(σ)×

S
C

of canonical morphisms, with the following properties:

(1) All squares are Cartesian, and the composition of the vertical morphisms
at the right-hand side is the canonical morphism in (5.2).

(2) The bottom two vertical morphisms are pullbacks of the finite étale mor-
phism

∐
Z′
[σ′] lying above Z[σ]

C ′ → C, and the top two morphisms are pullbacks

of the morphisms
∐

Z′
[σ′] lying above Z[σ]

E′(σ′)→
∐

Z′
[σ′] lying above Z[σ]

E(σ).

(3) For each particular Z′[σ′] lying above Z[σ], there exist finite groups

(5.5) 1 ⊂ H−2 ⊂ H−1 ⊂ H := H`/U`(`r)

such that C ′ → C is a Galois finite étale cover with Galois group H−1/H−2,
and such that E′ → E is a Galois finite étale cover with Galois group
H−2. Consequently, the pullback of the étale sheaf V under the finite étale
morphism E×

S
C ′ → E×

S
C, which we abusively denote by the same symbol

V, descends to an étale sheaf VE over E (defined by the action of H−2 only).
That is, V ∼= VE �

S
Λ over E×

S
C ′, and the pullback of VE to E′ is constant.
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Proof. These are because of the very constructions of these boundary objects, which
can be compatibly realized as quotients of objects of higher principal levels. (See
the same references given in the proof of Proposition 5.1.) �

Thus, in order to prove Theorem 4.1, it suffices to show that, for any point x of
Xtor
H as in Proposition 5.1, together with the commutative diagrams (5.2) and (5.4)

of morphisms (with properties as in Propositions 5.1 and 5.3), if we denote by

(5.6) JE(σ)×
S
C′ = JE(σ)× IdC′ : E×

S
C ′ ↪→ E(σ)×

S
C ′

the canonical open immersion, where JE(σ) : E ↪→ E(σ) is the affine toroidal
embedding and IdC′ is the identity morphism on C ′, then the adjunction morphisms

(5.7) RΨE(σ)×
S
C′ RJE(σ)×

S
C′,η,∗(V)→ RJE(σ)×

S
C′,s̄,∗RΨE×

S
C′(V)

and

(5.8) JE(σ)×
S
C′,s̄,!RΨE×

S
C′(V)→ RΨE(σ)×

S
C′ JE(σ)×

S
C′,η,!(V)

are isomorphisms.
Since V ∼= VE �

S
Λ over E×

S
C ′ for some étale sheaf VE over E whose pullback to

E′ is constant (see Proposition 5.3), by the Künneth isomorphisms (see [2, XVII,
5.4.3] and [4, 4.2.7]), and by Gabber’s theorem (see [25, 4.7]) on nearby cycles over
products of schemes of finite type over S, we have canonical isomorphisms

(RΨE(σ)RJE(σ),η,∗(VE))
L

�
s̄

(RΨC′(Λ))
∼→ RΨE(σ)×

S
C′((RJE(σ),η,∗(VE))

L

�
η

Λ)

∼→ RΨE(σ)×
S
C′ RJE(σ)×

S
C′,η,∗(VE �

η
Λ),

(RJE(σ),s̄,∗RΨE(VE))
L

�
s̄

(RΨC′(Λ))
∼→ RJE(σ)×

S
C′,s̄,∗((RΨE(VE))

L

�
s̄

(RΨC′(Λ)))

∼→ RJE(σ)×
S
C′,s̄,∗RΨE×

S
C′(VE �

η
Λ),

(JE(σ),s̄,!RΨE(VE))
L

�
s̄

(RΨC′(Λ))
∼→ JE(σ)×

S
C′,s̄,!((RΨE(VE))

L

�
s̄

(RΨC′(Λ)))

∼→ JE(σ)×
S
C′,s̄,!RΨE×

S
C′(VE �

η
Λ),

and

(RΨE(σ) JE(σ),η,!(VE))
L
�
s̄

(RΨC′(Λ))
∼→ RΨE(σ)×

S
C′((JE(σ),η,!(VE))

L
�
η

Λ)

∼→ RΨE(σ)×
S
C′ JE(σ)×

S
C′,η,!(VE �

η
Λ),

which are compatible with each other under the adjunction morphisms

(5.9) RΨE(σ)RJE(σ),η,∗(VE)→ RJE(σ),s̄,∗RΨE(VE),

(5.10) JE(σ),s̄,!RΨE(VE)→ RΨE(σ) JE(σ),η,!(VE),

(5.7), and (5.8) (and the identity morphism on RΨC′(Λ)). Hence, in order to show
that the adjunction morphisms (5.7) and (5.8) are isomorphisms, it suffices to show
that the simpler adjunction morphisms (5.9) and (5.10) are isomorphisms.
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We can complete the collection consisting of σ and its faces into a cone decom-
position Σ of S∨R = HomZ(S,R), which defines a toroidal embedding

(5.11) JE : E ↪→ E

over S, such that E is proper over S (see [28, Ch. I, Sec. 2, Thm. 8]), which con-
tains E(σ) as an open subscheme. Then it suffices to show that the corresponding
adjunction morphisms

(5.12) RΨE RJE,η,∗(VE)→ RJE,s̄,∗RΨE(VE)

and

(5.13) JE,s̄,!RΨE(VE)→ RΨE JE,η,!(VE)

are isomorphisms. Since smooth refinements of cone decompositions induce proper
morphisms between the corresponding toroidal embeddings (again, see [28, Ch. I,
Sec. 2, Thm. 8]), by the proper base change theorem, as in the proof of [42, Lem.
5.5], we may and we shall assume in the above that E is proper and smooth over
S, and that the boundary E − E with its reduced subscheme structure is a simple
normal crossings divisor on E.

Finally, let us consider the étale sheaf VE over E, whose pullback under the
isogeny E′ → E of `-power degree is constant, which is then tamely ramified along
the boundary E − E. (See Propositions 5.1 and 5.3 again for these assertions.)
Therefore, the adjunction morphisms (5.12) and (5.13) are isomorphisms, by [13,
XIII, 2.1.9]. The proof of Theorem 4.1 is now complete. �

Remark 5.14. Compared with the proof of [42, Thm. 5.15], we have not used the
Kuga families and their toroidal compactifications as in [42, Sec. 4] (which were
based on ideas in [34]). As a result, we do not have any restriction in the case of
integral or torsion coefficients. (In [42, Thm. 5.15], we assumed that V is either over
Λ = Q̄`, or of the form W0,M over Λ = Z` as in [42, Prop. 3.4] for some ` > cM .)
Our argument here can be considered a fulfilment of the strategy in [42, Rem. 5.35],
although its actual execution here is subtler than suggested there.

Remark 5.15. We remarked in the introduction of [42] that the argument in [24,
Sec. 7], for the usual and compactly supported cohomology in Case (Sm), is un-
fortunately incomplete, because the first step in the proof of [24, Lem. 7.1] should
require some tameness assumption as in [13, XIII, 2.1.9]. Nevertheless, our proof
in this section shows that the tameness assumption can indeed be verified.
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25. L. Illusie, Autour du théorème de monodromie locale, Périodes p-adiques (Bures-sur-Yvette,
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32. R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5

(1992), no. 2, 373–444.

33. K.-W. Lan, Comparison between analytic and algebraic constructions of toroidal compactifi-
cations of PEL-type Shimura varieties, J. Reine Angew. Math. 664 (2012), 163–228.

34. , Toroidal compactifications of PEL-type Kuga families, Algebra Number Theory 6

(2012), no. 5, 885–966.
35. , Arithmetic compactification of PEL-type Shimura varieties, London Mathematical

Society Monographs, vol. 36, Princeton University Press, Princeton, 2013, errata and revision

available online at the author’s website.
36. , Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum

Math. Sigma 4 (2016), e1, 98 pp.

37. , Vanishing theorems for coherent automorphic cohomology, Res. Math. Sci. 3 (2016),

article no. 39, 43 pp.

38. , Integral models of toroidal compactifications with projective cone decompositions, Int.
Math. Res. Not. IMRN 2017 (2017), no. 11, 3237–3280.

39. , Compactifications of PEL-type Shimura varieties and Kuga families with ordinary

loci, World Scientific, Singapore, 2018.
40. , Compactifications of splitting models of PEL-type Shimura varieties, Trans. Amer.

Math. Soc. 370 (2018), no. 4, 2463–2515.

41. K.-W. Lan and B. Stroh, Compactifications of subschemes of integral models of Shimura
varieties, preprint, 2015.

42. , Nearby cycles of automorphic étale sheaves, Compos. Math. 154 (2018), no. 1, 80–

119.
43. K.-W. Lan and J. Suh, Vanishing theorems for torsion automorphic sheaves on general PEL-

type Shimura varieties, Adv. Math. 242 (2013), 228–286.
44. K. Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of Hodge

type, preprint, 2015.

45. E. Mantovan, On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129
(2005), no. 3, 573–610.

46. , `-adic étale cohomology of PEL type Shimura varieties with non-trivial coefficients,

WIN–Woman in Numbers, Fields Institute Communications, vol. 60, American Mathematical
Society, Providence, Rhode Island, 2011, pp. 61–83.

47. J. S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University
Press, Princeton, 1980.

48. , Canonical models of (mixed) Shimura varieties and automorphic vector bundles, in

Clozel and Milne [9], pp. 283–414.
49. , Shimura varieties and moduli, in Farkas and Morrison [15], pp. 467–548.

50. D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathe-

matics, vol. 5, Oxford University Press, Oxford, 1970, with appendices by C. P. Ramanujam
and Yuri Manin.

51. , Hirzebruch’s proportionality theorem in the non-compact case, Invent. Math. 42

(1977), 239–272.
52. G. Pappas and M. Rapoport, Local models in the ramified case, I. The EL-case, J. Algebraic

Geom. 12 (2003), no. 1, 107–145.
53. , Local models in the ramified case, II. Splitting models, Duke Math. J. 127 (2005),

no. 2, 193–250.

54. G. Pappas and X. Zhu, Local models of Shimura varieties and a conjecture of Kottwitz, Invent.
Math. 194 (2013), 147–254.

55. R. Pink, Arithmetic compactification of mixed Shimura varieties, Ph.D. thesis, Rheinischen

Friedrich-Wilhelms-Universität, Bonn, 1989.
56. M. Rapoport and T. Zink, Period spaces for p-divisible groups, Annals of Mathematics Studies,

vol. 141, Princeton University Press, Princeton, 1996.

57. P. Scholze, The Langlands–Kottwitz method and deformation spaces of p-divisible groups, J.
Amer. Math. Soc. 26 (2013), 227–259.

58. C. Skinner, A note on the p-adic Galois representations attached to Hilbert modular forms,

Doc. Math. 14 (2009), 241–258.
59. J. Tilouine, H. Carayol, M. Harris, and M.-F. Vignéras (eds.), Formes automorphes (II): Le
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