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ABSTRACT. Over any smooth algebraic variety over a p-adic local field k, we
construct the de Rham comparison isomorphisms for the étale cohomology
with partial compact support of de Rham Zjp-local systems, and show that
they are compatible with Poincaré duality and with the canonical morphisms
among such cohomology. We deduce these results from their analogues for rigid
analytic varieties that are Zariski open in some proper smooth rigid analytic
varieties over k. In particular, we prove finiteness of étale cohomology with
partial compact support of any Zj-local systems, and establish the Poincaré
duality for such cohomology after inverting p.
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1. INTRODUCTION

This paper is a sequel to [DLLZD], in which a p-adic Riemann-Hilbert functor
was constructed as an analogue of Deligne’s Riemann—Hilbert correspondence over
C (see [Del70]). We refer to [DLLZD| for the general introduction and backgrounds.
In this paper, we further investigate the properties of the p-adic Riemann—Hilbert
functor. We establish the de Rham comparison isomorphisms for the cohomol-
ogy with compact support under the p-adic Riemann—Hilbert correspondences, and
show that they are compatible with duality. In particular, we obtain the following
theorem (see Theorems and for more complete statements):

Theorem 1.1. Let U be a smooth algebraic variety over a p-adic field k (see No-
tation and Conventions), and let L be a de Rham p-adic étale local system on U.
Then there is a canonical comparison isomorphism

(1.2) Hj, (U5, L) ®q, Bar = Hig (U, D3E(L)) @ Bar

compatible with the canonical filtrations and the actions of Gal(k/k) on both sides.
Here D(ailé is the above-mentioned p-adic Riemann—Hilbert functor constructed in
[DLLZD], and HY, . (resp. Hig ) denotes the usual étale (resp. de Rham) cohomol-
ogy with compact support.

In addition, the above comparison isomorphism 18 compatible with the one
in [DLLZbL Thm. 1.1] (for varying L) in the following sense:

(1) The following diagram

H}, (Up, L) ®g, Bar —— Hig (U, DI (L)) ®k Bar

| |

Hi (Ug, L) ®q, Bar —=— Hig (U, DHE(L)) @ Bar

is commutative, where the horizontal isomorphisms are the comparison iso-
morphisms, and where the vertical morphisms are the canonical ones. The
vertical morphisms are strictly compatible with the filtrations.
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(2) When U is of pure dimension d, the following diagram

H}, (Up, L) ®g, Ban ——————— Hig (U, DI (L)) ®k Bar

(H2 (U LY (@) @q, Ban) — (H3L (U, DRSLY () @k Bar)

is commutative, where the horizontal isomorphisms are given by the com-
parison isomorphisms, where the duals are with respect to the base field
Bar, and where the vertical isomorphisms are given by the usual Poincaré
duality for étale and de Rham cohomology.

Although it might seem that a comparison isomorphism as in could be
easily constructed using the comparison isomorphism in [DLLZb, Thm. 1.1] and
the Poincaré duality for the étale and de Rham cohomology of algebraic varieties,
in which case the compatibility would be tautological, the compatibility
would not be clear. Therefore, we need a different approach. We shall first prove
such a comparison theorem for (appropriately defined) cohomology with compact
support in the rigid analytic setting (see Theorems|3.1.10{and [4.5.14]), using the log
Riemann-Hilbert correspondence introduced in [DLLZb] and further developed in
this paper, and show that the comparison isomorphisms indeed satisfy the desired
compatibilities and . After that, we obtain the comparison theorem in the
algebraic setting by GAGA [K6p74] and the comparison results in [Hub96].

Given the general theory developed in [DLLZD], the main new ingredient is the
definition of a period sheaf that works for the cohomology with compact support.
To give a flavor of what it looks like, consider the simplest situation where U is a
smooth rigid analytic variety that admits a smooth compactification X such that
U = X — D for some smooth divisor D. Then we equip X with the log structure
defined by D (as in [DLLZal, Ex. 2.3.17]), and equip D with the pullback of the log
structure of X along the closed immersion 2 : D — X (as in [DLLZal Ex. 2.3.18]).
We emphasize that the log structure of D is nontrivial, and that it is crucial to equip
D with such a log structure. For this reason, we denote D with this nontrivial log
structure by D?. Then the “correct” period sheaf for our purpose is the sheaf

ker (OBdR,log,X — Uprokét,* ((QBdR,log‘,D8 ))

on Xprokét, the pro-Kummer étale site of X, where OBgRr 10g,x and OBgg jog, po are
the period sheaves on X,,oké; and ngkét, respectively, as in [DLLZDbL Def. 2.2.10].
Note that, in general, this is not the same as the naive !-pushforward to Xp,okes
of the period sheaf on Upyos;. Once the period sheaf is constructed, the remaining
arguments follow similar strategies as in [DLLZD], sometimes with generalizations.

As an application of the methods developed in the proof of Theorem we
obtain a version of Poincaré duality for the (rational) p-adic étale cohomology of

smooth rigid analytic varieties (see Theorem for more complete statements):

Theorem 1.3. Suppose that U is a smooth rigid analytic variety over k of pure
dimension d that is of the form U = X — Z, where X is a proper rigid analytic
variety over k, and where Z is a closed rigid analytic subvariety of X. Then there
is a canonical trace morphism

Tt H(:?td,c(UE’ Qp(d)) — Qp,
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whose formation is compatible with the excision and Gysin isomorphisms defined
by complements of smooth divisors. In addition, for each Z,-local system 1L on U
(which is not necessarily de Rham), with Lo, := L ®z, Qp, we have a canonical
perfect pairing

H, (Up, Lg,) ®q, Hz' ™ (U, Ly, (d) = Qp,

which we call the Poincaré duality pairing, defined by pre-composing tey with
the cup product pairing HY (U, Lg,) ®q, HZ (U, Ly, (d)) = HZ' (Uz, Qp(d)).

We refer to Definition [2.4.2]for our definition of the p-adic étale cohomology with
compact support for rigid analytic varieties over k. We remark that the Poincaré
duality we obtained is, essentially by construction, compatible with all the de Rham
comparison isomorphisms in [Sch13], [DLLZb], and this paper.

We note that the question of Poincaré duality for proper smooth rigid analytic
varieties (in which case the cohomology with compact support coincides with the
usual cohomology) was raised earlier by Scholze in [Sch13], and Gabber has an-
nounced a proof for such a result using a different method (see [SW20, Appendix
to Lecture 10, footnote 4]). Nevertheless, even in the original proper smooth setting
in [Sch13], our approach makes essential use of the excision and Gysin isomorphisms
defined by complements of smooth divisors, and hence crucially depends on the de
Rham comparison results in the nonproper setting in [DLLZb| and this paper.

We will also study the cohomology with partial compact support, as in [DIST]
Sec. 4.2], [Fal89, Sec. III], and [Fal02]; and also some generalized interior cohomol-
ogy, namely, the image of a morphism between cohomology with different partial
compact support conditions; and construct de Rham comparison isomorphisms for
such cohomology that are also compatible with Poincaré duality.

Outline of this paper. Let us briefly describe the organization of this paper, and
highlight the main topics in each section.

In Section[2] we work with a rigid analytic variety U that is the open complement
in a smooth rigid analytic variety X of a normal crossings divisor D whose inter-
sections of irreducible components define a stratification of X with smooth (closed)
strata, and use such a stratification to study the étale cohomology of U with partial
compact support. More specifically, in Section [2.1) we equip the smooth strata as
above with several different log structures. In Section 2:2] we study the pullbacks
to such strata of torsion Kummer étale local systems on X, and prove the primitive
comparison theorem for the Kummer étale cohomology of Fj-local systems of this
kind (see Proposition and Theorem . In Section we define the Kum-
mer étale cohomology of torsion local systems on U with partial compact support
along some subdivisor D*¢ of D, and prove (using results in Section the prim-
itive comparison theorem for such cohomology (see Theorem [2.3.5)). In Section
we define the pro-Kummer étale cohomology of 2p—local systems on U with partial
compact support along D*°, and relate it to the Kummer étale cohomology. In
Section we introduce some variants supported on the boundary strata (with
log structures pulled back from X)) of the period sheaves in [DLLZb, Sec. 2.2], and
establish some variants of the Poincaré lemma for them.

In Section we generalize the results in [DLLZD, Sec. 3.2] to the étale, de Rham,
Higgs, and Hodge cohomology with partial compact support. More specifically,
in Section [3:I} we introduce the de Rham, Higgs, and Hodge cohomology with
partial compact support, and state the comparison theorem for such cohomology
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(see Theorem [3.1.10)). In Sections and we introduce more variants of

the period sheaves introduced in [DLLZD, Sec. 2.2], which are useful for studying
the pro-Kummer étale cohomology with partial compact support by taking limits
and by using the primitive comparison theorem established in Section [2.3] and
prove the Poincaré lemma for such variants of period sheaves. In Section we
prove the desired comparison theorem, and provide some criteria for cohomology
with different partial compact support conditions to be isomorphic to each other.

In Section [l we construct some trace morphisms for the étale and de Rham
cohomology with compact support, and show that they define Poincaré duality
pairings for the étale and de Rham cohomology with partial compact support that
are compatible with the comparison isomorphisms in Section[3}] More specifically, in
Section [£.1] as a foundation for later constructions, we review the trace morphisms
and Serre duality for the coherent cohomology of proper smooth rigid analytic vari-
eties. In Section[£.2] we establish a perfect pairing between Higgs cohomology with
complementary partial compact supports (see Theorem ; and we construct
some trace morphisms for de Rham (resp. Hodge) cohomology with compact sup-
port using the trace morphisms for coherent cohomology, and show that they induce
perfect pairings between de Rham (resp. Hodge) cohomology with complementary
partial compact supports, when the coefficients of cohomology are associated with
de Rham étale Z,-local systems (see Theorem [4.2.7). In Section we show that
the étale and de Rham excision and Gysin isomorphisms defined by complements
of smooth divisors are compatible with the de Rham comparison isomorphisms (see
Propositions @ and . In Section by using the compatibility results
in Section [4.3] we construct some trace morphisms for étale cohomology with com-
pact support using the trace morphisms for de Rham cohomology constructed in
Section and show (by comparison with the above perfect duality for Higgs
cohomology) that these trace morphisms induce perfect duality pairings between
étale cohomology with complementary partial compact supports, when the coeffi-
cients are Q,-base extensions of Z,-local systems (see Theorem , which are
compatible with the above perfect duality for de Rham cohomology (via compari-
son isomorphisms) when the coefficients are de Rham. In Section we introduce
the notion of generalized interior cohomology, which is the image of a morphism
between cohomology with different partial compact support conditions, and deduce
from the results in Sections [3| and the de Rham comparison and the compati-
bility with Poincaré duality for such cohomology.

In Section |5 we deduce the de Rham comparison and the compatibility with
Poincaré duality for the cohomology with partial compact support and the general-
ized interior cohomology similarly defined over algebraic varieties, by showing that
the various constructions are compatible with the analytification functors.

In Section [6] we apply the results in Section [5] to Shimura varieties, in the
setting of [DLLZbl Sec. 5], and obtain the de Rham comparison and the dual
Bernstein—-Gelfand—Gelfand (BGG) decomposition for the cohomology with partial
compact support of automorphic local systems (on the étale side) and automorphic
bundles (on the de Rham and coherent sides) on general Shimura varieties. As
a byproduct, we can compute the Hodge—Tate weights of the étale cohomology
with partial compact support in terms of the dual BGG decomposition. We also
obtained corresponding results for the generalized interior cohomology and, when
the coefficients have regular weights, for the intersection cohomology as well.
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Notation and conventions. We shall follow the notation and conventions of
[DLLZD], unless otherwise specified. In particular, we shall denote by k a nonar-
chimedean local field (i.e., a field complete with respect to the topology induced
by a nontrivial nonarchimedean multiplicative norm |- | : & — Rx>) with residue
field x of characteristic p > 0, and by Oy its ring of integers. Since we will be
mainly working with rigid analytic varieties, we shall work with kT = O and
regard rigid analytic varieties over k£ as adic spaces locally topologically of finite
type over Spa(k,Oy) (as in [Hub96]). All rigid analytic varieties will be separated.
Group cohomology will always mean continuous group cohomology. For the sake
of simplicity, by a p-adic field, we shall mean a complete discrete valuation field of
mixed characteristic (0, p) with perfect residue field.

2. BOUNDARY STRATIFICATION AND COHOMOLOGY WITH COMPACT SUPPORT

In this section, let X be a smooth rigid analytic variety over k, and D a normal
crossings divisor (see [DLLZbl Ex. 2.1.2]) with (finitely many) irreducible compo-
nents {D,},er (ie., the images of the connected components of the normalization
of D, as in [Con99)]) satisfying the condition that all the intersections

X;=Xn(Njes D;),
where J C I, are also smooth. (Note that Xy = X.)
2.1. Log structures on smooth boundary strata. Let us denote by
17 Xy —= X
the canonical closed immersion of adic spaces. Let
Dy :=Ujcycr Xy
(with its canonical reduced closed subspace structure) and
Uj:=X;—Dy,
as adic spaces. (Note that Dy = D and Uy = U.) Then we also have a canonical
open immersion of adic spaces
77U — X
For any I*¢ C I, with I*™¢:=1 — I*° let
D™ :=Ujer< Dj
and
D*™"¢ := Ujepsne Dj,
(with their canonical reduced closed subspace structures), and let U*© := X — D*°
and U := X — D*"¢, Let jyc : U = U*C, 77U = X, Jyne : U — U™,
and y*™¢ : U**¢ — X denote the canonical open immersions of adic spaces. (In

Sections [2:3] and 2:4] below, we will use j,_. and 7*° to define the Kummer étale and
pro-Kummer étale cohomology of U with partial compact support along D*¢.)
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We shall view X as a log adic space by equipping it with the log structure
ax : Mx — Ox defined by D as in [DLLZDbL Ex. 2.1.2], together with a canonical
morphism of sites

et + Xkt — Xet-
For each J C I, the smooth rigid analytic variety X; can be equipped with
several natural log structures:
e the trivial log structure oy : MY = 0% — Ox, .
e the log structure off¢ : M54 — O, defined by the normal crossings
divisor D as in [DLLZbl, Ex. 2.1.2]; and
e the log structure associated with the pre-log structure ;' (Mx) — Ox ;e
induced by the composition of ax and ¥ : Ox,, — 17+(Ox ), which we
shall denote by a%l : M%J = Ox -
By abuse of notation, we shall denote these log adic spaces by X7, X, and X?,
respectively. For the sake of clarity, let us introduce the following;:

Definition 2.1.1. We say that a morphism of log adic spaces is a closed immer-
sion (resp. an open immersion) if it is strict as in [DLLZal Def. 2.2.2(7)]—i.e., if
the log structure on the source space is canonically isomorphic to the pullback as
above (resp. the restriction) of the one on the target space—and if the underlying
morphism of adic spaces is a closed immersion (resp. an open immersion).

Remark 2.1.2. Definition is more restrictive than the one in [DLLZal Def.
2.2.23], where closed immersions that are not necessarily strict were also introduced.
However, we do not need such a generality in this paper.

As explained in [DLLZal Ex. 2.3.18], we have the following commutative diagram
of canonical morphisms between log adic spaces

in which 79 and 7 are open immersions, 2 is a closed immersion, and the underlying
morphisms of adic spaces of 5?|U? and 63 are isomorphisms. Moreover, Uj; is
equipped with the trivial log structure, while U? is equipped with the log structure
pulled back from X9 and hence X. Note that there is no natural morphism of log
adic spaces from X; to X, and this is the main reason to introduce X?.

For each a > 0, we define the log adic space

o ._ )
xpy= I X9
JCI*e,|J|=a
a disjoint union, which admits a canonical finite morphism of log adic spaces
9 . yo
Z(a) . X(a) — X.
(Note that the definition of X (aa) only involves the irreducible components of D*¢.)
Remark 2.1.3. In what follows, we will sometimes use Kummer étale localizations

X’ — X to reduce the proofs of various statements for torsion local systems to the
analogous statements for constant ones, and the assertions to prove will often be
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equivalent to assertions concerning direct images and direct images with compact
support from open complements of closed subspaces of the forms X, Dy, or D’
above. This is justified because, by [DLLZal Prop. 4.2.1 and Lem. 4.2.5], locally
over X', the underlying reduced subspaces of the preimages of the irreducible com-
ponents of D still form normal crossings divisors of the same pattern.

We will make use of the following notation and conventions in the remainder of
this paper. Let Y be a locally noetherian fs log adic space over k. Let 2 : Z — Y be
a closed immersion of log adic spaces, and j: W — Y an open immersion of log adic
spaces, over k. (By Definition this means that the log structures on Z and W
are the pullbacks of the one on Y.) For ? = an, ét, két, proét, or prokét (referring
to the analytic, étale, Kummer étale, pro-étale, or pro-Kummer étale topology,
respectively, on these spaces), let (177*,2?_1) and (]7,*,]?_1) denote the associated
morphisms of topoi. For an abelian sheaf F on Y7, we shall sometimes denote
1"Y(F) (vesp. 77Y(F)) by F|z (vesp. Flw). Note that 7, ' admits a left adjoint,
denoted by -, which is an exact functor on the category of abelian sheaves.
Lemma 2.1.4. In the above setting, assume moreover that W =Y — Z. Then, for
every abelian sheaf F on Yz, where 7 = an, ét, or két, we have the excision short
exact sequence 0 — g7, j?_l(]:) — F = 17, 27_1(.7-") — 0. Moreover, the functor 1,
(resp. 32,1) from the category of abelian sheaves on Z (resp. W) to the category of
abelian sheaves on'Y is exact and fully faithful.

Proof. See [DLLZal, Lem. 4.5.3]. O

Lemma 2.1.5. Let F be an abelian sheaf on X, where 7 = an, ét, or két. For
each a > 0, let us denote z(aa;% (F) by Fa), which is an abelian sheaf on ng) .. Let
us choose any total order of the finite set I*"°, which induces total orders on any

subset J of I*°. Then there is an exact complex
0— J;,_!C(]:\U;-C) — Z?o),?,*(]:(o)) - 2?1),?7*(]:(1)) — Z?a),?,*(]:(a)) —

over Xq, where the morphism z‘?a)’?,*(]-'(a)) — Z?Q_H)’?’*(.F(a_;'_l)), for each a > 0, is
the direct sum of morphisms 1‘37?,*(]:\)(3) — z?,,’7’*(.7:|X§/) indexed by pairs (J, J")
with J C J' C I, |J| =a, and J = JU{jo} for some jo; each being the canonical
one induced by the closed immersion X9, — X9 multiplied by (—1){I€7 <o}l

(This is probably well known, but we included some details to at least set up the
convention, because such complexes will appear repeatedly in our arguments.)

Proof. By Lemma [2.1.4] it suffices to check the exactness of the complex after
pulling it back to U*° C X and to Uf? C X, for each J C I*°. This pullback
can be identified with 0 — Fl|yse — Flyre — 0 in the former case, where the
morphism in the middle is the identity morphism; and with a complex

a

0—0— (]:|U§Y?)(0) - (]-‘|U?)?)(‘f) NN (]:\U??)(ail) - (f|U3?)(Z) N

in the latter case, where a = |J| and the exponents are the binomial coefficients.
In both cases, the sequences are exact by construction, as desired. O

2.2. Kummer étale local systems on smooth boundary strata. Let L be a
torsion local system on Xyg;. For each J C I, let

Lj:= zik_et (L).

We have the following primitive comparison theorem for X f}”két and Ly:
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Theorem 2.2.1. Suppose that k is algebraically closed of characteristic zero, Xz
is proper, and L is an Fy,-local system. Then there is a natural almost isomorphism

(2.2.2) H'(XJ et L) @, (K7/p) 5 H'(X] e, Ly @5, (O%s  /p))

of almost finitely generated k™ -modules, for eachi > 0. Both k™ -modules are almost
zero when ¢ > 2dim(X ;) + |J| = 2dim(X) — |J].

The remainder of this subsection will be devoted to the proof of Theorem [2.2.1
Along the way, we will establish several other facts that will be needed in the
remainder of this paper. We shall temporarily drop the assumptions that k is
algebraically closed, that X ; is proper, and that L is p-torsion. The first step is
the following proposition:

Proposition 2.2.3. The sheaf Ri5§7két7*(LJ) s a torsion local system on X jxet,
for each i > 0, and it vanishes when i > |J|. Moreover, for each m > 1, the
canonical morphism stg’két’*(LJ) — stg,két’*(]LJ/m) is surjective.

We need some preparations before presenting the proof of Proposition [2.2.3

Lemma 2.2.4. Let D7 = Ujer—g Dj as before, so that Dy = X;NDY as subsets of
X. Let 7y : X — D7 — X denote the canonical open immersion of log adic spaces,
whose pullback under 1‘3 : X? — X 1s j? : Uf? — Xf?. Let 37+ X — Xf? — X denote
the complementary open immersion. Then the adjunction morphism

J=1 ~— ~ ~ J,—1
(2.2.5) .]iét,! Jier BIrket,« jJ,klétUL) — Rjjxét,« JJ, klét Jl{ét 1 Jkét (L),

. ~_ J—1 o~ ~_ ~_ . .
induced by Jie Ty Ser Blakees Ty (L) = JJklethet']ket (L) is an isomor-

phism.

Proof. As explained in Remark we may work locally on Xyg, and assume
that . = Z/m for some integer m > 1. By the same argument as in the proof
of [DLLZa, Thm. 4.6.1], it suffices to show that the analogue of over X
(with subscripts “két” replaced with “ét”) is an isomorphism. Since D is a normal
crossings divisor (again, see [DLLZblL Ex. 2.1.2]), up to étale localization, we may
reduce (by [Hub96, Prop. 2.1.4 and Thm. 3.8.1 and 5.7.2]) to the case of schemes,
and assume that X is a fiber product of two varieties X; and X, over k, with
the morphisms 77 and 7 being pullbacks of some open immersions to X; and Xo,

respectively. Then the desired assertion follows from the Kiinneth isomorphisms as
in [BBDGIS] Sec. 4.2.7] (cf. [LSI8a, Lem. 4.3.23 and its proof]). O

Remark 2.2.6. A similar argument shows that there is a canonical isomorphism
Jér Riec e (L) = Ry Jaencett (Llu)-
Lemma 2.2.7. The adjunction morphism
9 a,—1
(2.2.8) L,— RJJ,két,*JJ,két (L)
is an isomorphism.
Proof. Let us retain the setting of Lemma By Lemma it suffices to
apply ’L?,két,* to the morphism l} and show that the morphism

2] a, o -1 9,—-1
ZJket * Zlket(L) - ZJket * Rijet *]Iket ]ket(]L)

-1 8, ) 9,—1
= Rjyxét, (’J|U1)ket * JJ két L, ket( ) = Rjxeét, JJ ket LT két, % ZJket(L)
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which can be identified with the adjunction morphism for the sheaf 19, , z?k_ei (L)
and the morphism Jy, is an isomorphism. By [DLLZa, Thm. 4.6.1], the adjunction
morphism L — Rjj’két’*’j:jjklét (L) is an isomorphism over Xy4. Hence, we have a

canonical isomorphism jiém ]i’é;l(l[,) = Jigét,! jl‘fgl RJ 7 ket jfklét (L), whose compo-
sition with 1} is the adjunction morphism for the sheaf jl{ét | jl“(]’égl(ﬂ,) and the
morphism ;. Thus, the desired assertion follows from Lemmas and O
Let Mx be as in Section By [DLLZal Lem. 4.5.4 and 4.6.2], we have
i ~ [ Ai (A8 ,

(2.2.9) R (£91yg)en,« (Z/n) = (N (MY /) (=1)|v,

over Ujgs, for each n € Z>,. Now we are ready for the following:

Proof of Proposition [2.2.3] By Lemma and by applying [DLLZal Thm. 4.6.1]
to torsion local systems on X 7, we may replace X9 (resp. X) with U9 (resp. X —
D7). By [DLLZD, Lem. 4.5.4] and Remark and by the same argument as in
the proof of [DLLZal Thm. 4.6.1], we may work locally on Xy, and assume that

L = Z/n for some n € Z>;. Then Proposition reduces to the isomorphism
(2.2.9), which is clearly compatible with reduction mod m on both sides. O

Corollary 2.2.10. Let L be a Z/p™-local system on Xye. Then we have the Leray
spectral sequence

(2.2.11) By? = H(Xyket, R'€G e+ (L)) = H (X T p0, L)

In particular, the Z/p™-module H* (X§7két,LJ) is finitely generated, for any i > 0
and m > 0, and vanishes when i > 2dim(X ;) + |J| = 2dim(X) — |J|.

Proof. This follows from Proposition and [DLLZal Thm. 6.2.1]. O

Proof of Theorem [2.2.1] Consider the Leray spectral sequence
By" = H* (X ket (R% se1,. (L)) @, (0%, ... /D))
=~ H (X sxer, BG40 (L @, (O;S’,két /p)))
= H"(X§ e, L ©F, (O;tg’két /p)),

where the first isomorphism is based on [DLLZal Lem. 4.5.8], which admits a mor-
phism from the following spectral sequence, given by the base change of (2.2.11)):

By’ = H® (XJ,két7Rb53,két,*(LJ)) ®r, (k7 /p) = Ha+b(X§,két’LJ) @r, (kT /p).

By Propositionand [DLLZal Thm. 6.2.1], this morphism is given by almost iso-
morphisms of kT-modules between the Ey terms, which are almost finitely generated
kT-modules that are almost zero except when a,b > 0 and a+b < 2dim(X ;) +|J| =
2dim(X) — |J| (as in Corollary 2.2.10). Thus, the theorem follows. O

2.3. Kummer étale cohomology with partial compact support. In this sub-
section, let us fix 1*° C I and define U*° etc as in Section Let IL be a torsion
local system on Xye; as before. As in Lemma [2.1.5] for each a > 0, let
. ,0,—1
(231) ]L(a) = Z(a), ét(]]“)'
We shall deduce from Theorem [2.2.1]its analogue for the cohomology with partial
compact support. Let us first introduce the relevant cohomology groups.
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Definition 2.3.2. Assume that & is algebraically closed and of characteristic zero,

and that X is proper over k. For any torsion local system IL on X4, we abusively
define

et *- C(U L) i—c(UétaL) =H' (Xketa.]ket ‘(L|U* C))

két
(We introduce both Hf, , (U,LL) and H;_.(Us,L) for the sake of flexibility.)

The following lemma shows that H étxe -(U,L) can be interpreted as the coho-
mology of L|y with a partial compact support condition along D*° C X, which
justifies our choice of notation.

Lemma 2.3.3. We have canonical isomorphisms

(2.3.4) 961 Ryecers (L) = 9855 Reee o (Llugge) = Reews gz (Lluge)

két

(¢f. Remark - Therefore, if k is algebraically closed and of characteristic zero
and X is proper, then we have
(U L) Hi (Xétng‘;::! R]*—c,ét,*(]L‘U)) HZ (U;t 7R.7*—c,ét,*(]L‘U))-
In particular,

o if I*° =1, then Hlt*C(U,]L) gHZi(Uét,L|U);

o if I*° =1, then H, weU L) = H(Ust, Llp),
where H(Ug,L|y) is the étale cohomology with compact support of the étale local
system L|y on Us, as defined in [Hub96l Sec. 5).

Proof. The first isomorphism in follows from [DLLZal Thm. 4.6.1] and its
proof. The second isomorphism, as in the proof of [DLLZal Lem. 4.5.4], follows
from the definitions of the sheaves by comparing stalks at log geometric points
using [DLLZal Lem. 4.4.4]. The rest of the lemma follows immediately. O

et*c

Now we are ready to state the following primitive comparison theorem for the
cohomology with partial compact support (cf. the analogous results [Sch13l Thm.
5.1] and [DLLZa, Thm. 6.2.1] for the usual cohomology):

Theorem 2.3.5. Assume that k is algebraically closed and of characteristic zero,
that X is proper over k, and that L. is an F,-local system on Xye. Then:

(1) H(Xyet, (jl*(;ft {(Lluge)) ®, (0% /p)) is an almost finitely generated k-
module for each i > 0, and is almost zero if i > 2dim(X).
(2) There is a canonical almost isomorphism

(2.3.6) Hg , (U, L) ®F, (k*/p) = H' (Xkéta (Jﬁ_éct .(IL)) ®r, (O}F{/P))

of kt-modules, for each i > 0. In particular, Hf , (U,L) is a finite-
dimensional Fp-vector space for each i > 0, and vanishes for i > 2dim(X).

Proof. By Lemma and [DLLZal Lem. 4.5.7], we have an exact complex
0 — (gis 1 (Lluyse)) ®r, (0% /p)
(2.3.7) = 1)t (Lio) @, (Oxg /P)) = 1)1 (L) B, (Oxg /P))
e z?a)’két,*(L(a) ®F, (O;(aa) /p)) =
over Xyet, which admits a canonical morphism from the complex

0 = gize (Llugze) = 1) ks L)) = 12 kst (L)) = =+ = 100 gt n (L) =
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(as in Lemma [2.1.5)). Therefore, we obtain a (filtration) spectral sequence
EP? = Y (XG) i Lo @5, (Oxp /)
X @ cree, | g)ma H (X9 1er, Ly @k, (0;9/17))
= H* (X, (i (Llvgze)) @, (0%/p)),

két

which admits a canonical morphism from the spectral sequence
By = HY(XE,) o Lw) @5, (K /p)
> @ ycree, 17=a (H (X ke Ly) @, (k1/p))
= H" (Xeaw, g, (Lloge)) @, (KF/p).

két
By Theorem this morphism is given by almost isomorphisms of k*-modules
between the E; terms, which are almost finitely generated k+-modules that are
almost zero except when a,b > 0 and a+b < 2dim(X). Thus, the morphism induces
the canonical almost isomorphism in and justifies (1)), as desired. (I

2.4. Pro-Kummer étale cohomology with partial compact support. Recall
that a Zy-local system L is an inverse system {L, },>1, where each L,, is a Z/p"-
local system, satisfying L,,/p™ = L, for all m > n > 1. (See [DLLZa, Def.
6.3.1].) Since we will need to deal with inverse systems of sheaves on Xy such as
{n(L,)}n>1, it is convenient to introduce the following definitions:

Definition 2.4.1. A Kummer étale Z,-sheaf F on a locally noetherian fs log adic
space Y (over k) is an inverse system {F, },>1 of sheaves on Yy, where F, is a
Z/p™-module, for each n > 1. Let Shyz, (Yis) denote the abelian category of Z,-
sheaves on Yyg;, which has enough injectives by [Jan88, Prop. 1.1]. If f: Y’ —» Y
is a morphism between such log adic spaces, let

fret + Shz, (Yier) = Shz, (Yig) t fret,«
be the pair of adjoint functors, namely, the inverse and direct image functors of

Z,-sheaves, given by applying the usual fk*ei and fies,« (for torsion sheaves) to each
component of the inverse system. If f =j7: W — Y is an open immersion, let

Jiét,t : Shz, (Wigt) — Shz, (Yier)

be the left adjoint of ]I:é%;, again given by applying the usual jig, (for torsion
sheaves) to each component of the inverse system.

When £ is algebraically closed of characteristic zero, we define the i-th cohomol-
ogy H*(Yiet, ) as the i-th right derived functor of the functor

Shz, (Yier) = Modz, : {Fn}tn>1 = T'(Yier, im Fy) = I I'(Yier, Fn)-

Definition 2.4.2. Let X be as before. Assume that k is algebraically closed of
characteristic zero and that X is proper over k. For each Zp-local system L on
Xyeét, we define

H o o(U,L) = H._(Ust, L) := H'(Xst, st (Llugse)).-
(Again, we introduce both Héit,*—c(UV L) and H! (Ug,L) for the sake of flexibility. )

Lemma 2.4.3. In the setting of Definition there is a canonical isomorphism
ng_c(U7 L) = ]&nn Hgt’*_C(U, L,) as finite Z,-modules.
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Proof. By adapting the arguments in the proof of [Hub98| Lem. 2.3(i)] to the setting
here for the cohomology of the proper X over k, we can write Hg'w_c(U7 L) as

H' (RT (Xier, RUm gt (Lnlugz))) = H' (RYim RT (Xiee, ket (Lnlugse ) ) -
n n

két

Under our assumptions that k is algebraically closed of characteristic zero and
that X is proper over k, since each Hf, ,_.(U,L,) is finite by Theorem [2.3.5} the

right-hand side is equal to lim H'(RT (Xkét,]két7[(Ln|Uﬁé€))) = lim H , (U Ly),
which is a finite Z,-module by standard arguments. O

Remark 2.4.4. When I*° = I, we have H}, ,_ (U,L) = Hm H!(Ug, Ly, |v), by
Lemma Note that this is different from the H¢(Ug, L|y7) as defined in [Hub98].
(Recall that, for a Z,-sheaf F = {F,},>1 on U, which is partially proper over k,
the cohomology with compact support H: (U, F) is defined in [Hub98] as the i-th
derived functor of the functor 7 = {F,}n>1 + Lc(Ust, lgln Fn), where T'. is the
functor of sections with proper support, as in [Hub96l Def. 5.2.1].) In particular,
as explained in [CDHN2Il Ex. A.1], even when U is the affine line over the p-adic
complex number, Huber’s H? (Uét,Zp(l)) can fail to be a finite Z,-module, and
hence is not suitable for our study of de Rham comparison and Poincaré duality.
Nevertheless, despite this discrepancy, we shall abusively define (or rather denote)

H!(Ue,L|y) == TngCi(Uét,LrJU)

Again by Lemma [2.3.3] when [* = (), which is another extremal case, we have

Hgt,*—c(U7L) = @Hi(UétaLMU) = Hi(Uét7L|U)~
n

Remark 2.4.5. We shall denote the objects defined by any subset 1°¢ C I*° C I
with subscripts “o-¢”. Then the objects with subscripts “x-¢” admit compatible
canonical morphisms to those with subscripts “o-¢”. We shall also denote with
subscripts “x-nc” the objects defined with the complementary subset I[*"¢ C [
replacing I*° C I. (This is consistent of the previous definitions of j,.. and 7*™°,
although we will not explicitly use them.)

For each locally noetherian fs log adic space Y, the pro-Kummer étale site Y okst
was introduced in [DLLZal, Sec. 5]. Let vy : Ypokss — Yier denote the natural
projection of sites. (We shall omit the subscript “Y” when the context is clear.)

Lemma 2.4.6. For each morphism f : Z — Y of locally noetherian fs log adic

—1 p—1 -1 -1 . . —1 -1
spaces, Uy~ fig = prokét Uy - If f is quasi-compact, then vy~ fret,« = fprokés,« Vy -

Proof. The first statement is clear. As for the second, we may assume that Y is
affinoid. Let U = I&HZ U; be any qegs object of Yook, Then f~H(U) = @11 Yy
is a qcgs object in Zpoket. By [DLLZal Prop. 5.1.6], we have (U;l fkét,*(]:))(U) ]
lim, F(FUUy) = (v"F) (F7HU)) 2 (foroket, vz (F))(U), for each abelian
sheaf F on Zyg, as desired. O

Remark 2.4.7. The above basic results in this subsection are compatible with
base changes from k to other nonarchimedean local fields.
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Finally, let 2,) = Li£1n(Z/p”)7 and let Sth (Yprokes) denote the category of Zp—
sheaves on Yprokét, understood in the naive sense. Then there is a natural functor

(24.8) vy i Shz, (Yisr) = Shy (Vroket) : F = {Fntnz1 = F = lim (03 (Fn)).-

2.5. Period sheaves on the boundary strata. Let us begin with some nota-
tional preparation, which will also be used in some later subsections. Consider the

perfectoid field K := k, the p-adic completion of some fixed algebraic closure k
of k, with KT = Og. Let (K”, K") denote the tilt of (K, K*), as usual. As in
[DLLZb, Sec. 2.3], let & € Ay = W(K®t) be given by [Sch13, Lem. 6.3], which
generates the kernel of the surjective canonical homomorphism 6 : Ay — K.
Let w € K°t be such that w® = p. Then p™ Ajne /P Ajng = Ajng/p = KT and
w" K"t Jo" T K = Kt Joo = K* /p, for all m,n > 0.

Remark 2.5.1. We shall consider the almost setting over Aj,s with respect to
the ideal generated by {[wl/pN]}Nzl, as in [Sch13, paragraph preceding Thm. 6.5].

As explained in the proof of [Sch13, Thm. 6.5], multiplication by [w] € Bins =
W(K b+)[%] is invertible (and so almost isomorphisms become isomorphisms) after

reduction modulo powers of &, because [ww] is mapped to @ = p in K.

7]
J,prokét

defined in [DLLZal Def. 5.4.1] and [DLLZal Sec. 2.2], we obtain the sheaves 09,
J

A+.0  AbL,O  Ab+,0 7] 14} +,0 1o} +,0 0

0X§’ OX?’ OX§’ ) Ainf,X?’ Binf,X?’ BdR,Xf}“ BdR,Xf,” OBdR,log,X?’ OBdR,log,Xf}”

their filtered pieces, and O(Cﬁ)g’ X9 = gr OB(?R,Iog, X9 together with the homomor-

: 9 . AO A+,0 9 . Mo oL , :
phisms 69 : Ainf,Xf} — (’)X? and 69 : Binf,xfj — OX?’ on Xprokét, denoted with
7] A+,0
X?)’ OXB 9

(a)
+,0 2]
dR,X?a) ’ OBdR,log,X(‘z) ’ OBdR,log,Xfa) ’

Definition 2.5.2. For each J C I, by applying Z?,prokét,* to the sheaves on X

additional superscripts “9”. For each a > 0, we define similar sheaves O

Ab,0 Ab+,0 D 2] +,0 a
OX6 ) Oxf’ ’ Ainf,Xfa)7 Binf,Xfa)’ BdR,X(Ba)’ B

(a) (a)
their filtered pieces, and (’)(Ci?)g, on Xproke¢t Dy direct sums.

o
X(a)

Lemma 2.5.3. For each J C I, and for each logAajﬁnoid perfectoid object U =
@iel U; in Xproker With associated perfectoid space U, the pullback of U to X?,prokét
defined by V' = lim _ (U; xx X?)Ais a log perfectoid a]"ﬁnoifi\ objeAct in X9 okt
with an associated perfectoid space V and a closed immersion V. - U Qf adic spaces
compatible with 19 : X9 — X. (However, the closed immersion V — U is generally
not the pullback of 19 under U — U.) Suppose that V= Spa(ﬁ,?ﬂ for some
perfectoid (R, RJF) with tilt (Eb,EbJr). Then we have the following:
A A+,0 ~ (A A ~ (P DT
(1) (Oiﬁpmkét(U)’O;a (U) = (0Oxa  (V),0L, (V)= (R,R").

J,prokét J,prokét J,prokét

73,0 Ab-+,0 & (P o+ ~ (.7t
(2) (OX§.prokét (U),OX?,prokét (U)) B (OX§,prokét (V)7OX§,prokét (V)) B (R ’R )
Proof. These follow from [DLLZal Lem. 5.3.7 and Thm. 5.4.3]. O

Corollary 2.5.4. For each J C I, let F be one of the following sheaves on

) ) + o b+ +
X7 prokét? Oxg} C’)X?, 0X97 Oxg; Ainf,X?f Binf,X97 Bdeg; and BdR,Xf;’- Then

. . 0,—1 9y _ ,0,—1 1%} 0
the canonical morphisms 17 16 (F%) = 150160 17 proket,« (F) — F and FO —
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U7 prokét Z? })ket( 9) defined by adjunction are isomorphisms. If U and V are in
Lemma then FO(U) = F(V). Moreover, we have the following:
Ab+,0 ~ 1
(1) AB (05 ) and Bglf z= A?nf ZH

fXa B Jproket
2) The kernels of 62 : Aa 0 — (’)+59 and 69 : IB%a 0 — 0o o are locally
nf, X2 nf, X2 X9

prmczpal over Xpmket, and are genemted by the above & over XK prokét -

~ T = o
(3) BdRXB - hm( Xa/g ) and Bg Xa - BIRXf’

generator of ker 98, which can be the above & over Xk prokst -

Proof. The assertions for OXa OXQ, o Yo and @g;r@ follow from Lemma [2.5.3|and
J

DLLZal Lem. 5.3.7 and Thm. 5.4.3]. Since FO = 1pr0két,« (F), and since proxst «
is compatible with limits and colimits (by [DLLZal Prop. 5.1.5]), the remaining
assertions also follow. ([l

[2]7 where £ is any local

Lemma 2.5.5. Quer Xprokét/XK, we have the following, for each J C I:
~Y A 76 Y
(1) A2y o/ 0,2 = O [0 e (OFy /).

J,prokét
OF @ 20g AljInoe per. ectoa 0 ]eCt m rokét , ana a m7n2 i the
9) For all log affinoid perfectoid object U in X, /xxc and all 1, th
Aig-module HY (Uproket, Afy xo/ (0™ [@"])) is almost zero, when j > 0;
inf, Xa(U)/(pm7 [wn]), when] = 0.

(9) Ao o = lim (A o/ (0™ (") and Rilim (A2, /(o™ [="]))
18 almost zero, for all j > 0.

Proof. The assertion follows from Lemmas|2.4.6 m and H, and Deﬁnltlonm
Since HY (Uproket, (9+ 0 /p™) = (Vproket, O;d /p™), where V is the pull-

2]
X prokét J,prokét

back of U as in Lemma“ the assertion (2)) follows (by induction) from [Sch12]
Prop. 7.13] and [DLLZal Thm. 5.4.3]. Flnally, the assertion follows from [Sch13]
Lem. 3.18], [DLLZal Prop. 5.3.12], and the previous two assertions. O

Essentially by definition, and by Lemmas [2.4.6] and we have the following

two lemmas:

and is almost isomorphic to A2

Lemma 2.5.6. For J C J' C I, we have canonical morphisms 09 X — OX8 ,

+8 A+,0  Ab,0 b+6 Ab+,0 ) F)

(’) — (’)Xa, 09 X — OXO, (9 — Ox@ , AT X9 — Ame37 Binﬁxsj —
6] +6

IB%mf X8, BdR X9 —>]BdR X8, and BdRXo —>IB%dR X2, over Xprokst- Fora > a’ >0,

we have similar morphzsms for the analogous shecwes for X( and X(aa,

a),prokét ),prokét”

Lemma 2.5.7. For each J C I, both IB%;FRaxa and B?R,X? admit filtrations induced

by powers of ker(6? : Bianf <o = OX5)7 which are also induced by those of ]B%jRX
T J ’

and Bar,x. Over Xk prokst, the filtrations are given by multiplication by powers

of &, and induce canonical isomorphisms gr rptd o (9 ( ), for r > 0; and

dR,X? —
gr IB%dR xo = (’) ( ), for all r € Z, where (r) denotes Tate twists as usual. For
.y +.0 0
each a > 0, we have similar facts for IB%dR X2, and ]B%dR’Xa .

Lemma 2.5.8. Let us temporarily assume that X is affinoid and admits a toric
chart X — D} := Spa(k(T1,...,T,), k™ (Th,...,T,)) as in [DLLZD, Sec. 2.3], with
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D defined by {Ty---T, = 0}. Let X — X be the log affinoid perfectoid object of

Xprokst defined as in [DLLZb| Sec. 2.3], with associated perfectoid space X. Let
€ € Aint be as above. Suppose that X9 is defined by {Ty = --- = T, = 0}. Then,
for each U € Xprokét/)?, we have a canonical surjective morphism

(2.5.9) Birx(U) - IBSI};SX?(U)
inducing, for each v > 1, an isomorphism
r sb sb ~ +,0 r
2510) (Bl (0)/€) /(TP s [Ty S (Bl 0)/€),
where ([T5°), ..., [T;b])g\e(@>O denotes the p-adic completion of the ideal generated by
{1, ..., [T} seq-o; and we have a canonical B;ﬁaxa | 5 -linear isomorphism
g
,0 ~ ,0

(2.5.11) (’)IB%IRJOg,X? F= B;’R,Xﬁ |y ynll-
compatible with the canonical IB%CTR’X&—linear isomorphism
(2.5.12) OBIR,log,Xb? = BXR,X‘X[[yla s Unlls
in [DLLZDbl Prop. 2.3.15].
Proof. Combine Corollary and [DLLZbl, Cor. 2.3.20]. O
Corollary 2.5.13. For each a > 0, we have an exact complex

+,0 +,0 v +,0 log,1

0— BdR,X(@a) - OBdR,log,X§a> - OBdR,log,Xf’a) QO roneet Qx
(2.5.14) . o
; og,
= OEdR,log,X(@a) ®0Xprokét QX — e
over Xprokst- The statement also holds with IB%IP’SX&) and OIEB;P’{?I()&X?Q) replaced
. a 3 .

with BdR,X(aa) and (’)IBdR,log,Xa), respectively.

Proof. Combine Lemma [2.5.8] [DLLZD, Cor. 2.4.2], and [DLLZal Ex. 3.3.20). O

+,0
IBdR,log,X?

OB4R,log,x — (’)IB%?R log,x0 OT€ strictly compatible with the filtrations on both sides.
) IR ]

Corollary 2.5.15. Both the canonical morphisms (’)IB%IR’IOg,X -0 and

vt + +.0
Proof. The assertion for OBgg o, x — OBp X9

follows from Lemma, Then the assertion for OBgR j0g,x — OIB%?R log, X0 follows
’ T

from the definition of both sides as completions (see [DLLZb| Def. 2.2.10]). O

which is étale local in nature,

3. COMPARISON THEOREMS FOR COHOMOLOGY WITH COMPACT SUPPORT

3.1. Statements of main results. In this section, we shall retain the setting of
Section [2} but assume that k is a p-adic field, and that X is proper over k. As in
Section let K =k and KT = O, and let £ € Ay = W(K®1) be given by
[Sch13, Lem. 6.3]. Let L be a Zy-local system on Xy, as in [DLLZa, Def. 6.3.1].
Fix I*° C I as before. As usual, we shall denote by (—D*°) the tensor product
with (pullbacks of) the invertible ideal defining the divisor D*° C X.

We will freely use the notation and constructions in [DLLZD, Sec. 3]. In particu-
lar, we have the ringed spaces X = (Xan, OX<§>kB;'R) and X = (Xan, Ox®1Bar),
as in [DLLZb, (3.1.5)]. Moreover, we have the notions of log connections and their
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log de Rham complexes on X and on X, and of log Higgs bundles and their log Higgs
complezes on X, as in [DLLZD, Def. 3.1.7]. Note that, given a log connection or
a log Higgs bundle, its tensor product with (the pullback of) the invertible ideal
defining D**¢ C X is still a log connection or a log Higgs bundle.

Definition 3.1.1. For a log connection £ on X', we define

(3.1.2) Hig , (U, &) := H (X, DRiog (E(—D*))).
Similarly, for a log connection F on X, we define

(3.1.3) Hiip se(Uan, E) := H' (Xan, DRiog (E(=D"))),

For a log Higgs bundle F on X, we define

(3.1.4) Hitiggs e Uk ans E) := H' (X an, Higgs,o (E(—D*))),

Finally, for a log connection £ on X equipped with a decreasing filtration by
coherent subsheaves Fil®*E satisfying the (usual) Griffiths transversality condition,
we define

(3.1.5) Hgﬁ;g‘g*_c(Uan, E) := H'(Xan, g1" DRiog (E(—D*))).
Then there is also the Hodge-de Rham spectral sequence
(316> E?i_a = Hl?lg(;gae,*-c(Uana E) = HéR,*—C<UaIl7 E)7

When the eigenvalues of the residues of £ and E (along the irreducible compo-
nents of D) are in QN [0,1), in which case £ and E are the canonical exten-
sions of Ely and E|y, respectively (see the discussions in [ABOI, Ch. 1, Sec. 4]
or [ABC20, Sec. 11]), we shall also write Hig , (U, Elu), Hig 4c(Uan, Elr), and
HIZ-IOdgc,*—c
particular, for each Z,-local system L on Xy, we shall write H, éR,*_C (Z/l , R’H(]L)),
Hip o o(Usn, Dar (L)), and Hij,qye .- (Uan, Dar(L)), which is justified by [DLLZE,
Thm. 3.2.3(2) and 3.2.7(2)]. We shall also abusively write Hy,. . . (U, H(L)) in-
stead of Hi (U, Hiog(L)). (For simplicity, we shall write RH(L) etc instead

Higgs,*-c
of RH(L|y) etc in such notation.)

(Uan, E|v), when the meaning of such notation is clear in the context. In

Remark 3.1.7. The definitions above are rather serious abuses of notation, be-
cause, a priori, they do depend on £ and E over the whole X,,. Nevertheless, we
will mainly apply them to &€ = RHiog(L), E = Hiog(L), and E = Dgr 10g(L), for
Zy-local systems IL on Xy¢. Since the eigenvalues of the residues of RHiog(IL) and
Dgg,jog (L) are in QN [0, 1), the definition of their de Rham cohomology (with sup-
port conditions) is compatible with their analogues in the complex analytic setting
using canonical extensions, as in [Del70, II, 6] and [EV92] Sec. 2.11 and Cor. 2.12].

Remark 3.1.8. If I*° = I and hence D*° = D in the above, we shall abusively
denote HQR*_C(U&H,E) by HéR&(Uan,E)‘ If I*¢ = () and hence D*< = (), we
shall abusively denote H5R7*_C(Uan7 E) by HéR(Uan, E), even though HQR(Uan, E)is
defined using E over the whole compactification X. Nevertheless, for simplicity, we
shall still write H3R7C(Uan» E|y) and Hig (Uan, E|v), as in the last part of Definition
when the meaning is clear in the context. This abusive choice of notation is
consistent with our previous choice for the étale cohomology (see Remark .
We shall use similar notation for the other cohomology in Definition [3.1.1



18 KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Remark 3.1.9 (cf. Remark . We shall denote the objects defined by any
subset I°¢ C I*° C I with subscripts “o-¢”. Then the objects with subscripts
“x-¢” admit compatible canonical morphisms to those with subscripts “o-c”. Also,
we shall denote with subscripts “x-nc¢” the objects defined with the complementary
subset [*™¢ C I replacing I*¢ C I.

The main result of this section is the following:

Theorem 3.1.10. For each i > 0, we have a canonical Gal(k/k)-equivariant iso-
morphism

(3.1.11) Hg . (Uk, L) ®z, Bar = HQR’*_C(U,RH(L)),

compatible with the filtrations on both sides, and also (by taking gr°) a canonical
Gal(k/k)-equivariant isomorphism

(3112) Het *= C(UK’ L) ®Zp K = HIi{iggs,*-c(UK,an7 H(L)) .

Suppose that L|y is a de Rham Z,-local system on Ug. Then we also have a
canonical Gal(k/k)-equivariant isomorphism

(3.1.13) H} ..«(Uk,L) ®z, Bar = Hlg .. (Uan, Dar (L)) ® Bag,

compatible with the filtrations on both sides, and also (by taking gr°) a canonical
Gal(k/k)-equivariant isomorphism

(3114> Hét,*—c(UK’ L) ®Zp K= @a-l—b:i (Hgfdge}*—c (Uana DdR(]L)) Ok K(_a)) :
Moreover, the Hodge—de Rham spectral sequence

(3.1.15) B o= Hyo oo (Uan, Dar(L)) = H$E' (Uan, Dar (L))

degenerates on the Fq page.
The proof of Theorem [3.1.10| will be carried out in the following subsections. We

shall freely use the notation introduced in Section [2.5] For simplicity, the pullbacks
of various sheaves from Xp;orét t0 XK prokét Will be denoted by the same symbols.

3.2. Period sheaves A { and B}

inf *

Definition 3.2.1. Let

*-C 1%} 9
inf, X = ker(Ainf,x(’dm = A Xgl))
(see Lemma [2.5.6)), and
fn(f: X - fn? X[ } A1nf X ®Z QP

‘We shall omit the subscripts “X” when the context is clear.

Remark 3.2.2. By definition, we have A = Ain,x, Bif xa = 2 Bing,x =

()
Moreover, we

nf, X2

(0)
11 ~
Aing, x[5] = Aingx ©z Qp, and Bff ¢ = ker(B? nt, X B x5,)"

could have defined Aff  as a derived limit as in 1} below (with L = Zp

there), without using the boundary stratification.
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Lemma 3.2.3. Both A{§  and Bi§  are equipped with filtrations induced by those
of Aing,x and Bing x, respectwely Over X K prokét, they agree with the filtrations
defined more directly by multiplication by powers of &, where £ is as in Section
and we have compatible canonical isomorphisms Aff x @ Ay, (Aint /E7) = AL x /€7

and BE§ x @B, (Binf/gr) = Bif x /€7, for each r > 1.

inf

Proof. By Definition and Remark [3.2.2) Aff o and Bj§ ¢ are subsheaves of
Aing x and Binf x, respectively, and the first assertion follows. Over X K,prokét, DY
[Sch13, Lem. 6.3], the filtrations on Aj,¢ x and Biyr x are defined by multiplication
by powers of § , and the same is true for all the sheaves A nf, X9 and ]B nf, X0 (see

Definition [2.5.2) and Corollary [2.5.4). Hence, £ acts with zero kernels on Al*n‘g X
and BiTF v, each r > 1, and the second assertion also follows. O

The goal of this subsection is to prove the following:

Proposition 3.2.4. We have a canonical Gal(k/k)-equivariant almost isomor-
phism (of Aing-modules, as in Remark [2.5.1))

(3.2.5) H} Uk, L) ®gz, Ains = H' (XK,prokéh]i Q7 e x )
which induces by inverting p a canonical Gal(k/k)-equivariant almost isomorphism
(326) et e C(UK, ) ®ZP Binf = HZ (XK,prokétv ﬁ-\' ®Zp i(rig,X)

Moreover, the isomorphism (3.2.6) is compatible with the filtrations defined by mul-
tiplication by powers of § (cf. Lemma [3.2.3); and, for all v > 1, we have compatible
canonical Gal(k; /k)-equivariant isomorphisms (see Remark [2.5.1))

(327) et x- C(UK7 ) (Binf/gr) ~ ' (XK,prokéta ﬁ-\‘ ®Z ( inf X/gr))

Let w € K"* be such that w! = p. We begin with the following consequence of
the primitive comparison isomorphism (see Theorem [2.3.5)):

Lemma 3.2.8. For each i > 0 and all m,n > 1, we have canonical Gal(k/k)-
equivariant almost isomorphisms

Hi Uk, L) @z, Aing = R@(Hét,*-c(UmLm) @z, (Amt/ (™, [W”i)))
(329) o
5 H(Xicprovees Blim (03! s a(Lanlvgze)) @3, (Aine.x/ 0™, [2") ) )-

Proof. By Lemma. H , (Uk,L) = Wm = Hg -(Uk,Ly,) is a finitely gener-
ated Zy-module, and H, , (U, L)/p™ = H{, , .(Uk,Ly,) for all sufficiently large

m. Therefore, since A = hm (Ainf/pm) = ignm n(Ainf/(pm, [w"})), we obtain

ct*c(UK’ ) Aint = RL( ét,%-C UKv]L) ®Zp (Ainf/pm))
%RL( H o-o(Uk,Lin) @z, (Aing/p"™))

= Rhm( étnc(Ur, Lin) @z, (Aine/(p™, [wni)))

m,n

(with vanishing higher limits), whose composition is the first almost isomorphism

in (3.2.9). By using the almost isomorphism (2.3.6) in Theorem by Lemma
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2.5.5(|1)), and by the same inductive argument as in the proof of [Sch13l Thm.
8.4], we obtain the second almost isomorphism in . By their very construc-
tions, both the almost isomorphisms in are canonical and independent of
the choices, and hence Gal(k/k)-equivariant, as desired. O

Lemma 3.2.10. Let {F;}icz., be an inverse system of abelian sheaves on a site
T, and let {0 — F; — Fip — Fi1r = - Fiaq = -+ biczo, be an inverse system
of exact complexes. Assume that there exists a basis B of the site T such that, for
each U € B, the following conditions hold:

(1) H*(U,Fio) =0, for alla>0,b>0, and i > 1.

(2) The complex 0 — F;(U) — F;o(U) = Fi1(U) = -+ = Fio(U) — -+ is

ezact, for each i > 0.

(3) Fiz1,a(U) = Fio(U) is surjective, for all a > 0.
Then, for ? =0 or any a > 0, we have R’ @l Fi2 =0 and H’ (U, I&HZE?) =0, for
j > 0; and Qﬂlz .Fi,iz)(U) ~ @Z (]‘—i’?(U)). Moreover, the complex 0 — 1&111 Fi —
I'Lmi}lo — l&nz}]l — .-+ 18 also exact.

Proof. Since F; o is a resolution of F;, we have a (filtration) spectral sequence
Ef’b = H"(U, Fi o) = H*(U, F;), which is concentrated on the terms E“f’o7 by
assumption . Then the spectral sequence degenerates on the E5 page, and
(3.2.11) HI (U, F;) =0,

for all ¢ > 1 and j > 0. Similarly, by assumption , we have a spectral sequence
EMY = RP Jm, (Fia(U)) = ROFP Jm, (F;(U)), which is concentrated on the terms
ET’O, because R’ 1&11z (Fiya(U)) = 0 for all b > 0, by assumption . Then the
spectral sequence degenerates on the F5 page, and

(3.2.12) R im (F;(U)) =0

for all j > 0. Hence, by (3.2.11)) and (3.2.12)), by assumptions and , and by

[Sch13| Lem. 3.18], the first assertion of the lemma follows. Consequently, by [KS90,
Prop. 1.12.4], we have an exact complex 0 — (lim, 7;)(U) — (lim, F0)(U) —
(@l Fi1)(U) — ---. Since U is an arbitrary object in the basis B of T', the second
assertion of the lemma also follows, as desired. O

Lemma 3.2.13. For each m > 1 and each n > 1, we have a canonical Gal(k/k)-
equivariant exact complex

0= (vx' i Lmlug)) @z, (Awe,x /(0™ [@"]))
(3.2.14) =Ly, (Al xp /0™ [=") = L g, (A5 xq /0™ [="]))

o Leg, (A xe /0™ @) = -

over X prokét- Consequently, we have a canonical Gal(%/k)—equivam‘ant almost
quasi-isomorphism between

Riim (03" 7 Lonlgze) 3, (Bintx /(™ [")))

(with almost vanishing higher limits) and

T -~ a T o~ a .. T o~ a ..
L&z Ainf,X(@O) —L®g Ainf,X(@l) == Ly Ainf,X(@a) —
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(which is almost exact except in degree 0) over Xk prokss- Since I is a local system,
by Definition we obtain a canonical Gal(k/k)-equivariant almost isomorphism

(3:2.15) Les Ay S Rlim ((vx" i, Cnluge)) @2, (Binex /(0™ [=")) ).

Proof. The first assertion follows inductively from the exactness of , by using
Lemma and the canonical morphisms induced by the short exact sequence
0 — pL,, = L, — L,/p — 0. Let U be any log perfectoid affinoid object in
Xprokét X5 which we may assume to trivialize I/[:, because such objects form a
basis, by Prop. 5.3.12]. By induction on m and n, by Lem. 4.5.7]
and Lemmas and and by downward induction on a using the finiteness
of |[I*¢|, we see that is almost exact when evaluated on U, and so that the
second assertion follows from the almost version of Lemma |3.2.10} as desired. O

Thus, we are ready for the following:

Proof of Proposition [3.2.4] By combining Lemma[3.2.8 and ([3.2.15]), we obtain the
two almost isomorphisms (3.2.5) and (3.2.6]), which are naturally compatible with
the multiplication by powers of £ on both sides. For each r > 1, since

H oo (Uk, L) @z, (Bing/€") = (H ,o(Uk, L) @z, Q) ®q, (Bint/€")

and since H ét,*_C(U K,L) ®z, Q, is a finite-dimensional Q,-vector space, by using
the canonical almost isomorphism (3.2.6]) just established, we see that £" acts with

almost zero kernel on H i(X K prokét, L @5 BEL ). Therefore, all the connecting
» ,

morphisms in the long exact sequence associated with the short exact sequence
0 Leog Biix 5L ®z Bifx = L@g (B x/¢") — 0 over Xk proket (see
Lemma [3.2.3)) are almost zero, and we obtain a canonical isomorphism

~

(3216) HZ (XK,prokéta I/L: ®Zp :;?,X) /gr — Hl (XK,prokéta ]i ®Zp (BTAE,X/gT))

(Again, see Remark ) It follows that (3.2.6) is compatible with the filtrations,
and its combination with (3.2.16) induces the desired isomorphism (3.2.7). O

3.3. Period sheaves ng"“ and BS.
Definition 3.3.1. For ? =), +, b, or b+, let 6;0’? = ker(@;‘z — @;2 )
© 6N

Definition 3.3.2. Let

*-C,+ . +,0 +,0
BdR’X = ker(BdR’X(@O) — BdR,Xfl))

and

o 1%} 17}
dR,X = ker(Bdeg)) - BdR,Xg))
(see Lemma [2.5.6). We shall omit the subscripts “X” when the context is clear.

Remark 3.3.3. By definition, we have B2 s = BIRX; and we have BYjg &

dR,X
X {0)
*-C, b 117 o To*-Co *-c,+
Bir x [E] =~ Bir'x ®BIR Bar over X prokst. Moreover, we could have defined B}y

as a derived limit as in 1' below (with L= 2,, there), without reference to the
boundary stratification.

The goal of this subsection is to prove the following generalization of [DLLZb
Lem. 3.6.1]:
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Proposition 3.3.4. For each i > 0, we have a canonical Gal(k/k)-equivariant
isomorphism

(3.3.5) H, (Ux,L) ®z, Biz = H'(Xk prokét, L 2z, Bink):

compatible with filtrations on both sides, and also (by taking gr’) a canonical Gal(k/k)-
equivariant isomorphism

(3~3-6> et *= c(UK, ) ®Z K= Hz(XK prokét ]L ®Z OXK pmkct)

Lemma 3.3.7. Over Xk prokét, we have a canonical Gal(k/k)-equivariant isomor-

phism

(3.3.8) Ly Biwk = Rlim(L ey (B /),

(with vanishing higher limits) and a canonical Gal(k/k)-equivariant ezact complex

T *-C,+ T +,0

0—>JL®Z Bir x —>]L®Z Bdegﬂo)

— e %L@Z IB%IR‘?Xa

1 (a)

which is strictly compatible with the filtrations defined by multiplication by powers

of &, and induces, for each r € Z, a canonical Gal(k/k)-equivariant isomorphism

(3.3.10) e Loy BiS x) 2 Loy o' (BiSx) 2 Loy O . (1)

and a canonical Gal(k/k)-equivariant exact complex

(3.3.9) -

— L dR,XQ, AR

)

(33.11) O—>IL®Z OXK - —>IL®Z OX(O)Kmket
o *)]L@Z OX — - %L@Z OXa —

(1), K,prokét (a),K,prokét

Proof. Since Lis a local system, by forming the tensor product of the short exact
ut, X2, (which is
almost exact except in degree 0, by Lemmam, we obtain a short exact sequence
& ) ™ )

inf, X9, = L®g, Bmef'> - L®g, (B'fXa /&) —
0, inducing an almost long exact sequence Wlth only three nonzero terms in the

beglnmng 0— ]L®Z IBmf X - L®Z IBmf X - ]L®Z (Bmf X/fr) —-0—- ShOWIHg

sequence 0 — Bing —> Bint — Bing/§" — 0 with the complex ]L®Z IB

of complexes 0 — L ®3, B2

that we have a canonical isomorphism (]L ®g BLE K)/E S L ®z, (BE?, /€ (cf
Lemma[3.2.3) and a canonical Gal(k/k)-equivariant exact complex

0 Log (Bifx/€) » Loy, Bl xp /€)

(3.3.12) ~ ) ) R ) )
— L& (Binf,X(81>/§ )= = Loy (Binf,xfa)/f ) =

When r = 1, this gives the exact complex (3.3.11)), because Eiif,xf’a) /€ = AX,S .

(Alternatively, we can obtain the exact complex (3.3.11) more directly from the
exact complex ) More generally, let U be any log perfectoid affinoid object
in Xprokét Xk which we may assume to trivialize IE, because such objects form a
basis, by Prop. 5.3.12]. By induction on r, by the exactness of (3.3.12),
by Thm. 5.4.3], and by downward induction on a using the finiteness of
|I*-¢|, we see that is exact when evaluated on U, and so that Lemma
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applies, from which we obtain that R lim (L @z, (Bif x/€")) = 0, for all j >0,
and that the canonical Gal(k/k)-equivariant complex
0— @(L ®z, Bt x/€) = L ®g, Bar,x+o

(3.3.13) ©

L B to—--—>Le, B 40—
Zp DR, X Zp DR, X

is exact. Since L is a local system, by Definition we obtain an exact sequence

~ ., -~ ,0 ™ ,0
(3.3.14) 0—L ®3, BZ}%} — L ®z, B:R,X(BO) — L ®z, BIR,X(BU

as in the first few terms of (3.3.9). Hence, we obtain both (3.3.8) and (3.3.9)
by comparing (3.3.13)) and (3.3.14f), which are strictly compatible with filtrations

because (3.3.13]) and (3.3.14) are, by their very constructions above. Since

T +,0 ~T s O°
gr' (L ®Zp IBgdli,X(aa)) =L ®Z,, OX(aa),K,prokét (a)

by Lemma [2:5.7] for all a > 0; and since
D o Arc A er(T e A Do B
L ®Zp XK’prOkét - ker(]L ®Zp OX?O),K,prokét - L ®ZP OX(al),K,prokét ’
by Definition we also obtain (3.3.10) and (3.3.11]), as desired. O
Proof of Proposition [3.34] Since H, , (U, L) ®z, Q, is a finite Q,-module (see
Lemma , and since BQ'R = @T(Binf/fT), by Proposition we obtain
Hiy (U, L) @z, Big = ((Higue(Uk, L) ®2, Qp) ®q, Bint) @, Big

= RUm (H' (X g proket, L 7 Bisf x) @5, (Bt /€7))
= Rlim H' (X proke, L @5 (Blgf x /€7))

(with vanishing higher limits), which are compatible with the filtrations defined
by multiplication by powers of £&. Thus, the proposition follows from Lemma
3.3.7) and the standard isomorphism Rlim_ RT (X proket L ®z, (Bff x /€)=

RT (XK proket, Rlim (HAJ ®z, B x/ €7))), as desired. O
3.4. Period sheaves OBE‘RC:fgg and OBE—FE,Iog’ and Poincaré lemma.
Definition 3.4.1. Let

*-C,+ o +,0 +,0
OBdR’log’X = ker(OBdR’log,X(ao) — OBdR’logx

);

*-C L 15] o .
OBR 1og,x = ker(OBdR,log,XgJ) - OBdR,log,Xg))7

8
(1)

ar *-C,+ L T +,0 T +,0
Fil" OB} 10 x = ker(Fil OBdR’IOgX(@O) — Fil OBdR’logx(@l)),
for r > 0;
ar *-C L ar o ar o .
Fil" OB3R 10g, x = ker(Fil OBdR,log,X(%) — Fil OBdR’log’Xg)),
for r € Z; and

*-C .0 *-C ~ 9 o
OCisz.x = 81 (OBl 10g.x) =ker(OC,, xo = OCjg, xo ).

(See Lemmam The isomorphism above is justified by Corollary [2.5.15])
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Corollary 3.4.2. The morphisms in Lemma [2.5.6] induce an ezact complex

*-C,+ +,0
0= OBiRlog.x — OBdR,log,X?O)

+,0 +,0
- OBdRJog,X(al) - - O]EdR,log,X(aa> -

(3.4.3)

strictly compatible with the filtrations. Moreover, by forming the tensor product of
|D with the finite locally free Ox-module Ql)‘gg”, we obtain an exact complex of
log de Rham complezes (cf. [DLLZD, Cor. 2.4.2])

*-C,+ log,e +,0 log,e
0= OBjR 10 x ®ox ™7 — OBdR,log,xg) ®oy Ny

(3.4.4)

+,0 log,e . +,0 log,e .
— OBdR,log,X(al) ®ox 2" = — O]B%dR’l%X(Ba) ®oy Q" —

+,0

15}
dR,log,X(a)

replaced with OB?R’IOgVX&) , for all a > 0. Consequently, we have an exact complex

strictly compatible with the filtrations. The above statements hold with OB

- ) o 1¢]

(3.4.5)  0—0Cg x — O(Clog,X?O) — (’)(CI%X?U = O(Clog,X&) — -
Proof. By Lemma and [DLLZDb, Prop. 2.3.15], over each log affinoid perfectoid
object X as in Lemma we have compatible isomorphisms as in (2.5.11)) which
Bar, x| 5[[y1, - -, yn]]-equivariantly identify the pullback of (3.4.3)) with the complex

-C,+ +,0
0— O]le:(;log,XbN( - ]BdR,X(aO) ‘)?[[yla s ,yn]]
(3.4.6) o o
%BdR’X(@ngHyl,...,ynH — ... %IBdR’X?)&[[yl,...,ynH — .,

+,0
BdR,X(aa

generated by (£, y1,...,yn). Consequently, by Definition the complex (3.4.6
is strictly compatible with filtrations, and is exact because the complex (3.3.9
(with L = Z,) is. This verifies the assertions for OB » - By similarly using

dR,log,X(Q)
[DLLZD, Cor. 2.3.17], the assertions for OIB%gR’l ) and O(CI*C;;X also follow. [

where the filtration on each | ¢lly1,- .., ynl] is given by powers of the ideal
)

og,X(aa

We have the following variant of the Poincaré lemma:

Proposition 3.4.7. We have the following convenient facts over X g prokst:

(1) The ezact complex in [DLLZD, Cor. 2.4.2(1)] induces an exact complex
0-Le; By Lo OBRL, «
v o= *-C, log,1
(3.4.8) = (L g OB, x) Qox Ox°
v o )
> (L g OBjiitex) ®ox ORF7 = -

(2) The above statement holds with [DLLZbl Cor. 2.4.2(1)] replaced with [DLLZDb
Cor. 2.4.2(2)], and with By and OBy, x replaced with By y and
OB:{P?JO& ., respectively.
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(3) As in [DLLZDL Cor. 2.4.2(3)], for each r € Z, the subcomplex
0 — Fil"(L @5 B x) = Fil'(L ®z, OBYS 105, x)
Y Fil"" YL ®z, OBR 1og,x) ®0x Qg?g’l
S FI(L Dz, OBAK 1og,x) ®0x Q52 —

of the complex for BYS x and OIBC*{Pf’lOg’X is also ezxact.
(4) For each r € Z, the quotient complex

0 — gr'(L ®z, Bir x) — gr' (L ®z, OBIR 10g,x)
v 1 }
- grr 1(L’ ®2p OBEP?,IOg,X) ®ox Ql)?&l
V4 . = -
> g (L @y OB 1og,.x) ®0x Q7

of the previous complex is exact, and can be Gal(k/k)-equivariantly identi-
fied with the complex

0L ®7, O%°(r) —>(]IA4 ®g, O (1))

log
(]L ®Z O(Clog X( 1)) Rox Ql)o(g’l
(]L ®Z O(Clog X( 2)) ®0X Ql}tz'g’Z —

Proof. Let R® denote the complex (3 , which we would like to show to be exact.
Since L is a local system, by formlng 1ts tensor product with the exact complex
(2.5.14)) in Corollary [2.5.13] we obtain an exact complex

0 Loy B, —Le, OB

dR, X2, dR,log, X2,

v +,0 log,1 +,0 log,2 o
—>IL®Z OIEBdRI% X7, ®ox Oy —>]L®Z OIB%deOg X2, ®ox Q" — ,

which we denote by R( for each a > 0; and we obtain a canonical exact complex

a)’
of complexes

(3.4.9) 0—=>R* =Ry >Ry =~ =Ry =+,

by Lemma and Corollary Since (3.4.9) contains only finitely many
nonzero terms, we can break it into finitely many short exact sequences of complexes

by taking kernels and cokernels, and argue by taking the associated long exact
sequences of cohomology and by downward induction that the complex R*® is exact
when all the other complexes R, are. This shows that the complex in
is exact, as desired. The remaining assertions then follow from this, from the
strict compatibility with filtrations in Corollary and from the corresponding
assertions in [DLLZD, Cor. 2.4.2]. O

3.5. Comparison of cohomology. For simplicity, we shall omit the subscripts
“X” from the period sheaves. As in [DLLZbl Sec. 3], let g : Xproket — Xan
and p' : Xprokét IXk X.an denote the canonical morphisms of sites. Recall that

RHiog(L) = Ryl (L85 OBdr og), Hiog (L) = g1°(RH10g (L)) = Ryl (L5 OCiog),
and DdR,log(L> = K« (]L ®Zp OBdRJOg)'
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Definition 3.5.1. Let
RHfsE(L) = ker (RMiog (L) = @ser (RHiog (L)[3,))

and
Dt 10g (1) = ker ( Darjog (1) = @jer+< (Dariog (L)[D,) ).

which are equipped with the induced log connections and filtrations, where “|p,”
and “|p,” denote pullbacks (as coherent sheaves) to D; and Dj, respectively, and
where the superscripts “0” denote the maximal quotient sheaves on which the
residue endomorphisms act nilpotently (cf. [DLLZD| (3.4.2)]), with induced quo-
tient filtrations. For simplicity, by pushforward, we shall abusively consider such
sheaves as coherent sheaves on the ambient spaces X and X. Accordingly, let

Hlog( ) =gr (RHlog( ))
which is equipped with a canonically induced log Higgs field.

Remark 3.5.2. While the eigenvalues of the residues of RHiog(IL) along (the irre-
ducible components of) D are all in [0, 1), the eigenvalues of the residues of RH ;¢ (IL)
along D*¢ and D*™ are in (0,1] and [0, 1), respectively; and the analogous state-
ment is true for Dyg,log(IL) and D 1, (L). By definition, we always have the canon-
ical inclusion RHiog(LL)(—=D*¢) — RHGG(L) (resp. Hiog(L)(—D*¢) — Higg(L),

resp. Dar,log (L) (—D*°) < DR 1,4(L)), which is an isomorphism when the residues
of RHiog(L) (resp. RHiog(L), resp. Dar,iog(LL)) along irreducible components of
D*¢ are all nilpotent. (By [DLLZbl Thm. 3.2.12], such a nilpotence holds when
Lq, has unipotent geometric monodromy along all irreducible components of D**°.)

Lemma 3.5.3. The canonical morphisms of log de Rham complexes

(3.5.4) DRlog (RHIOg (L) (*D*_C)) - DRIOg (RHlog( ))
and
(3.5.5) DRiog (Dar og (L)(—D*°)) = DRiog (D 10 (L)),

which are strictly compatible with the filtrations by construction, are quasi-isomorphisms.
Hence, the log Higgs complex

(3.5.6) Higgs o (Hiog (L) (= D)) — Higgs g (Hios (L))
is also a quasi-isomorphism.

Proof. By definition of RHj;;(IL), the residues induce automorphisms of the pull-
back of (RHS(L))/(RHiog(IL)(—D*)) to Dy, for all j € I**°. Hence, is
a quasi-isomorphism, by the same argument as in the proof of [EV92, Lem. 2.10];
and so is by taking gr®. Similarly, is also a quasi-isomorphism. [

Proposition 3.5.7. The canonical morphisms Ry, (L ®7, OBER 1og) = RHiog (L),
R/A(IE@Z OCtsg) = Hiog(LL), and g (IE(X)Z OB 1og) = Dar,log (L) factor through
canonical isomorphisms Ry, (L ®s OBgR log) = RHg(L), Ry.(L ®z, OCjse) = =5

Hive(L), and (L ®3, OBR log) 5 DA 1og (L), respectively.
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Proof. Tt suffices to establish the assertion for ’Hf‘o‘g(]L), after which the assertions

for RHjoq (L) and D}y ., (L) follow. Since the assertions are étale local in nature,

we may suppose as in [DLLZD, Sec. 3.3] that X = Spa(R, RT) is an affinoid log
adic space over k, equipped with a strictly étale morphism

X — D" =Spa(k(Th, ..., T), k™ (T1, ..., T))

(with P = Z%, and = 0 there and) with D*° — X given by the preim-
age of {T1---T,, = 0} — D", so that we have a log perfectoid affinoid covering
X — X as defined there such that X k — Xk is a Galois pro-Kummer étale
covering with Galois group I'geom = (i(l))" For each m > 1, let us write
Xkm = Spa(RK,m,R}m) = X xpp, Df,,, and denote by (EKQO,]TB},OO) the
p-adic completion of ligﬂm(RK,m, ka), so that (”)\(XK) = §K7w. For each subset
Jof {1,...,r}, let Rk, denote the quotient of Rk ,, by the ideal generated by
{T};};es, and let R}f K.m denote the integral closure in R x m of the image of R}’m.
Note that the nilpotent elements in R; K.m are necessarily p-divisible. Therefore,
if we denote by (EJ,K,DO, EIK,oo) the p—aAdic completion of liglm(liugm, R}:Km),
then vze ha\ie a can(A)nical isomorphism RKOO/(Tj"’);\eJ)SEQ>0 = Rj Kk o0, and we
have O?(?(XK) = Rj K., as in Lemma where X9 C D**° is defined by
{T; = 0}jes (with its log structure pulled back from X). When m = 1, we shall
drop the subscripts “m” in the above notation.

Let £ = L ®z, O and £*° = L ®z, O*¢, so that (L ®3, OCiog)lz, =
Llg, Wi, ... W] and (Ley OCkd)|g, = L[, [Wi, ..., W], by Lemmal2.5.8
and [DLLZD, Cor. 2.3.17]. Let Los := L£(Xg) and L%° := £*¢(Xf). For each
J AL ... r} let Ly = L ®z, (5%9 and Ljo = EJ()A(:K). Then L, is a finite

projective EK,m—module, and Ljo = Lo QF,. EJ,K, for all j. By evaluating the

exact complexes (3.3.11) and (3.4.5) on X, and by [DLLZal Thm. 5.4.3], we obtain
an exact complex

0— L;C[Wl,...,Wn] — Loo[W17~-~7Wn] — GB\J\:I LJ,OO[Wl,...,W7J
— @|J|:2LJ,OO[W1,...,W7L] — s = @\J\:T»LJ,OO[WLH-;Wn] —0

(3.5.8)

respecting the variables W1, ..., W,,. By Corollary Lemma and [DLLZDb,
Prop. 3.3.3 and Lem. 3.3.15],

H'(Xproket o0 L @5, OC}, o) 2= H' (Dgeoms Luoo Wi, -, W)

is zero, when ¢ > 0; and is canonically isomorphic to a finite projective Ry /(T}) e .-
module L(sz ), when ¢ = 0, whose formation is compatible with pullbacks under
rational localizations and finite étale morphisms, by [DLLZb, Lem. 3.3.16]. Con-

cretely, in the notation of [DLLZDbL Sec. 3.3], there exists some model L,,,(Xk) of
1

Lo over R, , for some mg > 1, such that L., (X“?’K) = L, (XK)/(TJ-’"0 )jes is

a good model of Lj ., for each J, and the Rx /(T});cs-submodule L(X§7K) is the

maximal K-subspace of Ly, (X? &) on which T'geom acts unipotently. Let

(3.5.9) L(Xg)* =ker(L(Xk) = @521 L(X9 k).
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Since each L,,,(Xk) is finite projective and hence flat over R .n,, by usual
arguments (cf. the proof of [HLTTI16, Lem. 2.3]), we have an exact complex

1 1 1

0= (" T ) Ling (Xk) = Ling(Xi) = ®1s1=1 (Limo (Xr0)/ (T )je1)

1

— ®).71=2 (Lmo (XK)/(TJ-ﬁ )jes) = - = @ gj=r (Lmo(Xx) /(T )jes) = 0,

where J in the above direct sums runs over subsets of {1,...,r}. By taking the
maximal K-subspaces on which I'geom acts unipotently (cf. [DLLZD, Rem. 3.3.14]),
we obtain an exact complex

0 — L(Xg)"® = L(Xk) = ®y=1 L(XT k)
— D j)=2 L(szK) =2 D)= L(X?K) —0
Now, by the exactness of (3.5.8)), we have a spectral sequence
EPY = H(Tgeoms ©171=a Lo [Wh, - -, W) = HO (Cgeom, LS W, ..., Wa)).

(3.5.10)

By the above discussions, the E; page is concentrated on the terms EY 9, Hence,
the spectral sequence degenerates on the Es page, and by the exactness of (3.5.10]),

H'(Xprokét x,0 L ®3, OC58) = H (Tgeom, LW, -, W)

log

is zero, when ¢ > 0; and is canonically isomorphic to L(Xx)*¢, when ¢ = 0, whose
formation is compatible with pullbacks under rational localizations or finite étale
morphisms. Thus, by comparing Definition and (3.5.9) using [DLLZD, Rem.

3.4.14], we obtain Ry, (L ®3, OCig) = Hisg (L), as desired. O

Lemma 3.5.11. The canonical morphism

(3.5.12) D3 1og (L) ®k Bar — RHjog (L)

induced by [DLLZD (3.4.19)] is injective and strictly compatible with the filtrations
on both sides. That is, the induced morphism
(3.5.13) 81" (D3F 1og(L) @k Bar) — gt” (RH5g (L))

is injective, for each r. If L|y is a de Rham Z,-local system on U, then both
(3-5.12) and (3.5.13) are isomorphisms, and gr D3 1, (L) is a vector bundle of rank

I“k@p (L) .

Proof. These follow from [DLLZD, Lem. 3.4.18, and Cor. 3.4.21 and 3.4.22], and
from Proposition [3.5.7 and its proof. O

Lemma 3.5.14. Suppose that L|y is a de Rham Z,-local system on Ug. For
each i > 0, we have a canonical Gal(k/k)-equivariant isomorphism

(3.5.15) Hig .o U, RH(L)) = Hig oo (Uan, Dar (L)) @k Bar,
which induces (by taking gr°) a canonical Gal(k/k)-equivariant isomorphism
(3.5.16) Hipiggs o (Uktans H(L)) = @y (Hﬁfdgc,*_c (Uan, Dar(LL)) @k K (—a))

Proof. These follow from Proposition|3.5.7} Lemmas|3.5.3|and [3.5.11] and the same
arguments as in the proofs of [DLLZD, Lem. 3.6.3 and 3.6.4]. O

We are ready to complete the following:
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Proof of Theorem [3.1.10, By applying Ry, to the exact sequences in Lemma
and by the projection formula, Lemma [3.5.3) and Proposition we can re-
place the targets of the isomorphisms in Proposition with HéR7*_C (Z/{, R’H(]L))
and Hﬁiggs,*-c (Uk,an, H(L)), respectively, and obtain the canonical isomorphisms
(3.1.11)) and (3.1.12). Consequently, by Lemma we also obtain the canonical
isomorphisms (3.1.13) and . Finally, these isomorphisms imply that

dimg (Hig o (Uan, Dar(L))) = Y dimg (Hjjo e o o (Uan, Dar(L))),
a+b=1

and hence the spectral sequence (|3.1.15]) degenerates on the E; page, as desired. [

In the remainder of this subsection, let us provide some criteria for cohomology
with different partial compact support conditions to be isomorphic to each other.

Lemma 3.5.17. Let Igtmm denote the subset of I consisting of j € I such that the

eigenvalues of the residue of RHiog (L) along D; are all in QN (0, 1) (i.e., nonzero).
Let E = Zje[ c;D;, where cj € Z, be a divisor satisfying the following condition:

(1) If j € If.on, then there is no condition on c;.

(2) If j € I — I o, then c¢j < 0.

(8) If j € "™ — If 1, then ¢; > 0.
Let us write E = EY —E~, where E+ := Zjelgeom,cjzo chj+Zj€I*.m,]greom ¢;D;
and E~ = _Zjelgeom,c,-@ ¢;D; — Zjel*-cflgeom ¢;D; are both effective divisors.

Then the canonical morphisms
(3.5.18) DRiog ((RH10g(IL)) (—D*°)) = DRiog ((RH10g (L)) (—D*° 4+ ET))
and
(3.5.19)  DRiog ((RHiog(IL))(—D** + E)) — DRiog((RHiog(L))(—~D*° + E*))
are quasi-isomorphisms, which induce a canonical isomorphism

Hii e (U RH(L)) = HH (X, DRio (RHiog(L))(~D" + ).

Proof. By the same argument as in the proof of [EV92] Lem. 2.7], for any ¢ € Z,
the eigenvalues of the residue of (RHiog(IL))(cD;) along D; are the corresponding
eigenvalues of RH o (IL) minus c. Since the eigenvalues of the residues of RHoq (L)
are all in Q N [0,1), the canonical morphism (resp. (3.5.19)) is a quasi-
isomorphism, by the same argument as in the proof of [EV92] Properties 2.9 a)]
(resp. [EV92, Properties 2.9 b)]), because none of the eigenvalues of the residues of

(R’Hlog(L))(chj) are in Z>1 (resp. Z<p), by the choice of ET (resp. E™). O
Corollary 3.5.20. Let I ., be as in Lemma |3.5.17 Suppose
(3.5.21) -1t ,crcecreull,,,cl

Then, for each i >0, we have a canonical Gal(k/k)-equivariant isomorphism
(3522) HcilR,*-c (U,RH(L)) = HciiR,o—c (U,RH(L)),
which induces (by taking gr°) a canonical Gal(k/k)-equivariant isomorphism

(3523) HIi-Iiggs,*-c (UK,arn H(L)) = HIZ;Iiggs,o-c (UK,ana H(]L)) .
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Since K is a field extension of Qp, by Theorem [3.1.10} for Lg, := L ®z, Q,, we
also obtain a canonical Gal(k/k)-equivariant isomorphism

(3'5-24) Hét,*—c<UK’ LQP) = Hét,o—c(UK’ ]LQp)'

Proof. Since I*™® — It = I1°° — I and I** U I = I°°U I, we may
assume that 1°°¢ = [*°—] geom C I*°, in which case there are compatible canonical
morphisms from the cohomology with compact support condition defined by *-c to
that defined by o-c, and apply Lemma and Theorem [3.1.10 O

Lemma 3.5.25. Let I;ith denote the subset of I consisting of j € I such that the
eigenvalues of the residue of Dyr 10g(L) along D; are all in QN (0, 1) (i.e., nonzero).

Let E =% ..; ¢;Dj, where c; € Z, be a divisor satisfying the following conditions:

(1) If j € I;_ritw then there is no condition on c;.
(2) If j € I*° — I}, then c; < 0.

jeI

; - +
(3) If j € I*™¢ = I ..., then c; > 0.
i — Bt _F— + . D D
Let us write E = E¥ —E~, where B := 37, 50 ¢ Dj+3 e pone_pt - ¢;D;
and B~ = —Zjel;t}“cj<0 c;Dj — Zjef*'C*I:rm, c;jD; are both effective divisors.

Then the canonical morphisms
(3526)  DRiog((Dartog(L)) (=D*)) = DRiog((Dar,jog (L)) (=D*° + ET))
and
(3.5.27) DRlog((DdR,log(]L))(—D*'C + E)) — DRlOg((DdRJOg (]L)) (=D + E+))
are quasi-isomorphisms, which induce a canonical isomorphism

Hig ve(Uan, Dar(L)) = H'(Xan, DRiog ((Ddr,1og (L)) (—D* + E))).
Proof. As in the proof of Lemma these follow from the same arguments as

in the proofs of [EV92, Lem. 2.7 and Properties 2.9]. O
Corollary 3.5.28. Let I;rrith be as in Lemma . Suppose

(3.5.29) e —rht cIccrcurt,, cI

Then, for each i > 0, we have a canonical isomorphism

(3.5.30) Hg s (Uan, Dar(L)) = Hg o (Uan, Dar(L)),

which induces, for each a € Z, (by taking gr*) a canonical isomorphism

(3.5.31) Hiodgeon-c (Uan: Dar(L)) = Hijool o (Usn, Dar(L)).

Proof. Since I*° — I;mh = J]°° — I;Lrith and [*° U I. , = 1°°U Iati L, We may
assume that 1€ =1"°—-1T ;ith, and apply Lemma and Theorem [3.1.10f [

4. TRACE MORPHISMS AND POINCARE DUALITY

In this section, we shall retain the setting of Section (except in the review
in Section , but assume moreover that X is of pure dimension d. The goal of
this section is to construct the trace morphisms for de Rham and étale cohomology
with compact support in degree 2d, and show that they are compatible with trace
morphisms of lower dimensions via Gysin morphisms, and with each other under
the de Rham comparison isomorphism in Theorem [3.1.10)
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Throughout the section, we shall denote by LL a Z,-local system on Xy¢. Recall
that, by [DLLZa, Cor. 6.3.4], any Z,-local system on U uniquely extends over
Xxet by pushforward. Thus, our results for . on Xy are applicable to all Z,-local
systems on Uy, despite the notation.

4.1. Serre duality for coherent cohomology. In this subsection, we review the
trace morphism and Serre duality for the coherent cohomology of proper smooth
rigid analytic varieties, and record some of their basic properties.

Let Y be a rigid analytic variety (regarded as an adic space) over k. For any
closed subset Z C Y, let Hy(Yan, - ) denote the usual sheaf cohomology with sup-
port in Z; i.e., the i-th derived functor of

F = Tz (Yan, F) := ker (T (Yan, F) = T((Y = Z)an, F))-

Then there is a canonical morphism H% (Yap, -) — H*(Yan, - ), for each i > 0. Let
y be a classical point (defined by a finite extension of k) and F a coherent sheaf
on Y. Let (A, m, M) be the my-adic completion of (Oy,,,m,, F,), where m, is the
maximal ideal of Oy,. Then A is a noetherian complete local ring with residue
field k(y) = A/m a finite extension of k, and M is a finitely generated A-module.
Let H (M) denote the usual algebraic local cohomology (see, e.g., [BS98, Ch. 1]).

Lemma 4.1.1. For each ¢ > 0, there is a canonical morphism
(4.1.2) Hy (M) = Hiyy (Yan, F).

Proof. We may replace Y with an open affinoid subspace U = Spa(R, R°) contain-
ing y, because H}Ly} (Yon, F) = H};y}(U&m7 Flu). Let N := T'(Yan, F), which is a finite
R-module because F is coherent. Let V' := Spec(R), which is a noetherian scheme,
and let 7 : (Y,0y) — (V,Oy) denote the morphism of ringed spaces. Note that
7~ (m(y)) = {y}, and that Oy is flat over 7~*(Oy). Moreover, for the coherent
Oy-module N associated with the above N, we have F = Oy ®ﬂ71(ov)7r_1(]\~f). By
[BS98 Thm. 1.3.8 and 4.3.2], the local cohomology for a finitely generated module
over a noetherian local ring is torsion, and hence its formation is compatible with
the formation of completions (with respect to powers of the maximal ideal, as usual).
Hence, by [Har67, Thm. 2.8 and its proof], we have H: (M) = H}Lﬁ(y)}(V, N), and
the desired morphism is induced by the composition of canonical morphisms
H;W(y)}(v, N) — Hiy} (Yan, 7T_1(N)) — sz} (Yan, F). ([l

By composing 1} with the canonical morphism ny}(Yan, F) = H (Yan, F),
we obtain a canonical morphism
(4.1.3) H. (M) — H\(Y,F).

Now let Y be smooth of pure dimension d, with F = Q¢ the sheaf of top-degree
differentials on Y. Then the A-module M can be identified with the top-degree
continuous Kahler differentials fo‘ /k of A (with its m-adic topology) over k.

Construction 4.1.4. Let us construct a canonical residue morphism
(4.1.5) resy : Hi(ﬂi/k) — k.

By choosing local coordinates of Y near k(y), we have compatible isomorphisms
A= k(y)|[Ty,...,Tq]] and QdA/k = k(y)[[Th, ..., Ta)]dTy A --- ANdTy. Accordingly,
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we have (cf. [Har67, Sec. 4, Ex. 3])
H (9% ),) = {Z agTdTy A -+ NdTy: o= (ag,...,aq) € L, ay € k(y)}

(where the sum is finite), and the desired morphism is the composition of
the (multiple) residue morphism ZaGZio acTdTy N - NdTy — a(_q,... 1) with
the usual trace morphism k(y) — k, which (by the chain rule) is independent of the
choice of coordinates. (When d = 0, our convention is that Hﬁ(foVk) > k(y) and
that the residue morphism reduces to the identity morphism on k(y).)

Theorem 4.1.6 (Serre duality). Let Y be a proper smooth rigid analytic variety
over k of pure dimension d. Then there is a unique morphism

(4.1.7) teon : Hd(Yanvggl/) - k?

whose pre-composition with , for any classical point y, gives the residue mor-
phism . We call teon the trace morphism. Moreover, by pre-composition
with the cup product pairing, it induces the usual Serre duality for coherent coho-
mology; i.e., a perfect pairing

(4.1.8) H (Yan, F*) x Ext( ' (F*,Q5) = k,

for each bounded complex F* of coherent Oy -modules and each i € Z. As a special
case, we have a perfect pairing

(4.1.9) H!(Yan, F*) x H7 (Yo, F*V ®0, QF) = k,

for each bounded complex F* of finite locally free Oy -modules and each i € Z, where
F*V denotes the complex whose j-th term is (f*j)v, for each j € Z. In particular,
if Y is geometrically connected, then (4.1.7)) is an isomorphism.

Proof. When F* is concentrated in degree zero, the isomorphism follows
from [Bey97, Thm. 5.1.1 and 5.1.2, Def. 4.2.4, Lem. 4.2.9, and the explicit descrip-
tions in Sec. 1.2, 1.3, and 2.1]. (An earlier construction of the Serre duality for
proper rigid analytic varieties is in [vdP92], but the more explicit descriptions in
[Bey97] allow us to more directly relate the trace morphism there to the residue
morphism here.) Therefore, by using [Har66, Ch. I, Prop. 7.1 (Lemma
on Way-Out Functors)] as usual, we also have the isomorphism for each
bounded complex F*® of coherent Oy-modules, which specializes to the isomor-
phism when F* is a bounded complex of finite locally free Oy-modules. [

Let us record the following properties of the trace morphism ¢, for later use.

Lemma 4.1.10. Assume that'Y is proper smooth over k, of pure dimension d.

(1) Let f :'Y' — Y be a morphism of proper smooth rigid analytic varieties
which induces an isomorphism f~Y(U) — U for some open dense rigid
analytic subvariety U of Y, then the canonical morphism H(Yy,, Q%) —
HAY]! QL)) induced by the canonical morphism f*(Q%) — Q. is an
isomorphism compatible with the trace morphisms of Y and Y’ as in .

(2) Let v : Z — Y be a smooth diwvisor of Y. Then the canonical morphism

HY Y Z,,, Q‘é‘l) — HY(Yan, Q%) induced by the adjunction exact sequence
(4.1.11) 0—Qf = 0L(2Z) = () =0
is compatible with the trace morphisms of Y and Z as in (4.1.7)).
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Proof. The assertion follows from Theorem [4.1.6] Lemma |4.1.1} and Construc-
tion because we can determine the trace morphisms as in (4.1.7)) for Y and Y’

by choosing sufficiently many y € f~1(U) = U, and because the residue morphisms
as in for Y and Y’ at y can be canonically identified with each other.

As for the assertion , for each point y € Z C Y, we may choose local co-
ordinates such that, if (A4, m) denotes the completion of (Oy,,m,) as in the be-
ginning of this subsection, and if (B,n) denotes the corresponding completion of
(Oz,y,m,O0z,), then we have compatible isomorphisms A = k(y)[[T1, ..., Ty]] and
B = k(y)[[T1,...,Tq-1]], with maximal ideals m and n generated by T1,...,Ty

and by 11, ...,T4_1, respectively, together with the canonical short exact sequence
0= 9%, = 792% % — QdBf/}c — 0 induced by (4.1.11)), which is given by

0= k@W)[[Ty, ..., TaldTy A+ NdTq = k(@)[[Ty, ..., TalldTy A+ N 42
- k(y)[[Th s 7Td—1]] dly N --- /\de—l —0

in explicit coordinates. Then the connecting morphism Htﬁlfl(Qi{/}c) — HL(Q4 /k)

in the associated long exact sequence is (by an explicit calculation) given by

{ZaaTadTl Ao NdTy_y o= (0., aa1) € 2451, aq € k(y)}
= {ZaaT"‘dTl/\---/\de:a:(al,...,ad) € 7%, aq Gk(y)}:foA‘iT%,

which is compatible with the trace morphisms, by the construction based on (mul-
tiple) residue morphisms in Construction m (]

By applying the above results to our setting in the beginning of Section [ we
obtain a trace morphism

(4.1.12) teon : H(Xan, %) — k,
as in (4.1.7), which induces by base change from k to K a trace morphism
(4113) tcoh,K : Hd(XK,anvgng) — K7

which in turn induces the Serre duality (as in Theorem[4.1.6]) for bounded complexes
of coherent Ox , -modules.

4.2. Poincaré duality for de Rham cohomology.

Theorem 4.2.1. For each Zy-local system IL on Xye;, the composition of the canon-
ical cup product pairing with (4.1.13)) induces a perfect pairing

(4.2.2) Hitiggsxec Ukcan, H(L)) x HEL | (Ukan, H(LY(d))) — K.

Higgs,*-nc

Proof. By [LZ17, Thm. 3.8(i)], RH(L"(d)) = (R’H(L)(—d))v as filtered vector
bundles on Y. By the definition of RHjeg(-), we have a canonical morphism
(RH10g(L)(—d)) ®0, RHMiog(LY(d)) = RHiog(Qp) = Ox. Since RHiog(LL)(—d)
and RH g (LY (d)) are filtered vector bundles on X extending RH(L|y)(—d) and
R”H((MU)V(d)), respectively, we obtain a canonical injective morphism

(4.2.3) RHiog (LY (d)) = (RHiog(L)(—d)) "

of vector bundles on X', which is compatible with the connections with log poles
on both sides, whose cokernel is supported on the boundary D. Moreover, the
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filtration on RHeg (LY (d)) is induced by the one on RH (LY (d)) via the canonical
injective morphism RHiog (LY (d)) — 7. (RH(LY(d))), where 5 : U — X denotes the
canonical open immersion; and the analogous assertions are true for RHioq(L)(—d)
and (RHog(IL)(—d)) . Therefore, is strictly compatible with the filtrations
on both sides, and induces a canonical morphism

(412:4)  DRigg (RHiog (LY (@) (=D*™)) — Diog(RMuog(L) () (D)

between the associated log de Rham complexes over X', which is also strictly com-
patible with the filtrations on both sides.

By comparing the residues of the two sides of (4.2.4)) using [DLLZb, Thm. 3.2.3(2)
and Prop. 3.4.17], and by the same argument as in the proof of [EV92, Lem. 2.10],
we may factor (4.2.4) as a composition of a series of inclusions € — &’ of complexes
each of whose cokernel is a two-term complex (in some degrees a and a + 1)

0= Qp (log(D — Dj)lp;) ®o,, F = Qp, (log(D — Dj)|p,) ®o,, F — 0,
where F is the maximal subsheaf of ((RHiog(IL)(—d))" (—D*™)) |p, , for some j, on
which the eigenvalues of residues differ from that of (RHie (LY (d))(—D*™))|p,
and hence belong to QN (—1,0) (resp. QN (0, 1)) when j € I*™° (resp. j € I*™°); and
where the morphism between the two terms is induced by (—1)® times the residue
morphism and hence is an isomorphism. Thus, (4.2.4) is a quasi-isomorphism,
which induces by taking cohomology and taking gr' a canonical isomorphism

—i ~ —i v
(4.2.5) Hi e (Ukan, LY (d))) = HYLL o (Ukan, H(L(=d)) 7).

By using the canonical isomorphisms Q'98* = (Ql)‘zg’dfa)v ®ox (2% (D)(d)[-d]),

for all 0 < a < d, induced by Q% = ngg’d(—D) and the exterior algebra structure

(a2

of QP& = A®Q'%% we have a canonical isomorphism Higgs)g (Hiog (L) (—D*€))

(Higgs)og ((Hiog (L) (—d)) v (,D*-nc>))v ® (Q%,. (d)[—d]) over Xf. Hence, we obtain
the desired perfect pairing (4.2.2)) by combining (4.2.5)) with the duality for bounded
complexes of finite locally free Ox, -modules (as in Theorem [4.1.6). g

Since Q¢ = Ql)gg’d(—D) (which we already used in the above proof) and therefore

(4.2.6) H3E (Unn, Ou(d)) 2 HES o o (Uan, O (d)) = HY(Xan, %)

Hodge,c
(by Theorem (3.1.10} with L = Z,(d) and with Oy (d) denoting the same underlying
Op-module with the trivial Hodge filtration shifted by d), we obtain the following:

Theorem 4.2.7. The trace morphism teon as in (4.1.12)) induces compatible trace
morphisms

(4.2.8) tar : Hig o (Uan, Ou(d)) — k
and
(4.2.9) tHodze : Hijoage.c(Uan, Ou(d)) = k.

When d = 0 and X is geometrically connected (i.e., a k-point), the trace morphisms
tar : H{g (Xan, Ox) = k and taodge : Hﬁ’(?dge(Xan, Ox) — k are just the canonical
isomorphisms given by HgR(Xan,(’)X) = Hg’c?dge(Xan,(’)X) ~ HY(Xan, Ox) = k.
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For each Zy-local system L on Xyg, such that L|y is de Rham, the composition
of the cup product pairing with (4.2.8)) induces a perfect pairing

(4210) H(iiR,*-c (Uanﬂ DdR(]L)) X Hildij*i—llc(Uan’ DdR (Lv(d))) — k’
which is compatible (by taking graded pieces) with the perfect pairing
(4.2.11) HE o v e(Uany Dar (L)) x Hip 0270 (U, Dar (LY(d))) — k

Hodge,x-c Hodge,*-nc

defined by the composition of the cup product pairings with (4.2.9)).

Proof. The first two assertions are clear. As for the third one, suppose that L|y
is de Rham. Since K is a field extension of k, we obtain the desired perfect
pairing , by Theorem and comparison isomorphisms as in .
Since the formation of cup products is compatible with the formation of the FEj
pages of the Hodge-de Rham spectral sequences for HéR’*_C (Uan,DdR(IL)) and

Hgﬁjf_nc(Uan, Dar (]Lv(d))), and since these spectral sequences degenerate on the
F4 pages by Theorem |3.1.10] we also obtain the desired perfect pairing (4.2.10). O

Lemma 4.2.12. The formation of tar in Theorem [£:2.7] is compatible with restric-
tions to open rigid analytic subvarieties of the form U — Xg = X — D — X for
some closed rigid analytic subvarieties Xo of X. In particular, it is also compatible
with any morphism between proper smooth rigid analytic varieties that is an iso-
morphism over some open dense rigid analytic subvariety (e.g., any blowup, as in
[Con06l, Def. 4.1.1], at closed rigid analytic subvarieties).

Proof. By using resolution of singularities (as in [BM97]), there exists a proper
morphism 7 : X’ — X such that (7=}(D U XO))red (with its canonical reduced
closed subspace structure) is a simple normal crossings divisor, and such that 7
is an isomorphism over U’ = U — Xy. Thus, by , it suffices to note that,
by Lemma , the canonical morphism HY(X,,, Q%) — HY(X! , Q%) is

compatible with the trace morphisms for coherent cohomology as in (4.1.12)). O

4.3. Excision and Gysin isomorphisms. In order to deduce the Poincaré du-
ality for (rational) étale cohomology from the Poincaré duality for de Rham and
Higgs cohomology, we shall establish in this subsection some compatibilities between
the comparison isomorphisms and the excision and Gysin isomorphisms defined by
complements of smooth divisors.

Recall that U = X — D with D = Ujer D;. Let us begin with the excision
isomorphisms between top-degree cohomology.

Lemma 4.3.1. Let Z = Dj for some jo € I, that D' := Ujer—(joy Dj, and that
U :=X-D', sothat U =U"—W for some smooth closed rigid analytic subvariety
W =UNZ of U. Let 3y : U = U’ and ww : W — U’ denote the canonical
open immersions and closed immersions (of underlying adic spaces, without log
structures), respectively. Then we have the excision short exact sequence

(4.3.2) 0 = Juet,t (Zp(d)) = Zp(d) = wet,s (Zp(d)) — 0
over U }Cét’ which induces an isomorphism
(4.3.3) HE Uk, Zp(d) = HE (Ui, Zp(d)).

By composing such isomorphisms, we have He?tffC(UK7 Zp(d)) 5 a2 (XK7 Zp(d)).
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Proof. This is because H}, (Wi, Zy(d)) = 0 for i > 2dim(W) = 2d — 2 in the
long exact sequence associated with (4.3.2), by Theorem m (which implies the
analogous vanishing result for Z,-local systems, by standard arguments). ([l

Proposition 4.3.4. With the same setting as in Lemma [£3.1), the isomorphism
(4.3.3) extends to a commutative diagram

(4.3.5) 2

ét,c

(U Zy{d) s HE (Ui, 2,(8)

H2

ét,c

(Uk, Zp(d)) @z, Bar —— HZ' (Uk, Zyp(d)) ®z, Bar

ét,c

H%, (Uan, Ou(d)) @k Bar —— H3g (UL, Our(d)) @k Bar

H3 (U, O(d)) ———— H3 (U, Our(d)
Here the fourth row (at the bottom) is the excision isomorphism induced by the long
exact sequence associated with the excision short exact sequence
0 — Q% (log D)(—=D) — Q% (log D")(—=D")
= 17,an, (2% (log(D'|2)) (=D’|z)) — 0

for de Rham complexes over X,y,, where 1z : Z — X denotes the canonical closed
immersion of adic spaces, and where D'|z := D' N Z = Ujer_;o) (Dj N Z), which
is an isomorphism because

Hag «(Wan, Ow (d)) 2= H' (Zan, Q% (log(D'|2)) (d)) = 0

fori>2dim(W) = 2dim(Z) = 2d — 2. Moreover, this isomorphism at the bottom
row is compatible with the trace morphisms, by Lemma [£.2.12]

(4.3.6)

Proof. Let X’ denote the log adic space with the same underlying space as X, but
with the log structure induced by the normal crossings divisor D’ as in [DLLZD]
Ex. 2.1.2]. Let Z be equipped with the log structure induced by D’|z, so that we
have a canonical closed immersion of log adic spaces i, : Z — X’. For simplicity,
we shall still write ¢z an : Zan — Xan instead of z’Zan : Zan — Xy Lete: X — X/
denote the canonical morphism. Let yjy : U — X, 5, : U = X/, ju : U’ — X/,
and jw : W — Z denote the canonical open immersions. Then the short exact
sequence induces (and is induced by) a short exact sequence

(4.3.7) 0 = Jp s (Zp(d)) = gu7xee s (Zp(d)) = 1y 10w JWiket, (Zp(d)) — O
over X k,kéw which induces 1] and the first row of 1} and we have
(4.3.8) T (Zp(d)) = Rewes s Juke,t (Zp(d)) = exee,» Juket, (Zp(d)),

by the definitions of these sheaves.
Let w € K°* be such that w? = p. By Lemma and [DLLZal Prop. 5.1.7],
the morphism

J/U,kéc,! ((Z/Pm)(d)) — JU’ Kkét,! ((Z/Pm)(d))
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(induced by (4.3.7))) is the pushforward of the morphism
(4.3.9) v S ke (Z/0™)(d) = v gu e (Z/p™)(d))
over X s, Which admits compatible morphisms to a morphism
(v Soaara (/™)) ) @3, (Aine o/ (0™ [07])
= (vx! g0 e (/™) (D)) @, (Ainexr/ (07 [27)

!/
over XK,prokét’

(0% Soan (@/6™)(@D)) @5, (Aint,x/ (0", ["])
5 (Reproket,s 05" gusens (Z/0™)(@) ) @z, (Aintx/ (0™, [="))
:> Reprokét,* (U;(l JU két,! ((Z/Pm)(d)) ®Zp (Ainf,X/(pma [wn})))

over X}(’prokét, by induction on m and n based on [DLLZa, Lem. 4.5.8]. Therefore,
by Lemmas [3.2.13] and and by taking derived limits and inverting p, we see
that the derived limit of (4.3.9) also admits compatible morphisms to a morphism

for each m > 1 and each n > 1, and we have

(4.3.10) Reproxet, (Zo(d) @5, BES x) = Zy(d) @z BE x,

where BiR x and B3 y, are as in Deﬁnition with I*° = Tand I°° = I—{jo},
respectively. Then induces the second row of ([£.3.5)), by Proposition
which is an isomorphism because the first row is.

Let p'y : Xprokéty,, — Xan and Wy o X — X!, = X,., denote the
canonical morphisms of sites, so that R,u’X’* = RM/X/,* Reprokst,«- By Proposition
3.4.7|and the projection formula, by applying R,ll,/X/7* to , and by Proposition
3.5.7 and Remark [3.5.2] we obtain the canonical morphism

(4.3.11) (2% (log D)(—D)(d)) @1 Bar — (2% (log D')(—D’')(d))&rBar

of complexes over X. Note that, by construction, this is part of the pullback of
(4.3.6)). Therefore, this (4.3.11]) in turn induces the third row of , which can
be compatibly identified with the second row by the comparison isomorphisms in
Theorem and the whole diagram is commutative, with the fourth
row given by the excision isomorphism for de Rham cohomology, as desired. ]

!
prokét X

Next, let us consider the Gysin isomorphisms between top-degree cohomology.

Remark 4.3.12. Suppose that I = {jo} is a singleton, so that D = Dj;, is an
irreducible smooth divisor by assumption. Suppose moreover that X and D are
connected, in which case X and D are both geometrically connected. Let 5y : U —
X and 1p : D — X denote the canonical open and closed immersions (of underlying
adic spaces, without log structures). Consider the canonical distinguished triangle

(4.3.13) T<0 Ryu e« (Zp(d)) — R]U,ét,*(Zp(d)) — T>1 Rju st (Zp(d)) i%

over X 4. By canonically identifying the two truncations in (4.3.13)) using [DLLZa
Lem. 4.6.2], we obtain a canonical distinguished triangle

(4.3.14) Zp(d) = Ryvston (Zo(d)) = 1 6t,0 (Zo(d — 1)) [<1] T .
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Note that, because of the proof of [DLLZal Lem. 4.6.2], this is compatible (via
[Hub96l Prop. 2.1.4 and Thm. 3.8.1]) with the algebraic construction in [Fal02]
Sec. 4]. This is also consistent with the results in [Hub96, Sec. 3.9].

Lemma 4.3.15. With the same setting as in Remark |4.3.12 the distinguished
triangle (4.3.14)) induces the Gysin isomorphism

(4.3.16) H'7?(Di, Qud — 1)) = HE (X k., Qp(d)).

Proof. Since X and D are geometrically connected, we have H%(X,,, Ox) = k and
H°(Dan, Op) = k. Moreover, we have a long exact sequence

0 — H°(Xan,Ox(—D)) = H°(Xan, Ox) = H*(Dan,Op) = -+ ,

which forces H° (Xan,OX(—D)) = 0 because H*(Xan, Ox) — H°(Dan, Op) maps
1 to 1 by definition. This shows that HSR(Xan, Ox) 2k, HgR(Dan, Op) = k, and
H SR,C(Uam Oy) = 0. By using the perfect Poincaré duality pairing , we ob-
tain H2E (Xan, Ox(d)) 2 k, Hin ?(Dan,Op(d — 1)) = k, and H3& (Uan, Oy (d)) =
0. By Theorem we obtain Héztd (XK, Qp(d)) = Qp, Hétd*2 Dy, Qp(d— 1)) o~
Qyp, and Hgtd(UK, Qp(d)) = 0. Now the desired isomorphism 1) is just a con-

necting morphism in the long exact sequence associated with (4.3.14]) (and with p
inverted), which is an isomorphism by comparison of dimensions over Q,,. O

Proposition 4.3.17. With the same setting as in Remark and Lemma
4.3.15), the isomorphism (4.3.16) extends to a commutative diagram

(4'3~18) HéQtd72 (DK%Qp(d - 1)) —_— Hé2td (XKAQp(d))
Hi'"*(Dx, Qp(d — 1)) ®q, Bar —— Hg' (X, Qy(d)) ®q, Bar

H3"2(Dan, Op(d — 1)) ®) Bar —— H32 (Xan, Ox(d)) @k Bar

H24-2(D,, Op(d— 1)) —— = H (Xon, Ox(d))

Here the fourth row (at the bottom) is the Gysin isomorphism induced by the long
exact sequence associated with the adjunction eract sequence

(4.3.19) 0 — Q% (d) = Q% (log D)(d) = 1p,an« (2 (d — 1)) [-1] = 0

for de Rham complexes over X, which is an isomorphism, as explained in the proof
of Lemma because H3E (Xan, Ox (d)) =k, Hyt ?(Dan, Op(d—1)) = k, and
Hgffi’c (Uan, Ou(d)) = H?**(Xan, Q% (log D)(d)) = 0. Moreover, this isomorphism
at the bottom row is compatible with the trace morphisms.

Proof. Let X* denote the log adic space with the same underlying space as X, but
equipped with the trivial log structure. On the contrary, let D? := X?jo}’ as in
Section and let D be equipped with the trivial log structure. Let jy : U — X,



DE RHAM COMPARISON AND POINCARE DUALITY FOR RIGID VARIETIES 39

U —=X*19:D% - X, ap:D— X%, e: X = X%, ¢%: D% — D denote the
canonical morphisms of log adic spaces. Since
Rp5 et s (Zp(d)) =2 Rever v Ryv e« (Zp(d)) =2 Reyen  (Zp(d))
and
LD ,két, Rf%,két,*(zp(d - 1)) = Ree,« Z%,két,* (Zp(d - 1))7

by [DLLZal Lem. 4.5.4, Thm. 4.6.1, and Cor. 6.3.4], (4.3.14]) induces (and is induced
by) a distinguished triangle

(4.3.20) Zp(d) = Reyei o (Zp(d)) = 10 xérn (Zp(d — 1)) [-1] 5

over X, = Xk, which induces (4.3.16) and the first row of (4.3.18). Let

w € K’ be such that w! = p. By Prop. 5.1.7], the distinguished triangle
(Z/p™)(d) — Rewses (Z/p™)(d)) = o0 ene (Z/p™)(d = 1)) [-1] 5

(induced by ) is the pushforward of the distinguished triangle

v ((Z/p™)(d)) = vk Rewses (Z/p™)(d))

— U)_(lx 1D st ((Z/p™)(d —1))[-1] =

over Xy . ie» Which admits a morphism to the distinguished triangle
(o3 (@/9™)(@)) @5, (Asme /(™ [2"])
= (v3k Beree (2/p™) (D) ) @3, (Bins /(™ [")
= (Vx5 e (Z/p™)(d = D)[-1]) @, (A /0™, [2"]) 5

over X I?pmké“ for each m > 1 and each n > 1. Therefore, by induction on m

and n based on [DLLZal Lem. 4.5.8 and 4.5.7], and by taking derived limits and
inverting p, we see that the derived limit of (4.3.21]) also admits a morphism to a
distinguished triangle

(ip(d)) ®z Bar,xx = Reprokst,x ((ip(d)) ®z, BdR,X) —
1D, prokét,* ((Zp(d - 1)) [—1] ®’Z\p BdR,D) JL}

over Xz s Then (4.3.22) induces the second row of (4.3.18)), by Proposition

(or [Schl3l Thm. 8.4]), which is an isomorphism because the first row is.

Let u'y : Nprokét ) x,e —+ Xan and T X;rokét/xié — XX = X,, denote the
canonical morphisms of sites, so that R//X’* = Ry« , Reprokst,«- By Proposition
and the projection formula, by applying Ry’ , to (4.3.22), and by Proposi-
tion and Remark [3.5.2] we obtain a distinguished triangle

(2% (d))®1Bar — (% (log D)(d))@x Bar —

(lD,an,* (Q.D(d - 1)) [71])®deR -L>1

(4.3.21)

(4.3.22)

(4.3.23)

of complexes over X* = X, and we have

(ZD,an,*(Q;J(d - 1))[_1])®deR S ipa ((Q},(d - 1))®deR) 1]
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This induces the third row of (4.3.18), which can be compatibly identified
with the second row by the comparison isomorphisms in Theorem (or rather
[Sch13l Thm. 8.4]).

We claim that is canonically isomorphic to the pullback of . It
is clear that the first morphism in is the canonical one and hence coincides
with the pullback of the first morphism in . As for the second morphism,
it suffices to show that it induces the pullback to D of the canonical morphism
5 (2% (log D)(d)) — Q%(d — 1)[—1] induced by adjunction. Once this is known,
the third morphism must be zero, and the claim would follow.

We shall first show this étale locally, by adapting the arguments in [DLLZD| Sec.
3.3]. Suppose that X = Spa(R, R") is affinoid and admits a strictly étale morphism

X 5 E:=T""'xD:=Spa(k(T, ..., T T, kH(TEL . T T,)),

n—1»
and that the underlying adic space D is the pullback of {T,, = 0}, in which case
D = Spa(ﬁ,ﬁﬂ with R := R/(T,). Recall that K = k. Let us take finite
extensions ky, of k in k such that &, contains all m-th roots of unity in k, for each
m > 1, and such that k = U,, k,,,. For each m > 1, let

1 1 1 11
By i= T X Dy, = Spalkn (Ty 7. T T ) kb (T T T ),
and let X,, := X xg E,, and Df’n := D% xg E,,,. Then X = l'glm X — Xk
and D? := lglm D2 — D% are Galois pro-Kummer étale covers with Galois group
Lgeom = (Z(1))", and we have D? = X xx D?. Similarly, we have a strictly
étale morphism D — T"~! (compatible with the above D? — E = T"~! x D),
with Kummer étale covers T?% ' — T"~! inducing Dy, := X Xpn—1 D271 and
with a Galois pro-Kummer étale cover D := @m D,, — Dk with Galois group
Taeom = (Z(1))"1. As explained in [DLLZal, Sec. 6.1], X and D are log affinoid

perfectoid objects in Xproket and Dyproket, respectively. By [DLLZal, Lem. 5.3.7],

19}

D? is also a log affinoid perfectoid object of Dy ¢ By construction, the induced

morphism D? — D is Galois with Galois group
I'? := ker(Tgeom — Tgeom) = Z(1).

Therefore, the higher direct images along the canonical morphisms of sites v :
XPTOkét/XK - Xét? V/Da : Dgrokét/D?( - D(?t = Dét’ eS%K,prokét : Dgrokét/D?{ -
Dprokét /Dxe? and v : Dproket /D Dg;, when computed using the Cech coho-
mology of the pro-Kummer étale covers X9 - Xk, D? - D?(, D? - EK, and
D — Dg, correspond to the group cohomology of I'geom; I'gcom, 'Y and fgeom,
respectively. Thus, as in the proof of Proposition by the same arguments as
in the proofs of [LZ17, Thm. 2.1(iii)] and [DLLZb| Prop. 3.3.3], we may compute
5 (2% (log D)(d)) by working with v/},, instead of V.

Let v; € I'geom be topological generators such that ; Tﬁ = Q‘Z{J"Tﬁ, as in
[DLLZD, (3.3.6)], for all 4,5’ = 1,...,n, so that [geom (resp. '?) is topologically
generated by v1,...,7n—1 (resp. 7,). These depend on some compatible choices
of roots of unity, as in [DLLZbl (2.3.1)], which are equivalent to the choice of an
isomorphism Z(1) = Z, and we will use the same choices to trivialize Z(1) and
Z,(1) in the following. Moreover, as in [DLLZb] (2.3.2)], the chosen Z,(1) = Z,
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canonically defines an element ¢ € Bgr. By sending the preimage of 1 € Z, to
t € Bqr, we obtain a canonical Gal(k/k)-equivariant morphism Z,(1) — Bagr of
Z,-modules, which is (by definition) independent of the choice of Z,(1) = Z,.

As usual, given any topological I'? x Gal(k/k)-module L, with the above choices,
its group cohomology with respect to the subgroup I'? = Z(l) can be computed
by the two-term complex L "5 L(=1). Consequently, (Re% . s (ip(d)))(f))
can be represented by the complex Z,(d) st Z,(d —1), where ~,, — 1 acts by zero

and hence the complex just splits (cf. [DLLZbl Lem. 4.5.4]); and the pullback of
the second morphism in (4.3.20)) corresponds to the canonical morphism

(4.3.24) Zp(d) > Zy(d — 1)] = Z,(d — 1)[~1]
given by the identity morphisms on Z,(d — 1)[—1]. By the explicit descriptions in

[DLLZE, Sec. 2.3], the canonical morphism Bag,p (D) — Byg po (D?) is an isomor-
phism, and 7, — 1 acts by zero on IB%?R D@(Da). Let us introduce

(4.3.25) B := Bar,p(D) = Byg, po (D?),

for simplicity of notation. Therefore, in a way consistent with (4.3.24]) and (4.3.25)),
the pullback of the second morphism of (4.3.22)) induces the canonical morphism

(4.3.26) B(d) > B(d—1)] —» B(d - 1)[-1]

given by the identity morphism on B(d — 1)[—1]. Again, for simplicity of nota-
tion, let 2° := Q% (D) and Q'°&* ;= ng%"(D), where (D) denotes the evaluation
on the whole affinoid D. Then Q! = @?;f(ﬁde) and QP! ~ Q! ¢ (R dT%),
and we have Q°8°* = Q°* @ (Q°[-1] A %) By Lemma @ and Corollary
and by [DLLZD, Cor. 2.3.17], the values of the log de Rham complexes for
OByR,10g,0 and OByg 1og, po 0N D and INDB, respectively, are given by the complexes
B{Wy,...,W,_1}®@rQ* and B{W,..., W, }®r Q°e* where the differentials are
defined by mapping W; to t_l%, for each j, as in [DLLZb| (2.4.4)]. Since ~,, acts
trivially on B{W1y,...,W,_1} and v, W,, = W,, — 1 (cf. the proof of [DLLZb| Lem.
3.4.3]), we have H (T'?, B{W7,...,W,}) = 0, for all i > 0; and the I'"%-invariants
in B{Wy,...,W,} ®g Q°¢:* form the filtered subcomplex

B{W17 . '7W7L—1} ®R Qlogy. = B{Wla . '7Wn—1} ®R (Q. D (Q.[il} A %))

By explicit computations as in the proof of [DLLZbl Cor. 2.4.2], we have following:

(1) The canonical morphism of filtered complexes
B(d) — (B{W4,...,W,_1})(d) ®r Q°,

mapping B(d) to B(d) ® 1 in degree zero via the identity morphism on
B(d), is a filtered quasi-isomorphism.
(2) The canonical morphism of filtered complexes

B(d) % B(d - 1)] =((B{Wi,...,W,_1})(d) ®r 2°)
@ (B{Wi,...,Wa1})(d — 1) ®p (2°[-1] A 2))

mapping the first term B(d) to B(d) ®1 in degree zero and the second term
B(d — 1) to B(d — 1) ® f= in degree one via the identity morphisms on
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B(d) and B(d—1), respectively, is a filtered quasi-isomorphism. (Note that

the filtration on the second term of [B(d) RN B(d — 1)] is shifted by one.)
(3) Via the above two quasi-isomorphisms, the morphism (4.3.26) is quasi-
isomorphic to the morphism

((B{Wl, ey Wn—l})(d) ®R Q.)
& (B{W1,.... Waa D)(d = 1) @p (Q°[-1] A £2))
= (B{W1,...,Wu_1})(d — 1) ® Q°[—1]

dTy
Ty *

defined by extracting the factor

By taking fgeom—invariants, which computes the direct images along D — Dy
(with vanishing higher direct images, as explained in [DLLZb, Sec. 3.3]), and
by canonically identifying Tate twists of Bgr-modules using the above morphism
Z,(1) — Bqg, the last morphism induces the canonical morphism

(€2°2*(d)) &k Bar — (2°(d — 1)[1]) x Bar

extracting the factor dT%, which is the same morphism defined by the pullback to
D of the adjunction morphism «},(Q% (log D)(d)) — Q%,(d — 1)[-1]. (Note that
Tate twists on log de Rham complexes are only shifts of Hodge filtrations.) Since
all the above identifications are canonical, they globalize and the claim follows.
Thus, the whole diagram is commutative, with the fourth row given
by the Gysin isomorphism for de Rham cohomology, which is compatible with the
trace morphisms (for de Rham cohomology) by Lemma , as desired. O

4.4. Poincaré duality for étale cohomology.

Theorem 4.4.1. There exists a unique morphism

(4.4.2) tee : HE o (Uk, Qp(d)) — Qp,
which we shall call the trace morphism, satisfying the following requirements:

(1) The formation of ts is compatible with restrictions to open rigid analytic
subvarieties of the form U — Z = X — D — Z for some closed rigid ana-
lytic subvarieties Z of X. (Such open rigid analytic subvarieties are allowed
in our setting by resolution of singularities, as in [BMI7], by the indepen-
dence of the choice of compactifications in the definition of cohomology with
compact support, based on Lemmas and and on Remark )

(2) Suppose that Uk is connected. Then te and tqr are both isomorphisms,
and the comparison isomorphism

HE! Uk, Qp(d)) ®q, Bar = Hig (U, Ou(d)) ®k Bar

(see Theorem [3.1.10) maps (t;'(1)) ® 1 to (tza(1)) ® 1. Consequently,
the formation of te is compatible with the replacement of k with a finite
&1.3.18

extension in k and with the Gysin isomorphism in the top row of

(by Proposition because the formation of tqr is compatible with the
Gysin isomorphism in the bottom row of ); and te s the trivial
isomorphism HY (Ux,Q,) = Q, when d = dim(U) = dim(X) = 0.

Moreover, such a morphism (4.4.2)) satisfies the following properties:
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(8) By pre-composition with the canonical cup product pairing, te induces a
perfect pairing

(4.4.3) H, (U, Lg,) x HEL (U, Ly () = Qp,

ét,x-nc

for each Z,-local system L on Xye (even when L|y is not de Rham).

(4) When L|y is de Rham, we also have a commutative diagram
(4.4.4)

Hét,*—c(KK7LQp)

~

Hom(@p (Hzt(f:—lnc ((,{K7 L((\i)p (d)) ’ Qp)

Hi, Uk, Lg,) ®q, Bin ————— Homg, (HZ' 1. (Ux, LY (d)), Bar)

ét,x-nc

l l

Hg vc(Uan, Dar(Lg, ) @5 Bar —— Homy (H3g !\ (Uans Dar (L, (d))), Bar)

Hig o o (Uan, Dar(Lg,)) ———— Homy (H35 . (Uan, Dar (LY (), k)
in which the top (resp. bottom) two rows are induced by ts (resp. tar).

Proof. For our purpose, we may replace k with a finite extension over which the
connected components of X are geometrically connected, and replace X with its
geometric connected components. Then we may assume that X is geometrically
connected. (Then the trace morphism to be constructed will be isomorphisms.) We
may also assume that X contains a k-point Spa(k, kt) = S < X. Let us proceed
by induction on d = dim(U) = dim(X).

If d = 0, then Uk is a single K-point, and H§, .(Ux,Qp) = HE (Xk,Q,) has
a canonical element given by the identity section, which defines the trace isomor-
phism tg : Hgm(U x,Qp) = Qp. The same identity section induces the iden-
tity section of H°(Xk prokst, Bar), which is also induced by the identity section
of HSR(Xan,OX) &~ HY(X.,, Ox). Hence, tg satisfies the requirement (2). It is
straightforward that it also satisfies , , and .

If d > 0, we first construct a trace morphism tg : Hé%fC (UK,Qp(d)) — Qp
satisfying the requirement . By Lemma and Proposition we are
reduced to the case where U = X and D = (. Let Y denote the blowup of X along
the k-point S (cf. [Con06, Def. 4.1.1]), and let E denote the exceptional divisor.
Since S is a k-point, both Y and E are smooth and geometrically connected. (Since
Y is étale locally isomorphic to D} for some n, this can be seen by an explicit local
construction.) Then we have a commutative diagram of canonical morphisms

HE (X = 8k, Zy(d)) —— HZ' (Y — E) i, Zyy(d))

ét,c

HZ2( Xk, Zy(d)) ————— HZ (Y, Zy(d))

in which the two vertical morphisms are isomorphisms because HY, (S K, Zp(d)) and
H, (EK, Zp(d)) are zero for ¢ > 2d — 2, since both S and E are proper smooth of

€
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dimensions no greater than d — 1, forcing the bottom row in the diagram to be also
an isomorphism. Then we have a commutative diagram of canonical morphisms

(4.4.5) Héztd(XKva(d)) — Hgtd(YKva(d))

HE (XK, Qp(d)) ®q, Bar —— HZ (Y, Qp(d)) ®q, Bar
13 14

Hgld{(Xan7 OX(d)) QK BdR L> Hgld{ (Yarn OY(d)) S BdR

Hig (Xan, Ox (d)) ————— Hig (Yan, Oy (d))

in which the bottom row is an isomorphism by Lemma and in which the
middle square is commutative because both of the middle two rows are induced by
the canonical morphism

H*(X g prokeéts (Zp(d)) ®7, Bagr,x) — H* (YK prokét (Zp(d)) ®7, Bar,y)-

In order to construct t¢ : H, é?td (X K, Qp(d)) 5 Q, satisfying the requirement , it
suffices to show that (t;é(l)) ®1e Hg‘fi{ (Xan, Ox (d)) ® Bgr lies in the image of
H24(Xk,Qp(d)), so that we can define t3;'(1) to be the preimage of (¢35 (1)) ® 1.
(Note that this does not involve the choice of S, and the compatibility with the
replacement of k with a finite extension in & is clear.) By using the commutative
diagrams and , it suffices to note that, by the induction hypothesis,
the analogous assertion holds for (t;ﬁ(l)) ®1e Hgii{z (Ean, Op(d—- 1)) Qr Bar.-

Such a tg @ HZ( Xk, Qp(d)) 5 Q, satisfies the requirement because, in the
setting of Lemma we can choose to blowup at some k-point S of U’ C U
(which exists up to replacing k with a finite extension in k), so that we have canon-
ical isomorphisms HZ' (Uf,Qp(d)) = HE' (XK, Qy(d)) = HZ'.(Xi, Qp(d)) =
Hggc (Uj, Qp(d)) because they are all isomorphic to H;' ?(Ex,Qy(d — 1)) via
compatible canonical morphisms, and these canonical isomorphisms extend to a
commutative diagram (as in and ) involving also their de Rham
counterparts and their tensor products with Bgg.

Finally, let us verify the properties and . Since K is a field extension of Q,,
and since the duality pairings are defined by composition with cup product pair-
ings, which are compatible with Higgs comparison isomorphisms as in , the
desired perfect pairing for étale cohomology follows from the perfect pairing
for Higgs cohomology. When L|y is de Rham, again since the duality pair-
ings are defined by composition with cup product pairings, and since the de Rham
comparison isomorphisms are compatible with the Higgs ones by construction, we
have the desired commutative diagram , in which the middle square is com-
mutative because both of the middle two rows are induced by the same cup product
pairing Hi(XKypmkét, L ®2p IB%E'RC,X) ®Bun F2d—i (XK,prokét, (Lv(d)) ®Zp BE-]:I{])CX) N

24 (XKprokét, @(d)) ®z, BERX), where Big y is the analogue of BYy y when
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I is replaced with I. (See Definition Note that, since I = I*"°U I*™°, the

-C

multiplication morphism By y ®5 BiR% — Bar,x factors through B3y y.) O
: » : .
4.5. De Rham comparison for generalized interior cohomology.

Definition 4.5.1. For any 1°° C I*° C I, we consider the generalized interior

cohomology (cf. Definitions and
(4'5'2) Héit,*-cao-c(UKv ]L) = Im(Hét,*-c(UKv ]L) - Héit,o-c(UKv L))v

HélR,*-c%o—c (Uarn DdR(L))

(4.5.3) i i
=Im <HdR,*-c (Uana DdR(]L)) - HdR,o-c (Uana DdR(L))) )
and
HI(—lIggglfs,*—c%o—c (Uam DdR(]L))
(454) ai—a ai—a
=1Im (HH’odge,*—c (Uan’ DdR(L)) - HH’odge,o—c (Uan’ DdR(]L))) )

for all > 0 and a € Z. When I*° = I and I°° = (), we shall denote the objects
with subscripts “int” instead of “x-c — o-c¢”, and call them the interior cohomology.

Lemma 4.5.5. Suppose that [°°¢ C [*° C I. The Poincaré duality pairings

(4.5.6) H Uk, Lg,) x HE LUk, Ly (d) — Qp
and

(4.5.7) H o Uk, Lg,) x HE' ! (Uk, Ly (d) = Qp
induce the same pairing

(4.5.8) Hi (U, Lg,) x HE' ! (Uk, Ly (d)) = Q,

(which is defined because I*° U I°¢ = I under the condition 1°°¢ C I*°). Con-
sequently, if v..c € Hy , (Uk,Lg,) is mapped to xo.. € Hy , (Uk,Lq,), and if
Yone € H(?t‘f;ilc(UK,Lép (d)) is mapped to Yune € Hgt‘f:_ilc(UK,Lép (d)), then we
have

<x*—C) y*—nc> = <x*—07yo-nc> = <$o—c;yo-nc>-

The analogous assertion for the Poincaré duality pairings on the de Rham coho-
mology of Dar (L) and Dar (]LV (d)) 1s also true.

Proof. This is because the pairings (4.5.6)) and.( 4.5.7) are both compatible with the
cup product pairing Hétﬁ*_C(UK,LQp) X He2tdo_1nc (UK,L(éP (d)) — HéZt(fC(UK,Qp(d))

inducing (4.5.8). (The assertion for de Rham cohomology is similar.) O

Proposition 4.5.9. For any I°° C I*° C I, the Poincaré duality pairing (4.5.6)
(based on (4.4.3)) induces a canonical prefect pairing

(4.5.10) Hi yorvoeUr,Lo,) x HZ Uk, Ly, (d)) = Qp,

ét,o-nc—*-nc

which we also call the Poincaré duality pairing, by setting

(4.5.11) (z,y) = (T,y)
for x € Hét)*_cﬁo_C(UK,IL@p) and y € Hézt”f;’;m_)*_nc (UK,L(\ép(d)), if x is the image

of some T € Hét’*_C(UK,JLQp). When I*© =1 and I°¢ = 0, in which case I*™¢ = ()
and I°"° = 1, this defines the Poincaré duality pairing

(4.5.12) H i (Use, Lg,) x Hy' Uk, Ly, (d) — @,

ét,int
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for interior cohomology. This pairing (4.5.10) is well defined. When L|y is de
Rham, the analogous assertion for the Poincaré duality pairings on the de Rham
cohomology of Dar(L) and Dag (LY (d)) is also true.

Proof. To show that the pairing (4.5.10) is well defined, suppose z is lifted to

another element ¥’ € Hf, , .(Uk,Lq,). By definition, y is the image of some

ye HX (UK,]L(VDP (d)). Then we have (Z — Z',y) = (0,y) = 0, by Lemma

ét,o-nc

showing that we still have (Z,y) = (@', y).

To show that the pairing (4.5.10) is perfect, let {e1,...,e,} be any Q,-basis
of H} (Uk,Lq,), which can be extended to some Qp-basis {ey,...,es} of

ét,x-c—o-c
H ..Uk, Lq,). Let {f1,..., f} denote the dual Q,-basis of Hféf;im (Uk, Ly, (d))
under the perfect pairing (4.5.6). For each j = 1,...,s, let f; denote the image
of f; in Hgg:_;c(UK,L(\ép (d)) For each j = 1,...,r, let €; denote some element
of Hgt7*_C(UK,LQp) lifting e;. For each j = 7+ 1,...,s, if f; # 0, then there

exists some € in H}, , (Ug,Lg,), with image e in H} (Uk,Lg,), such that

ét,x-c ét,x-c—o-c

1 = (e, f;), by the perfectness of 1| But this contradicts (€, f;) = (e, fj> =0,
and hence f; = 0 for all j > r. If Y7 a;f; = 0 in HZ' (Uk, Ly, (d)), then

ét,%x-nc
@y = {€jos 2y i fi) = (€jo> 2y_yajfj) = 0, for all jo = 1,...,7. It follows
that {f1,..., fr} is a Qp-basis of H‘?g:m—»*-nc (UK,ILép (d)), which is dual to the

Qp-basis {eq,...,e,} of Hf , . . (Uk,Lg,) under the induced pairing (4.5.10), as
desired. (The assertion for de Rham cohomology is similar.) O

Lemma 4.5.13. Let (Fy,Fil}, ) and (Fa,Fil},) be two filtered vector spaces (over
some fized base field, which we shall omit), with a map Fy — F» compatible
with filtrations such that F3 := Im(Fy; — Fy) is finite-dimensional. Suppose that
dim(Im(grp, — grp,)) = dim(F3). Then Fil}, and Fily, are strictly compatible
in the sense that Im(Fily, — F3) and Fily, := Fily, N Fy coincide as filtrations on
Fs, and we have an induced isomorphism Im(grp, — grp,) = grp, -

Proof. For each a € Z, the map gry, = Fil}, /Filf™" — gry, = Fil}, /Filf fac-
tors through grg, = Fil%g/Fil%?l with image Im(Fil}, — Fg)/Fﬂ%—;l. Hence, the
assumption that dim(Im(grp, — grp,)) = dim(F3) = dim(grp,) implies the strict
compatibility Im(Fil}, — F3) = Fil}, and induces Im(grp, — grp,) = grp, . O

Theorem 4.5.14. When L|y is de Rham, the comparison isomorphisms in The-
orem [3.1.10] are compatible with the canonical morphisms induced by any inclusions
I°¢ C I*® C I, and hence with the comparison isomorphisms in [DLLZD, Thm.
3.2.7(3)] (corresponding to 1°°° = 0; cf. the notation in Definition [3.1.1), in the

sense that we have Gal(k/k)-equivariant commutative diagrams

(4'5'15) Hét,*—c(UK’ L) ®Zp BdR L) H(gR,*—c(Uaﬂ’ DdR(L)) Ok BdR

J |

Hét,o_c(UK, L) ®z, Bqr —— H(in,o_c(Uana Dar (L)) ® Bar
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and

(4516) Hét e C(UK7 ]L) ®Zp K L> @a—i—b:z (HH7odge *-C (Uana DdR(L)) Sk K(_a))

J J

et o- c(UK7 ) ®Zp K i} EBaer:i (Hglfdge,o-c (Uan’ DdR(L)) Rk K(_a))

of canonical morphisms, which are compatible with the Hodge-de Rham spectral se-
quences, for each integer i > 0. Hence, we have Gal(k/k)-equivariant isomorphisms

(4517)  Hi e yoo(Uk,L) @z, Bar = Hig y-cso-c(Uan, Dar(L)) ® Bar

and
(4.5.18)

Hét *-C—>0- C(UK’L) ®ZP K= Dato=i (HH(f)dge *-C—0- C(Uan’ DdR(]L)) Ok K(_a)>

which are compatible with the prefect Poincaré duality pairings on both sides. More-
over, the Hodge filtrations on HfiR,*_C (Uan, DdR(L)) and HflR’o_C(Uan, DdR(L)) are
strictly compatible in the sense (as in Lemma that they induce the same
filtration on HéR’*_C%O_C (Uan, DdR(]L)), which we shall still call the Hodge filtra-
tion, and we have a canonical graded isomorphism

(4.5.19) g Hig scsore(Uans Dar(L)) = @atimi Hijoe s-cyore (Uams Dar (L)),
(matching gr® HQR’*_CHO_C(U@H, DdR(]L)) with HY ¢ (Uan, DdR(IL))).

Hodge,*-c—o-c

Proof. We have the commutative diagram (4.5.15|) because, by Proposition
and the proof of Theorem [3.1.10] the morphism in both columns can be identified
with the morphism

Hi (XK,prokét7L ®Zp :ﬁ%) — Hi (XK,prokéta L ®ZP Bg}({)
induced by the canonical morphism IB%Q‘Pf — BgS (which exists by the very con-

struction of these sheaves in Definition . Similarly, we have the commutative
diagram (4.5.16)) because, also by Proposmonand the proof of Theorem|(3.1.10

the morphism in both columns can be identified with the morphism
Hl (XK prokét ]L ®Z OXK proket) - H (XK prokét ]L ®Z OXK pxoket)

induced by the canonical morphism OXK Drokét %f{ o Lhe commutative

diagrams (4.5.15) and (4.5.16]) are compatible Wlth the Hodge-de Rham spectral
sequences by Proposition |3.4.7||4), and the comparison isomorphisms (4.5.17) and

thus obtained are compatible with the Poincaré duality pairings on gener-
alized interior cohomology because they are induced by comparison isomorphisms
respecting the original Poincaré duality pairings. Since the Hodge-de Rham spec-
tral sequences for Hjp , . (Uans Dar (L)) and Hig o (Uan, Dar (L)) degenerate on

the E; pages by Theorem [3.1.10] and since (#.5.17) and (4.5.18) imply that

Z dlmk Hodgc *-C—0-C (Uam DdR(L>))
a-+b=1

= dim@p (Hét,*—c—m—c (UKv ]L)) = dimg (HZIR,*—c—m-c (Uan’ DdR(L))) ’
the last assertion of the proposition follows from Lemma [4.5.13 (]
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Corollary 4.5.20. Let Iamh be as in Lemma |3.5.25| and let IO‘C be as in (3.5.29).

Then we have a canonical isomorphism Hf , (Uk,Lq,) = H , . (Uk,Lg,), for
each i > 0 and each a € Z, which is compatible with (3.5.30)) and (3.5.31) wia the
comparison isomorphisms as in (3.1.13)) and (3.1.14)).

Proof. We may assume that 1°°¢ = [*¢ Iamh C I°, as in the proof of Corollary
Since Bgr is a field extension of @, and since we have compatible canonical
isomorphisms Hgt +(Uk, L) ®z, Bar = H ,(Uk, Lg,) ®q, Bar, for 7 = x-c and o-c,
this corollary follows from Theorem and Corollary O

5. COMPARISON THEOREMS FOR SMOOTH ALGEBRAIC VARIETIES

In this section, we let U denote a smooth algebraic variety over a p-adic field k.
Since char(k) = 0, by [Hir64D], there exists a smooth compactifi-
cation X of U such that the boundary D = X — U (with its reduced subscheme
structure) is a normal crossings divisor, and we may assume that the intersections
of the irreducible components of D are all smooth. We shall denote the analytifi-
cation of these schemes, viewed as adic spaces over Spa(k, Of), with superscripts
“an”, as usual. Then the analytifications of U, X, and D satisfy the same setup
as in Section and we shall inherit most of the notation from there, the main
difference being that objects and morphisms with no superscript “an” (resp. with
superscripts “an”) are the algebraic (resp. analytic) ones. For any I* C I, we
shall also consider D**® := Ujer+ D; and D*™° := Ujcr— 1+ D; (with their canonical
reduced closed subscheme structures), and the objects they define.

As in Sec. 4.1], for each Z,-local system L on U, we denote by L*"
its analytification on U2" as usual, and we write L™ := Tige (L) = Rypg, L (L*7)
(without introducing L), which is a Z,-local system on X{%. We also consider
T5:5 Rwec,ot,+ (L) (vesp. 5™ Ry3%, 40 *(Lan)) on Xg; (resp. XZ), and define

Hét *- c(UE7 L/pm) = Hz (Xk kewjket '(L/p ))
= H (XE,éw]gE,C! RJ*—c,ét,*(L/p )) HZ(U,: ect7 R]*—c,ét,*(]L/pm))

and
Hét,*—c(Uﬁv L):= I&H Hi—c(UE,ém L/p™)

(cf. Definitions and Lemmas and and Remark [2.4.4).

Lemma 5.1. There are canonical isomorphisms
(J:é:?! RJ*—C,ét,*(L))an = (@ J:é:?! RJ*—C,ét,*(L/pm))an
m

(52) 1# Jctc' " R]iflc,ét,*(Lan/p ) - ]:tC‘ " R]* -c,ét, *(Lan)

an

o).

két

= i R 550 (/o igeo) & Recae i @

For all i > 0, we have

ct*c(UkﬂL) M (Z)t*c(Uk’L/p)

m

NHét*c Eanv )g]gl et*cUanaLan/pm)

m

(5.3)
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(see Definition and Lemma |2.4.3), which can be identified with
H (XE7ét7]21_;?! R]*—c,ét,*(]L)) = @Hz (XE,ét’ ]gt?' RJ*—Qét,*(L/pm))

m

=]

= H (X 2™ Rl e (L) 2 M H (X0 9505™ Ryt a0 (L /p™))

A1

~ —an ~ 1 . —an
=~ H (Xarimt’j;ei (L |Uﬁé?’a")) = @Hz (Xk ket’jlte‘; " ((L /pm)|Uﬁé:’an))
m
(see Lemma|2.3.3). For any I°¢ C I*© C I, the isomorphisms in and (|5 . are
compatible with the canonical morphisms from the analogous ob]ects wzth subscripts
“” to those with subscripts “x~-c”; from those with subscripts “x-c¢” to those with
subscripts “o-c”; and from those with subscripts “o-c” to those without any of these

subscripts (cf. Remark |2.4.5)).

Proof. These are based on the various definitions and Lemmas [2.3.3]and 2.4.3] and
the compatible isomorphisms (]et i Rjs-c.et,«(L/p™ )) o ];C, RPN g (LA /p™)

and HI(UXS Ry e (L/p™)) = HL(UZ ™, Ry (L2 /p™)), for all m > 1,

k,ét’ k,ét

by [Hub96, Prop. 2.1.4, and Thm. 3.8.1 and 5.7.2]. O

Lemma 5.4. The usual algebraic trace morphism tqg : HﬁﬂC(U, OU(d)) — ks
compatible with the analytic trace morphism 3% : Hig (U2, Oyan(d)) — k de-

an ’

fined in Theorem via GAGA [Kop74]. Similarly, the usual algebraic trace
morphism tey : Hg' C(Uk,(@]g( )) — Q, is compatible with the analytic trace mor-

phism t3} - H2d (Ug‘ﬂ(@p( )) — Q, defined in Theorem under the canonical

ét,c
isomorphisms given by Lemma [5.1]

Proof. By Lemma Theorem [4.4.1)|1)), and the corresponding facts for al-

gebraic trace morphisms, up to replacmg k with a finite extension in k, we may
assume that Ux = Xk is connected. By the compatibility with Gysin isomor-
phisms in Proposition and Theorem , by the corresponding facts for
algebraic trace morphisms, and by considering smooth divisors defined by blow-
ing up k-points (which exists up to further replacing k with a finite extension in
k) as in the proof of Theorem we can proceed by induction and reduce to
the case where X is just a single K-point. In this case, the algebraic and ana-
lytic trace isomorphisms for de Rham cohomology are the canonical isomorphisms
HO(X,0x) = k and H°(X?", Oxan) = k, respectively, which are compatible via
the canonical morphism H°(X,0x) — HY(X* Oxan). Also, the algebraic and
analytic trace isomorphisms for étale cohomology are the canonical isomorphisms
HY (Xrk,Qp) 2 Q, and HY (X3, Q,) = Q,, respectively, which are compatible via
the canonical morphism Hg (Xk,Qp) — HY (X2, Q,), as desired. |

Theorem 5.5. Suppose that L is de Rham. Then we have canonical Gal(k/k)-
equivariant ﬁltered isomorphisms

(5.6) H, , (Up, L) @z, Bar = Hig .. (U, Di (L)) @ Bar

and

(5.7 HinaeolUp L) 2, F = Gasomi (Hitoage e (U DIFL) @1 F(—0)),
where

(58)  Hip e (U D)) 1= H' (X, Dl (D3 1 (1)) (=D")))
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and
(59) Hﬁodge,*-c (U7 Dgi?g{(l‘)) = Hl (X7 gr DRIO% ( (Dgll%,log(ﬂ‘)) (_D*_C)))

are abusively defined as in Definition (for the filtered log connection Dgllglog (L)
introduced in [DLLZD, Sec. 4.1]). Moreover, the Hodge-de Rham spectral sequence
for H§R7*_C (U, DZ{II%(L)), as in )3._1_.6|), degenerates on the Fy page, and are compat-
ible with the above comparison isomorphisms in the sense that induces
by taking grV.

Proof. These follow from Lemma Theorem and GAGA [Kop74]. |

Theorem 5.10. The comparison isomorphisms (5.6)) and are compatible with
the canonical morphisms induced by any inclusions 1°°¢ C I*° C I, and hence with
the comparison isomorphisms in [DLLZb, Thm. 1.1 and 4.1.4] (corresponding to
I°°¢ = (; cf. the notation in Definition , via the canonical morphisms among
them, and also via Poincaré duality. Consequently, we obtain Gal(k/k)-equivariant
filtered isomorphisms

(511) Hét,*—c—w—c(UE7 L) ®Zp BdR = HélR,*—c—m—c (U’ DZIF%(H")) Ok BdR
and
(5'12) Hét,*—cﬁo—c(UE’ L) ®Zp E = @aer:i (Hﬁ'lodge,*—c—)o—c (U7 DSE(L)) kK E<_a)) )

where each generalized interior cohomology is defined as the image of the corre-
sponding cohomology with partial compact support along D*° in the corresponding
cohomology with partial compact support along D°°, as before, which are compatible
with Poincaré duality. Moreover, the canonical morphism HéR,*_C(U, DEE(L)) —

Hfm’o_c (U, DZE(L)) is strictly compatible with the Hodge filtrations on both sides,
which induces a Hodge filtration on H} U, DZIR%(]L)) , together with a canon-
ical graded isomorphism
1 al ~ i al
gr HdR,*—CHO—C (Uv Ddl%(]l‘)) = Batb=i HHodge,*—cHo-c (Ua Dd}%(L)) .
When @ = I°° C I*™° = I, we obtain results for the usual interior cohomology, with

subscripts “int” replacing “k-c — o-c¢” in all of the above.

Proof. These follow from [Hub96, Prop. 2.1.4, and Thm. 3.8.1 and 5.7.2]; Lemmas
and Theorem [4.5.14f and GAGA [Ko6pT74]. |

6. COHOMOLOGY OF SHIMURA VARIETIES AND HODGE-TATE WEIGHTS

R,*—c—)o—c(

In this section, we will freely use the notation and definitions of [DLLZb Sec. 5].
Nevertheless, let us mention the following choices: We shall fix a Shimura datum
(G,X) and a neat open compact subgroup K C G(Ay), which define a Shimura
variety Shx = Shg (G, X) over the reflex field E = E(G, X). We shall also fix the

choices of an algebraic closure @p of Q, and an isomorphism ¢ : @p = C.

6.1. Coherent cohomology and dual BGG decompositions. The goal of this
subsection is to review the so-called dual BGG complexes introduced by Faltings
in [Fal83], and apply them to the de Rham and Hodge cohomology (with support
conditions) of automorphic vector bundles. (The abbreviation BGG refers to Bern-
stein, Gelfand, and Gelfand, because of their seminal work [BGGT75].) In particular,
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we shall obtain a refined version of the Hodge-Tate decomposition, whose terms
are given by the coherent cohomology of automorphic vector bundles.

Let us fix the choice of some py, as in [DLLZb (5.2.9)] which is induced by some
homomorphism Gm@ — G@, which we abusively denote by the same symbols. Let
P¢ denote the parabolic subgroup of Gf@ defined by the choice of uj (cf. [DLLZD,

Prop. 5.2.10]). Let M€ denote the Levi subgroup of P¢ given by the centralizer of the
image of puj,. As in the case of G, for any field F over Q, let us denote by Rep -(P€)
(resp. Repr(M€)) the category of finite-dimensional algebraic representations of P¢
(resp. M) over F. We shall also view the representations of M¢ as representations
of P¢ by pullback via the canonical homomorphism P¢ — M¢.

As explained in [Har85, Sec. 3] (or [LanI6l Sec. 2.2]), there is a tensor func-
tor assigning to each W € Rep@(Pc) a vector bundle ¢;n W on Shg ¢, which is
canonically isomorphic to gqgV when W 2 Vi for some V' € Rep@(Gc). We call
cohWe the automorphic vector bundle associated with Wc. Moreover, as explained
in [Har89, Sec. 4], this tensor functor canonically extends to a tensor functor assign-
ing to each W € Rep@(Pc) a vector bundle ¢, WE" on Sh'}?f(c, called the canonical
extension of .onW ¢, which is canonically isomorphic to qgVE" when We 22 V¢ for
some V' € Repg(G®). For W € Repg(M¢), this con W™ is canonical isomorphic to
the canonical extensions defined as in [Mum77, Main Thm. 3.1].

Consider D = Sh}?f«: — Shg ¢ (with its reduced subscheme structure), which is
a normal crossings divisor. We shall also write D = Ujecr D;, where {D,},c; are
the irreducible components of D, so that we can also consider D°¢ C D*¢ C D
for any I°¢ C I*¢ C I. (The results below will be for the cohomology with
compact support along D*¢ and for the generalized interior cohomology defined
by 1°¢ C I*° C I, which specialize to results for the cohomology with compact
support and the interior cohomology when I** = [ and I° = {).)

Definition 6.1.1. For each W € Rep@(Pc), we define the subcanonical extension
(612) cohEEﬂb = Cohw%an(iD)

(as in [Har90, Sec. 2]) and the interior coherent cohomology

(6.1.3) Hiy(Shi'c, conWE™) := Im(H" (Shig'c, conW™") = H'(Shig’c, conWE™)).

More generally, for any I°°¢ C I*°° C I, by abuse of notation, we define

(6.1.4) Hi-c (Sh??,r@ con W) := H' (ShtI?,r(Ca con W™ (_D*_C))
and
H, o soo(ShRC) conlVE™)

(6.1.5) S -
=T (H,_(ShEc, conWE™) = HE o (Shc, conWE™)),

the latter of which gives (6.1.3) when [**° = I and I°° = (). We similarly define
objects with C replaced with @Q,, or any field extension of E over which W has a
model, or with W replaced with WV, or both.

Let us fix the choice of a maximal torus T¢ of M¢, which is also a maximal torus
of Gf@. With this choice, let us denote by @G%, ®ype, etc the roots of Gf@, M€, etc,

respectively; and by XG%, Xae, etc the weights of Gf@, ME¢, etc, respectively. Then
we have naturally ®yre C $ge and XG% = Xyme. Let us denote by H the coweight
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induced by pp. Let us also make compatible choices of positive roots ‘Iféi and
T
<I>f\;[c, and of dominant weights X% and Xl\t{c, so that @R‘,[c C @g% and X+% C Xi..
3 :
For an irreducible representation V' of highest weight A € ng, we write V = V),
Ve = Vi, arYc = arV, ¢, etc. Similarly, for an irreducible representation W

of highest weight v € XK/{: we write W = W,, We = W, ¢, conW = cohwu,c,
1 1
etc. Let PG = 3 erbgg Aand pye = 5 Zue‘bﬁc v denote the usual half-sums

o]
of positive roots, and let pM* := PGg — PMe- Let WG% and Wy denote the Weyl
groups of G% and M€ with respect to the common maximal torus T¢. Then we can
naturally identify Wy as a subgroup of WG%. Given any element w in the above

Weyl groups, we shall denote its length by I(w). In addition to the natural action of
Wg(% on XG%, there is also the dot action w-\ = w()\erG%) —pas, for all w € Wge

and \ € XG%. Let WM denote the subset of WGG% consisting of elements mapping
ng into XK/IC, which are the minimal length representatives of Wyye \W%.
g
As in Definition and Theorem [5.5] consider the log de Rham complex,
DRiog (arVE™ (=D™)) = (arVE™ (D) B0, Apier, (08 D), V)
= DRiog(arVE™) ®0y, 0 Osnter, (—D*°),
K,C )
and consider the Hodge cohomology with partial compact support along D*=¢,

(616> Hl?lfdge,*—c(ShK,Ca dRK(C) = Ha+b (Shtlg,r(() gra DRlog (dRKgm <_D*_C)) ) .

As in Remark when I*¢ = (), this give the usual Hodge cohomology; and
when [*¢ = I, this gives the usual Hodge cohomology with compact support.
While it is difficult to compute hypercohomology in general, the miracle is that
gr” DRiog (arVE™) has a quasi-isomorphic direct summand, called the graded dual
BGG complex, whose differentials are zero and whose terms are direct sums of
conWE" for some representations W determined explicitly by V. Then the hyper-
cohomology of this graded dual BGG complex is just a direct sum of usual coherent
cohomology of .o, W& up to degree shifting. More precisely, we have the following:

Theorem 6.1.7 (dual BGG complezes; Faltings). There is a canonical filtered
quasi-isomorphic direct summand BGGiog(arV ") of DRiog(arV ") (in the cate-
gory of complexes of abelian sheaves on Shtlgrc whose terms are coherent sheaves and
whose differentials are differential operators) satisfying the following properties:

(1) The formation of BGGiog(arV.E) is functorial and exact in V.

(2) The differentials on gr BGGiog(arV ) are all zero.

(3) Suppose that V = V)Y for some \ € X+%. Then, for each i > 0 and each

a € Z, the i-th term of gr®* BGGleg(arV ") ts given by
(6.1.8) gr® BGGfog(dRK%an) = DuewMe, 1(w)=i, (w-A)(H)=—a (cohﬂx;.xc

Proof. See [Fal83 Sec. 3 and 7], [FC90, Ch. VI, Sec. 5], and [LP18, Thm. 5.9].
(Although these references were written in less general settings, the methods of the
constructions still generalize to our setting here.) O

)can

Remark 6.1.9. The various automorphic vector bundles qrVy ¢, Fil*(arV ) ),
and conW,,.5 ¢ (and their canonical extensions) in Theorem have models over
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Q, or even over a finite extension £’ of E (depending on \) over which Vy, Fil® Vj,
and W, all have models. (The cases of dRK,\C and its canonical extension follow
from [Mil90, Ch. IIT, Thm. 5.1, and Ch. V, Thm. 6.2]; and the cases of Fil* 4rV, ¢,
conW .. AC and their canonical extensions follow from the same argument as in
[DLLZb, Rem. 5.2.11], based on the models of the associated partial flag vari-
eties over E. Note that Fil®(qrV'¢) did appear in Theorem when we said
there is a canonical filtered quasi-isomorphic direct summand BGGiog(arV ) of
DRyog(arVE").) Then the statements of Theorem remain true if we replace
C with Q or E’, by the same descent argument as in [LP18, Sec. 6].

Theorem 6.1.10. Suppose that V = VY for some X € X&e. Then, given any
q
a,b € Z such that a + b > 0, we have the dual BGG decomposition

H?Ifdgc,*—c(ShK7C7 dRK(C) = Ha+b (Sh'}?,rﬁﬁ gra DRIOg (dRK%an(_D*_C»)

(6.1.11) atb—l(w ]
= Dyewme, (w-A)(H)=—a Hi-¢ ( )(ShtK,(Cv (Cothu-A,C)Cdm)v

which is compatible with the canonical morphisms induced by any inclusions 1°°° C
I*° C I and induces a similar dual BGG decomposition
b

(6 1 12) HI?Iodge,*-c—)o-C(ShKﬁc’ dRK(C)

o ~ b—1
= PuewM® (wA)(H)=—a Hf—t—m-(cw) (Sh?(),r(c, (cohEXJ.A,C)Ca“)-
Moreover, the Hodge—de Rham spectral sequence for Hglfdge,*-c(ShK,C’dRK(c) n-
duces the dual BGG spectral sequence

a,b a+b—1(w r can
1 = BuewMe (wr)(H)=—a Hsc ( )(Shtlg,cc’(cohﬂmvu.x,c) )

(6.1.13) o
= H{g .(Shkc,arVc),

which degenerates on the E1 page, and induces a dual BGG decomposition
(6.1.14)  gr Hin o(Shicc,anVe) = @yewne HiZ' ™ (ShRe, (conll )™,

for each © > 0, which is (strictly) compatible with the analogous decomposition for
1°¢ C I*° C I and therefore induces a dual BGG decomposition

gr HéR,*—c—»o—c(ShK,Cv dRKC)

= Dyewne HIZ (ShR'e, (conWayox.0)™")-

Proof. By tensoring the graded quasi-isomorphism between the log de Rham com-
plex DRiog(arVE™) and the (log) dual BGG complex BGGiog(arVE") in Theo-
rem with the invertible Ogptor -ideal Ogprer (—D*), and by taking graded
pieces, we obtain a quasi-isomorphism between gr® DRlOg(dRK@n(—D*‘C)) and
(gr* BGGrog(arV.E™))(—D**), and the differentials of the last complex are still
all zero. Hence, by comparing the (algebraic) objects over C with their analogues

over Q, as in [DLLZD, Rem. 5.3.5], the desired isomorphism (6.1.11) follows from
(5.9), and the remaining assertions follow from Theorems and O

(6.1.15)

Remark 6.1.16. Faltings first introduced the dual BGG spectral sequence asso-
ciated with the stupid ( “béte”) filtration in [Fal83l Sec. 4, p. 76, and Sec. 7, Thm.
11], whose degeneration on the E; page nevertheless implies (by comparison of to-
tal dimensions) the degeneration of the spectral sequence ((6.1.13) associated with
the Hodge filtration. The degeneracy on the E; page was first proved by Faltings



54 KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

himself in the compact case (see [Fal83] Sec. 4, Thm. 4]), later in the case of Siegel
modular varieties by Faltings and Chai (see [FC90, Ch. VI, Thm. 5.5]) by reducing
to the case of trivial coefficients over some toroidal compactifications of self-fiber
products of universal abelian schemes (and this method can be generalized to the
case of all PEL-type and Hodge-type Shimura varieties using [Lanl2a], [Lan12b],
and [LSI8D] Sec. 4.5]), and in general by Harris and Zucker (see [HZ01l, Cor. 4.2.3])
using Saito’s theory of mixed Hodge modules (see [Sai90, Thm. 2.14]). Even when
I*° = (), our proof of the degeneration of the dual BGG spectral sequence [6.1.13
which can be alternatively based on [DLLZb, Thm. 4.1.4 and 5.3.1], is a new one.

6.2. Hodge—Tate weights. The goal of this subsection is to describe the Hodge—
Tate weights of Het wc(Shy g ,6Vg ) and Het rcoc(Shgg s6Vg ) in terms of

the dimensions of the dual BGG pieces at the right-hand sides of (6.1.14]) and
(16.1.15)), respectively.

We first need to provide a definition for the Hodge-Tate weights of the coho-
mology of étale local systems over the infinite extension Q, of Q,. Let C, denote
the p-adic completion of @p as usual. Let (dRK@ , V,Fil*) denote the pullback of

P

(arV ¢, V,Fil*) under =! : C = Q,. As in [DLLZD Sec. 5.2], let L be a finite
extension of Q, in Qp such that V has a model V, over L, and let &V ; be as

in [DLLZb, (5.2.12)]. Let k be a ﬁmte extension of the composite of E and L in

@p, so that we have E <3 Q °—> Qp, and let 7 : L ®q, k — k be the multi-
plication homomorphism a ® b — ab, as in [DLLZb, (5.2.14)]. By Theorem
Hi (ShK@p,étzL) is a de Rham representations of Gal(Q,/k), and we have a

ét,*-c

canonical Gal(@p /k)-equivariant Hecke-equivariant isomorphism

(6.2.1)  Hi,(Shgg eV 1) ®q, Bar = Hig . (Shi.i, Di#(V 1)) ®k Bar,

which is compatible with the filtrations on both sides, whose 0-th graded piece is a
canonical Gal(Q,/ k:)—equivariant Hecke-equivariant isomorphism

et *-C (ShKQ 7etVL) ®Qp (C
= Daomi (Hijtagenne (Mg, DR (el 1)) @k Cpl—a) ).

By pushing out (6.2.1) and (6.2.2) via the homomorphism 7, by [DLLZb, Thm.
5.3.1], and by Theorem [5.10, we obtain the following:

(6.2.2)

Theorem 6.2.3. Suppose that V € Rep@(GC), and that k is a finite extension of

— -1 —
the image of E & Q < Q, over which Vi has a model. Then there is a canonical
P

Gal(@p /k)-equivariant Hecke-equivariant de Rham comparison isomorphism
(6.2.4) Hét . c(ShK,@pv étZ@p) ®@p Bar = Hle,*—c(ShK,@p’ dRZ@p) ®@p Byr,

compatible with the filtrations on both sides, whose 0-th graded piece is a canonical
Gal(Q,/k)-equivariant Hecke-equivariant Hodge—Tate comparison isomorphism

Hét *- C(ShK,@pv étz@p) ®@p (Cp

(6.2.5) ab
= Dato=i (HHl)dge,*—c (ShK,@p’ dRK@p) ®@p (CP(_G‘))'
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Moreover, (6.2.4]) and (6.2.5) are compatible with the canonical morphisms defined
by inclusions I°°° C I*° C I, and also with Poincaré and Serre duality, which in-
duce a canonical Gal(@p /k)-equivariant Hecke-equivariant de Rham comparison
isomorphism

H somvoe(Sh g eV ) ©g Bar
o~ HdR7*—C_)O_C(ShK7@p7 dRK@p) ®@p BdRa

which is compatible with the filtrations on both sides and with Poincaré duality,
whose 0-th graded piece is a canonical Gal(Q,/k)-equivariant Hecke-equivariant
Hodge—Tate comparison isomorphism

Hjy ycsoe(Shy g, eVg,) @5 Cp
~J 7b
= Datb=i (Hgodgc,*—cﬂo—c(ShK:@p? dRK@p) ®@p (Cp(_a))7

which is compatible with Poincaré and Serre duality.

(6.2.6)

(6.2.7)

Definition 6.2.8. For 7 = *-C Or *-C — o-C, we abusively define the multiset
of Hodge-Tate weights of & 7(ShKQ 6tVg ) to be the multiset of integers in

which each a € Z has multiplicity dlmQ (Hffkf dge.7(Sh K3, 7dRV@p)). We naturally
extend the definition to Qp subspaces of H? ét, 2(Shy a, Vg ) cut out by Q,-valued
Hecke operators by replacing Hﬁgng?(ShK,QpadRKQp) Wlth their corresponding
Q,-subspaces cut out by the same Qp—valued Hecke operators.

Theorem 6.2.9. With the same setting as in Theorem suppose V=V for
some \ € XE@ For any W in Rep@(MC), let Cohwﬁln be the pullback of conWE™

under .* : C 5 Q,. Then we have a canonical Gal(Q,/k)-equivariant Hecke-
equivariant isomorphism

et *- C(ShK@ aétK@ ) ®@ (C
= @U’EWMC <HZ ) (Shtor (COth \Q, )Can) ®@p (CP((w : )‘)<H)))a

which is the dual BGG wversion of the Hodge-Tate decomposition . This
isomorphism 18 compatible with the canonical morphisms defined by any
inclusions 1°°¢ C I*° C I, and with Poincaré and Serre duality; and induces a
canonical Gal(Q,/k)-equivariant Hecke-equivariant isomorphism

Hét *-C—y0- c(ShK@ 7étz@ ) ®@ (Cp
= @y epne (H (S5 L (anWY, 5 ) @5, Cp((w - N)(H)) ),

compatible with Poincaré and Serre duality. The multiset of Hodge—Tate weights
of any Hecke-invariant Q,-subspace of HE, +c(Shgg ,etVg ) cut out by some Q,-
1ep P

valued Hecke operator (as in Definition [6.2.8) contains each a € 7 with multiplicity
giwen by the C-dimension of the corresponding Hecke-invariant C-subspace of

i—l(w or can
(6.2.12) DweWM®, (w-A)(H)=—a H, . ( )(ShtK,(Ca (cohwl/u-)\,@) )
cut out by the pullback of the same @p-valued Hecke operator under v : @p 5 C.
The same holds with H, ,_ C(ShKﬁ@p, étK@p) (resp. ") (ShR'c, (conWoox 0)™"))

replaced with Hét reoson C(ShK7@p,étK@p) (resp. Hi_cl_()u;)c (Sh;?’r@, (Cohwll)\,c)can)),

(6.2.10)

(6.2.11)



56 KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Proof. These follow from Theorems and [6.1.10} and from the fact (which we
have implicitly used several times) that the formation of coherent hypercohomology
of qcgs schemes is compatible with arbitrary base field extensions. O

Remark 6.2.13. All previously known special cases of (see, for exam-
ple, [FC90, Thm. 6.2] and [HTO0I Sec. III.2]) were proved using the Hodge-Tate
comparison for the cohomology with trivial coefficients of some families of abelian
varieties (and their smooth toroidal compactifications, in the noncompact case).
The novelty in Theorem is that we can deal with nontrivial coefficients that
are not at all related to families of abelian varieties.

Remark 6.2.14. As in [Har90, Ex. 4.6], we can often compute the dimension
of HI 1) (Sh'e, (conWy x.c)®™") and its Hecke-invariant C-subspaces cut out by

int
C-valued Hecke operators in terms of relative Lie algebra cohomology. Thanks

to the recent work [Sulg]|, it might also be possible to compute the dimension of

) (Shi'c, (conWx.c)®") and its Hecke-invariant C-subspaces cut out by C-
Valued Hecke operators in terms of relative Lie algebra cohomology when the image
of D*° in the minimal compactification Shmln of Shi ¢ (as in [Pin89]) is stable
under the Hecke action of G(Ay).

Remark 6.2.15. In the special (but still common) case where Vg has a model
Vo, over Q,, we can take L = @Q, in the above, and the choice of ¢ : @ S C
corresponds to the choice of places v of E above p. Then Hy; 2(Shy g a, 6V, ) is a
de Rham representation of Gal(@p/k) for ? = x-c or x-¢ — o-c, and the de Rham

comparison isomorphisms (|6 and (6.2.6] - can be rewritten as
ét,?(ShK@p7 «Vg,) @0, Bar = Hig »(Shi k, arVy) @k Bar

(cf. - Moreover, the assertion in Theorem that the Hodge—Tate weights
of H} »(Shk g g, Vg ) (as in Definition | depend only on the C-dimension of

m but not on the choice of v, nnphes that the (usual) Hodge—Tate weights of
H, »(Shy ,étVq,) (as a representation of Gal(Q,/k)) are also independent of v.

6.3. Some application to intersection cohomology. In this final subsection,
let us discuss an important special case where we can apply our results to the
intersection cohomology of Shimura varieties with nontrivial coefficients, simply
because it coincides with the interior cohomology.

Let us begin with some review of definitions. Consider the interior cohomology

(6.3.1) ant(s a}?,@aBKc) = Im(HZ(S aI?,CaBK(C) - Hi(s ?@BKC));

as usual. By [AGVT3, XI, 4.4, and XVII, 5.3.3 and 5.3.5] and [BBDG18, Sec. 6],
for ? = (), ¢, and int, we have canonical Hecke-equivariant isomorphisms

(6.3.2) H4(Shi ¢, BV ) = Hét,?(ShK,@p7étK@p) ®g,.C

compatible with each other and with Poincaré duality. Also, by [Del70) II, 6],
[EV92] Sec. 2.11 and Cor. 2.12], and GAGA [Ser56], for ? = (), ¢, and int, we have
canonical Hecke-equivariant isomorphisms

(6.3.3) H3(Shi ¢, BV e) = Hig »(Shi e, arVE") =2 Hig 2(Shk ¢, arVe)
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compatible with each other and with Poincaré duality. By the same argument as
in the proof of Theorem by using the degeneration of Hodge-de Rham spec-
tral sequences on the Fj pages, the Hodge filtrations on HQRC (Shk ¢, arV ) and
H éR(ShK,C,dRKC) are strictly compatible with the canonical morphism between
them, and induce the same Hodge filtration on HéR7int(ShK7C’ arV ).

Let Sh’2™ denote the minimal compactification of Shg over E, as in [Pin89], and

let Sh%ij& and Shﬁ% denote the pullbacks of Sh’E™ to C and Q,, respectively. Let

gmin @ Shg — Sh}?n denote the canonical open immersion, whose pullbacks to C
and Q,, we shall denote by the same symbols, for simplicity. Let d := dim(Shg).
Foreach V € Rep@(Gc), by abuse of notation, consider the intersection cohomology

(6.3.4) IH (Shg'e™ gVe) = H'™4(Shige™ s (5V ¢ [d]))
and
(6.3.5) IH, (Sh;‘;%p, «Vg) = H"*d(sh?%p, Jen (Vg [d])).

By [BBDGI18| Sec. 6], we have a canonical Hecke-equivariant isomorphism
(6.3.6) IH' (Shie ¢™" BV ) = TH (Sh?%p, étz@p) ®g,. G

which is compatible with via canonical morphisms, and with Poincaré du-
ality. By Zucker’s conjecture [Zuc82], which has been proved (independently) by
Looijenga [Loo8§|; Saper and Stern [SS90]; and Looijenga and Rapoport [LRII],
we have a canonical Hecke-equivariant isomorphism

(6.3.7) ]Hi(ShT(ifé’anaBKc) = H{yp (Shi¥c, 8V ),

where H(iQ) (Shr‘}?’c,BK@) denotes the L?-cohomology, as in [BWQ0, Ch. XIV, Sec.
3], which is compatible with (6.3.3)) via canonical morphisms.

The left-hand side of equipped with the Hodge structure given by
Saito’s theory of Hodge modules (see [Sai88]), while the right-hand side of
is equipped with the Hodge structure given by L? harmonic forms (which can be
refined by a double dual BGG decomposition, as in [Fal83| Sec. 6]). But it is unclear
whether these two Hodge structures are compatible under the isomorphism
(cf. [HZO1, Conj. 5.3]). Nevertheless, the following is known:

Theorem 6.3.8 (Harris and Zucker; see [HZ01, Thm. 5.4]). The canonical mor-
phisms from both sides of to Hig(Shi c,arV ) are strictly compatible with
Hodge filtrations. In particular, the Hodge filtrations on both sides of induce
the same Hodge structure on their common image in Hig (Shk c,arV¢)-

In general, we have Hecke-equivariant inclusions

(6.3.9) Héusp(Sh%l,C7BKC) C Hiint(Sh(;(n,Ca BV ) C H(iz)(Sh%l,Ca BV ),
where H! . (Sh¥'c,8V ) denote the cuspidal cohomology (see [Bor74, Bor81]),

which are compatible with (6.3.3]) and (6.3.7)) via canonical morphisms.
We have the following useful results:

Theorem 6.3.10 (Schwermer; see [Sch94, Cor. 2.3]). Suppose that V = V¥ for
some \ € ng that is regular in the sense that (A, ") > 0 for every simple root

a € ®f.. Then all the containments in 1) are equalities.

Q
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Theorem 6.3.11 (Li and Schwermer; see [LS04, Cor. 5.6]). Suppose that V =V’

for some regular \ € Xﬂ@. Then H!(Shi'c, V) = 0 fori > d; H (Shi'c, V) =
0 fori <d; and Hi(Shitc, 8V ) =0 for i #d.

Corollary 6.3.12. Suppose that V = V)Y for some regular \ € X{.. Then we
]

have canonical Hecke-equivariant isomorphisms
(6:313)  IH'(ShE'e™, 5Ve) 2 Hiy(Shi¥c, 8V e) = Hig e (Shic, arVe)

compatible with Hodge filtrations and Poincaré duality, and also a canonical Hecke-
equivariant isomorphism

(6~3-14) IHfét (Shrfn(i,%v étK@P) = Héit,int(ShK7C5 étK@p)-

The cohomology in either (6.3.13) and (6.3.14) can be nonzero only when i = d.
Proof. These follow from (6.3.2) and (6.3.3); from Theorems 6.3.10, and

6.3.11} and from the compatibility of the Poincaré duality on intersection cohomol-
ogy with the usual one. O

Theorem 6.3.15. Suppose that V = V' for some regular \ € Xe. Let k be a
[

— -1 —
finite extension of the image of E & Q <y Q, over which Vi has a model. Then
D

we have a canonical Gal(@p /k)-equivariant Hecke-equivariant isomorphism
(6.3.16) IHgt(Sh’;%p,étK@p) ®g, Bar = HgR’int(ShK)@p, arVg ) @5 Bar,

which is compatible with the filtrations on both sides and with Poincaré duality,
whose 0-th graded piece can be refined by a canonical Gal(Q,/k)-equivariant Hecke-
equivariant dual BGG decomposition

IH (Shi, - «Vy,) g, Cp

(6.3.17) o
= @ e (i (S (conW, 5 )) @5, Cpl(w - N(H)) ),

W

compatible with Poincaré and Serre duality. The multiset of Hodge-Tale weights of

any Hecke-invariant Q,-subspace of IHgt(Sh?% Vg ) cut out by some Q,,-valued
1P P

Hecke operator (as in Definition [6.2.8) contains each a € Z with multiplicity given
by the C-dimension of the corresponding Hecke-invariant C-subspace of

d—1 r can
(6318) 69wEVVMC, (w-A)(H)=—a Hint ) (Sht}?,({:’ (COhwl\j}-A,C) )

cut out by the pullback of the same @p-valued Hecke operator under v : @p 5 C.
Proof. These follow from Theorems [6.2.3] and [6.2.9] and from Corollary [6.3.12] O

Remark 6.3.19. We natural expect the de Rham comparison to work for the
intersection cohomology in more generality, which will be an interesting topic for a
future project. But we would like to record the results in Theorem [6.3.15] because
regular weights already cover, depending on one’s viewpoint, almost all weights.
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