TOROIDAL COMPACTIFICATIONS OF PEL-TYPE KUGA
FAMILIES

KAI-WEN LAN

ABSTRACT. We explain how compactifications of Kuga families of abelian vari-
eties over PEL-type Shimura varieties, including for example all those products
of universal abelian schemes, can be constructed (up to good isogenies not af-
fecting the relative cohomology) by a uniform method. We also calculate the
relative cohomology and explain its various properties crucial for applications
to the cohomology of automorphic bundles.
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INTRODUCTION

To study the relations between automorphic forms and Galois representations,
it is desirable to understand the cohomology of Shimura varieties with coefficients
in algebraic representations of the associated reductive groups (i.e., the so-called
automorphic bundles).

In the case of PEL-type Shimura varieties, the associated reductive groups are
(up to center) twists of products of symplectic, orthogonal, or general linear groups.
According to Weyl’s construction [53] (see also [I7] and [19]), all algebraic repre-
sentations of a classical group can be realized as summands in the tensor powers
of the standard representation of the group. In geometry, one is led to consider
the cohomology of fiber products of the universal families of abelian varieties over
the PEL-type Shimura varieties. Such fiber products are special cases of what we
will call PEL-type Kuga families, or simply Kuga families. When the PEL-type
Shimura variety in question is not compact, the total spaces of such Kuga families
are not compact either.

To study cohomology properly, one is often led to the question of the existence
of projective smooth compactifications with good properties, such as allowing the
Hecke operators to act on their cohomology spaces (but not necessarily the geo-
metric spaces). In what follows, let us simply call such compactifications good
compactifications. In characteristic zero, such questions can often be handled by
the embedded resolution of singularities due to Hironaka [28] [29]. However, more
explicit theories exist in our context. The work of Mumford and his collaborators in
[] provides a systematic collection of good compactifications of Shimura varieties
with explicit descriptions of local structures, while the work of Pink [48] provides
a systematic construction of good compactifications of the Kuga families as well.
These compactifications are called toroidal compactifications. Their methods are
analytic in nature and cannot be truly generalized in mixed characteristics.

Based on the theory of degeneration of polarized abelian varieties initiated by
Mumford [44], Faltings and Chai [I5] 8], [16] constructed good compactifications over
the integers for Siegel moduli spaces defined by the moduli space of principally po-
larized abelian varieties. In [I6], they also constructed good compactifications of
fiber products of the universal families by gluing weak relatively complete models
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along the boundary. We ought to point out that, although most works on compact-
ifications spend most of their pages on the construction of boundary charts, it is
only the gluing argument that validates the whole construction. (This is not nec-
essarily the case for works using the moduli-theoretic approach, such as [2], [1], or
[47). However, the questions there are not less challenging: What can one say about
the boundary structures? Are they equally useful for applications to cohomology?)
Thus, even if the construction of toroidal compactifications of Siegel moduli spaces
in [I6, Ch. IV] has been generalized for all PEL-type Shimura varieties in [38], the
gluing of weak relatively complete models has to be carried out separately when
one works along the original idea of [I6, Ch. VI|. (This is the case in for example
[50], in which the assumption that the boundary divisors are regular, i.e. have no
crossings, unfortunately rules out all cases where choices of cone decompositions
are needed for the Shimura varieties.)

Note that gluing is not just about techniques of descent. Any theory of descent
requires an input of some descent data. Since a naive generalization of the con-
structions in [I6] Ch. IV] introduces unwanted boundary components, which have
to be studied and removed carefully by imposing liftability and pairing conditions
as in [38], we have reason to believe that a naive generalization of the construction
in [16, Ch. VI, §1] requires delicate modifications, without which even the strongest
descent theory cannot be applied.

The aim of this article is to avoid any further argument of gluing, and to
treat all PEL-type cases on an equal footing. We shall reduce the construction
of toroidal compactifications of PEL-type Kuga families to the construction of
toroidal compactifications of Shimura varieties in [38], by systematically realizing
the Kuga families as locally closed boundary strata in the toroidal compactifica-
tions of (larger) PEL-type Shimura varieties. Partly inspired by Kato’s theory of
log abelian schemes, we can show that, up to refinements of cone decompositions,
the structural morphisms from the Kuga families to the Shimura varieties extend
(up to good isogenies not affecting the relative cohomology) to log smooth mor-
phisms with nice properties between the toroidal compactifications. This approach
differs fundamentally from the one in [I6, Ch. VI]. As Chai pointed out, although
no technique can be truly shared between analytic and algebraic constructions, our
idea is close in spirit to Pink’s in [48]. (See Remark below.)

Since we replace Faltings and Chai’s construction with a different one, we need
to explain that our simpler (but perhaps cruder) construction is not less useful.
Thus our second task is to calculate the relative (log) de Rham cohomology of
the compactified families. We show that such relative cohomology not only enjoys
the same expected properties as in [I6, Ch. VI, §1], but also admits natural Hecke
actions defined by parabolic subgroups of larger reductive algebraic groups, because
our construction uses toroidal boundaries of larger Shimura varieties. This exhibits
a large class of endomorphisms on our cohomology spaces, including ones needed in
the geometric realization of Weyl’s construction (i.e., the realization of automorphic
bundles as summands in the relative cohomology of Kuga families).

The outline of this article is as follows. In Section [T} we review some of the
results we need from [38]. We consider the investment of this summary worthwhile
because, although we do not need to carry out another gluing argument, we do
need the full strength of the long work [38]. In Section [2| we define what we mean
by PEL-type Kuga families, state our main theorem, and give an outline of the
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proof. In Section [3] we carry out the construction of toroidal compactifications for
these Kuga families that admit log smooth morphisms to the Shimura varieties in
question. (This section serves roughly the same purpose as [16, Ch. VI, §1].) In
Sections [4] and [5} we show that these toroidal compactifications are indeed good by
justifying what we mentioned in the previous paragraph. (These two sections serve
roughly the same purpose as [16, Ch. VI, §2].) We would like to mention that the
use of nerve spectral sequences in Section [4| imitates immediate analogues in [20]
and [27] (based on techniques that can be traced back to [36, Ch. I, §3]), while
the use of log extensions of polarizations is inspired by Kato’s idea of (relative) log
Picard groups [32] 3.3]. (See Remark[5.7}) The article ends with Section [ in which
we explain how to define canonical extensions of the so-called principal bundles.

Although used as the main motivation for our construction, applications to co-
homology of automorphic bundles will be deferred to some forthcoming papers.
There the readers will find the construction of proper smooth integral models use-
ful for studying cohomology with not only rational coefficients, but also integral
and torsion coefficients.

We shall follow [38, Notations and Conventions] unless otherwise specified. (Al-
though our references to [38] use the numbering in the original version, the reader
is advised to consult the errata and revision (available online) for corrections of
typos and minor mistakes, and for improved exposition.)

1. PEL-TYPE MODULI PROBLEMS AND THEIR COMPACTIFICATIONS

In this section, we summarize definitions and main results in [38] that will be
needed in this article. We will emphasize definitions such as the ones involved in
the description of boundary structures, but will have to be less comprehensive on
some fundamental definitions including the ones of level structures.

1A. Linear algebraic data. Let O be an order in a finite-dimensional semisimple

algebra over Q with a positive involution *. Here an involution means an anti-

automorphism of order two, and positivity of * means Trp gr/r(zz*) > 0 for any
Z

x # 01in O ®R. We assume that O is mapped to itself under *. We shall denote
Z
the center of O ®Q by F.
Z
Let Z(1) := ker(exp : C — C*), which is a free Z-module of rank one. Any
choice /=1 of a square-root of —1 in C determines an isomorphism (27/—1)71 :

Z(1) 5 Z, but there is no canonical isomorphism between Z(1) and Z. For any
commutative Z-algebra R, we denote by R(1) the module R® Z(1).
Z

By a PEL-type O-lattice (L, (-, -),h) (as in [38, Def. 1.2.1.3]), we mean the
following data:

(1) An O-lattice, namely a Z-lattice L with the structure of an O-module.

(2) An alternating pairing (-, -) : L x L — Z(1) satisfying (bx,y) = (z,b*y)
for any z,y € L and b € O, together with an R-algebra homomorphism
h:C — Endp gr(L ®R) satisfying:

Z Z
(a) For any z € C and z,y € LR, we have (h(z)z,y) = (z,h(z%)y),
zZ

where C — C : z — 2° is the complex conjugation.
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(b) For any choice of v/—1 in C, the R-bilinear pairing
2ryV/=1)" (- (/1)) : (L%R) x(L%R) —R

is symmetric and positive definite. (This last condition forces (-, -)
to be nondegenerate.)

The tuple (O,*,L,{-, -),h) (over Z) then gives us an integral version of the tuple
(B,*,V,(-,),h) (over Q) in [37] and related works. (We favor lattices over Z
rather than their analogues over Q (or over Z,) for some p) because we will work
with isomorphism classes rather than isogeny classes; cf. Remark below.)

Definition 1.1 (cf. [38 Def. 1.2.1.5]). Let a PEL-type O-lattice (L, (-, -),h) be
given as above. For any Z-algebra R, set

G(R) == {(g,r) € GLO%R(L%R) x Gm(R) : (92, 9y) = r{z,y),Vz,y € L%)R}

In other words, G(R) is the group of symplectic automorphisms of L ® R (respecting
Z

the pairing (-, -) up to a scalar multiple; cf. 38, Def. 1.1.4.11]). For any Z-algebra
homomorphism R — R’, we have by definition a natural homomorphism G(R) —
G(R'), making G a group functor (or in fact an affine group scheme) over Z.

The projection to the second factor (g,r) — 1 defines a morphism v : G — Gy,
which we call the similitude character. For simplicity, we shall often denote
elements (g,r) in G by simply g, and denote by v(g) the value of r when we need it.
(If L # {0} and R is flat over Z, then the value of v is uniquely determined by g.
Hence there is little that we lose when suppressing v from the notation. However,
this suppression is indeed an abuse of notation in general. For example, when

L = {0}, we have G = Gy,.)

Let O be any set of rational primes. (It can be either an empty set, a finite
set, or an infinite set.) We denote by Z) the unique localization of Z (at the
multiplicative subset of Z generated by nonzero integers prime to O) having O as
its set of height one primes, and denote by Z7 (resp. A7 resp. A7) the inte-
gral adeles (resp. finite adeles, resp. adeles) away from O. Then we have defini-
tions for G(Q), G(A®T), G(A®), G(R), G(A7), G(A), G(Z), G(Z/nZ), G(Z7),
G(Z), U®(n) = ker(G(ZP) — G(Z° /nZP) = G(Z/nZ)) for any n prime to O, and
U(n) := ker(G(Z) — G(Z/nZ) = G(Z/nZ)).

Following Pink [48, 0.6], we define the neatness of open compact subgroups H
of G(Z") as follows: View G(Z°) as a subgroup of GLO@ZD (LQZ@ZD) X G (Z°9).

(Or we may use any faithful linear algebraic representation of G.) Then, for each
rational prime p > 0 not in O, it makes sense to talk about eigenvalues of elements
gp in G(Zp), which are elements in Q. Let g = (gp) € G(Z"), with p running
through rational primes such that O { p. For each such p, let 'y, be the subgroup
of Q, generated by eigenvalues of g,. For any embedding Q < Qp, consider the
subgroup (QX N ng)tors of torsion elements of Q% N I'y,, which is independent of
the choice of the embedding Q < Q,.

Definition 1.2 ([38, Def. 1.4.1.8]). We say that g = (g,) is neat if QD(QX N
P

Ly, )tors = {1}. We say that an open compact subgroup H of G(ZD) is neat if all
its elements are neat.
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Remark 1.3. The usual Serre’s lemma that no nontrivial root of unity can be con-
gruent to 1 modulo n if n > 3 shows that H is neat if H C U (n) for some n > 3
such that O 1 n.

Remark 1.4. Definition makes no reference to the group G(Q) of rational ele-
ments. For the related notion of neatness for arithmetic groups, see [6, 17.1].

1B. Definition of moduli problems. Let us fix a PEL-type O-lattice

(L,(-,-),h) as in the previous section. Let F, be the reflex field of

(LR, (-, ), h) defined as in [37), p. 389] or [38] Def. 1.2.5.4]. We shall denote the
Z

ring of integers in Fy by Op,, and use similar notations for other number fields.
(This is in conflict with the notation of the order O, but the precise interpretation
will be clear from the context.)

Let Disc = Discp,z be the discriminant of O over Z (as in [38, Def. 1.1.1.6]; see
also [38] Prop. 1.1.1.12]). Closely related to Disc is the invariant Ip,q for O defined
in [38 Def. 1.2.1.17], which is either 2 or 1, depending on whether type D factors
are involved. Let L# := {x € L %Q s {x,y) € Z(1),Vy € L} denote the dual lattice

of L with respect to the pairing (-, -).

Definition 1.5. We say that a prime number p is bad if p| Ipaq Disc[L# : L]. We
say a prime number p is good if it is not bad. We say that O is a set of good
primes if it does not contain any bad primes.

Let us fix a choice of a set O of good primes. By abuse of notation, let O, (o)
be the localization of O, at the multiplicative set generated by rational prime
numbers not in O. Let S := Spec(OFp, o)) and let (Sch /Sy) be the category of
schemes over Sy. For any open compact subgroup H of G(ZD), there is an associated
moduli problem My defined as follows:

Definition 1.6 (cf. [38, Def. 1.4.1.4]). The moduli problem My, is defined as the

category fibred in groupoids over (Sch /Sg) whose fiber over each S is the groupoid

My (S) described as follows: The objects of My (S) are tuples (G, A, i, a3y), where:
(1) G is an abelian scheme over S.

(2) A: G — GY is a polarization of degree prime to O.

(3) i : O — Endg(G) defines an O-structure of (G, \) (satisfying the Rosati
condition i(b)" o X = X o i(b*) for any b € O).

(4) Lieq /g with its @) %} Z(my-module structure given naturally by i satisfies the

determinantal condition in [38], Def. 1.3.4.2] given by (LR, (-, -}, h).
Z
(5) ay is an (integral) level-H structure of (G, i) of type (LOZ°, (-, -)) as
Z

in [38, Def. 1.3.7.8).
The isomorphisms (G, X, i, 3) ~isom. (G', N7, 0%,) of My (S) are given by (naive)
isomorphisms f : G = G’ such that A = f¥oN o f, foi(b) =4'(b)of for allb € O,
and f o ay = o, (symbolically).
Remark 1.7. The definition here using isomorphism classes is not as canonical as the
ones proposed by Grothendieck and Deligne using quasiisogeny classes (as in [37]).
For the relation between their definitions and ours, see [38, §1.4]. We introduce

the definition (using isomorphisms) here mainly because this is the definition most
concrete for the study of compactifications.



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 7

Theorem 1.8 ([38, Thm. 1.4.1.12 and Cor. 7.2.3.10]). The moduli problem My is
a smooth separated algebraic stack of finite type over Sg. It is representable by a
quasiprojective scheme if the objects it parameterizes have no nontrivial automor-
phism, which is in particular the case when H is neat (as in Definition .

We shall insist from now on the following technical condition on PEL-type
O-lattices:

Condition 1.9 (cf. [38, Cond. 1.4.3.9]). The PEL-type O-lattice (L,{-,-),h) is
chosen such that the action of O on L extends to an action of some mazimal order
O’ in B containing O.

1C. Cusp labels. Although there is no rational boundary components in the the-
ory of arithmetic compactifications (in mixed characteristics), we have developed
in [38, §5.4] the notion of cusp labels that serves a similar purpose. (While G(Q)
plays an important role in the analytic theory over C, it does not play any obvious
role in the algebraic theory over O, (o). This is partly due to the so-called failure
of Hasse’s principle; see for example [37, §8] and [38, Rem. 1.4.3.11].)

Unlike in the analytic theory over C, where boundary components are naturally
parameterized by group-theoretic objects, the only algebraic machinery we have is
the theory of semiabelian degenerations of abelian varieties with PEL structures.
The cusp labels are (by their very design) part of the parameters (which we call
the degeneration data) for such (semiabelian) degenerations.

Definition 1.10 (cf. [38|, §1.2.6]). Let R be any noetherian Z-algebra. Suppose we

have an increasing filtration F = {F_;} on L® R, indexed by nonpositive integers
Z

—1, such that Fo = LR R.
Z

(1) We say that F is integrable if, for any i, Gr* , := F_;/F_;_; is integrable
in the sense that Gr* ; = M; @ R (as R-modules) for some O-lattice M;.
Z
(2) We say that F is split if there exists (noncanonically) some isomorphism
Grf = D Gr™;, 5 Fy of R-modules.

K3
(3) We say that F is admissible if it is both integrable and split.
(4) Let m be an integer. We say that F is m-symplectic with respect to
(Ly (-, ) tf, for any i, F_pyi and F_; are annihilators of each other under
the pairing (-, -) on Fy.

We shall only work with m = 3, and we shall suppress m in what follows. The
fact that Z" involves bad primes (cf. Deﬁnition is the main reason that we may
have to allow nonprojective filtrations.

Definition 1.11 ([38] Def. 5.2.7.1]). We say that a symplectic admissible filtration Z
on L®Z" is fully symplectic with respect to (L, (-, -)) if there is a symplectic
zZ
admissible filtration Zyo = {Z_; 40} on L@ A" that extends Z in the sense that
z
Z a0 N(LOZP) =2Z_; in LOA® for alli.
7 Z

Definition 1.12 ([38| Def. 5.2.7.3]). A symplectic-liftable admissible filtration Z,,

on L/nL is called fully symplectic-liftable with respect to (L, (-, -)) if it is the

reduction modulo n of some admissible filtration Z on L ® 7P that is fully symplectic
Z

with respect to (L, (-, -)) as in Definition [L.11]
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Degenerations into semiabelian schemes induce filtrations on Tate modules and
on Lie algebras of the generic fibers. While the symplectic-liftable admissible fil-
trations represent (certain orbits of) filtrations on L ® Z" induced by filtrations on

Tate modules via the level structures, the fully symplectic-liftable ones are equipped
with (certain orbits of) filtrations on L ® R induced by the filtrations on Lie alge-
Z

bras via the Lie algebra condition in Definition (One may interpret the Lie
algebra condition as the “de Rham” (or rather “Hodge”) component of a certain
“complete level structure”, the direct product of whose “l-adic” components being
a level structure in the usual sense.) Such (orbits of) filtrations are the crudest
invariants of degenerations we consider.

Definition 1.13 (cf. [38 Def. 5.4.1.3]). Given a fully symplectic admissible filtra-
tion Z on L®Z" with respect to (L,{-, -)) as in Definition |1.11, a torus argu-
Z

ment ¢ for Z is a tuple ® := (X,Y, 0, p_2,¢0), where:
(1) X and Y are O-lattices of the same O-multirank (see [38, Def. 5.2.2.5]),
and ¢ : Y — X is an O-equiqariqnt embedding. R
(2) ¢_o : Gr*y 5 Homye (X ®Z7,Z7(1)) and ¢ : Grf = Y @Z" are iso-
Z zZ
morphisms (of Z°-modules) such that the pairing (-, - Yoo : Gr%y x Gr5 —
ZD(I) defined by Z is the pullback of the pairing

(-, Ve : Homyo (X @ Z°,Z°(1)) x(Y @ Z7) — Z°(1)
zZ z
defined by the composition

Hom, (X @ Z7,Z° (1)) x (Y @ Z°7)
Z Z

' Homyo (X @27, 2°(1)) x(X @ 2°) — 2°(1),
z z
with the sign convention that (-, Ye(z,y) = z(o(y)) = (¢(y))(x) for any
z € Homyo (X @Z°,2°(1)) and any y € Y @ Z°.
Z z

Definition 1.14 (cf. [38, Def. 5.4.1.4 and 5.4.1.5]). Given a fully symplectic-liftable
admissible filtration Z,, on L/nL with respect to (L,(-, -)) as in Definition [L.12]
a torus argument ®,, at level n for Z, is a tuple @, := (X,Y, 0, 0_2.n,P0.n),
where:
(1) X and Y are O-lattices of the same O-multirank, and ¢ :' Y — X is an
O-equivariant embedding.
(2) p—2m : Gr%,,, = Hom(X/nX,(Z/nZ)(1)) (resp. ¢on : Grf, = Y/nY)
is an isomorphism that is the reduction modulo n of some isomorphism
¢_o : Gr*, = Homype (XQZ@ZD,ZD(l)) (resp. @o : Grg = (YQZQZD)), such

that ® = (X,Y, ¢, p_2,90) form a torus argument as in Definition [1.13]
We say in this case that ®,, is the reduction modulo n of ®.
Two torus arguments @, = (X,Y, 0,02, 00n) and &, = (X", Y, ¢ 0" 5 .00 )
at level n are equivalent if and only if there exists a pair of isomorphisms

(’yxtX/:)X,’yy:Y:)Y/)
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(of O-lattices) such that ¢ = vx¢' vy, ¢' 5, = byxp_2.n, and o = VWPon- In
this case, we say that ®,, and P! are equivalent under the pair of isomorphisms
v = (vx,7vy), which we denote as v = (yx,vy) : ®n — ®/,.

The torus arguments record the isomorphism classes of the torus parts of de-
generations of abelian schemes with PEL structures. These are the second crudest
invariants of degenerations we consider.

Definition 1.15 ([38, Def. 5.4.1.9]). A (principal) cusp label at level n for a
PEL-type O-lattice (L, (-, -),h), or a cusp label of the moduli problem M, is an
equivalence class [(Zn, ®n,dn)] of triples (Zn, P, dy), where:

(1) Z, is an admissible filtration on L/nL that is fully symplectic-liftable in the

sense of Definition [I.12]

(2) @, is a torus argument at level n for Z,,.

(3) 6, : Gr2 5 L/nL is a liftable splitting.
Two triples (Zpn, Pp, ) and (Z),, D!, 0!) are equivalent if Z,, and Z., are identical,

n’vn

and if ®,, and D!, are equivalent as in Definition m

The liftable splitting d,, in any triple (Z,,, ®,,d,) is noncanonical and auxiliary
in nature. Such splittings are needed for analyzing the “degeneration of pairings”
in general PEL cases (unlike in the special case in Faltings—Chai [I6, Ch. IV, §6]).

To proceed from principal cusp labels at level n to general cusp labels at level H,
where H is an open compact subgroup of G(ZD)7 we form étale orbits of the objects
we have thus defined. The precise definitions are complicated (see [38] Def. 5.4.2.1,
5.4.2.2, and 5.4.2.4]) but the idea is simple: For any H as above, consider those n > 1
sufficiently divisible such that O ¢ n and 4" (n) C H. Then we have a compatible
system of finite groups H,, = H/U" (n), and an object at level H is simply defined
to be a compatible system of étale H,-orbits of objects at running levels n as above.
Then we arrive at the notions of torus arguments ®3 = (X,Y, 0, p_21, po.n) at
level H, and of representatives (Z3, Py, 03) of cusp labels [(Zy, Py, d%)] at level
H. (The liftability condition is implicit in such a definition, as in the definition
of level structures we omitted.) By abuse of language, we call these H-orbits of
O =(X,Y,0,p-2,90), (Z,P,0), and [(Z, D, )], respectively.

For simplicity, we shall often omit Z3; from the notation.

Lemma 1.16 (cf. [38, Lem. 5.2.7.5 in the revision]). Let Z, be an admissible
filtration on L/nL that is fully symplectic-liftable with respect to (L,{-,-)).
Let (Gr*,, (-, -)11) be induced by some fully symplectic lifting Z of Z,, and
let (Gr® g, (-, )11,r,h_1) be determined by [38, Prop. 5.1.2.2 in the revision]
by any extension Zxo in Definition (which has the same reflex field Fy as
(LR, (-, -),h) does). Then there is associated (noncanonically) a PEL-type

Z
O-lattice (L*», (-, -)*» h*") satisfying Condition such that:

(1) [(L%)# : L?] is prime to O.

(2) There exist (noncanonical) O-equivariant isomorphisms

(@2 () 3 (L 927 (-, ™)
and

(Gry g, (s i hod) 5 (L @R, (o )P, ).
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(3) The moduli problem Mz~ defined by the noncanonical (L*», (-, -)** h*") as
in Definition is canonical in the sense that it depends (up to isomor-
phism) only on Z,, but not on the choice of (L%~ (-, -} h%n).

Definition 1.17 (cf. [38, Def. 5.4.2.6 and the errata]). The PEL-type O-lattice
(LZHa<'a '>ZH7hZH)

is a fized (noncanonical) choice of any of the PEL-type O-lattice (L*~, (-, - )2n h%n)

in Lemma for any element Z,, in any Zy, (in Zyy = {Zy, }, a compatible col-

lection of étale orbits Zy,, at various levels n such that D4 n and U” (n) C H). The

elements of Hy, leaving Z,, invariant induce a subgroup of G(pzn (. .yen pzn)(Z/nZ).
Let Hp, be the preimage of this subgroup under

G(LG e >zr,Lyhz,,L)<ZD) - G(LG e >z,,L7hz,,L)(Z/nZ).

Then we define My, to be the moduli problem defined by (L%~ (-, -Y¢n h%n) with
level-Hp, structures as in Lemma . (The isomorphism class of this final moduli
problem is independent of the choice of (L**, (-, -Y¥# h*%) = (L%~ (-, )%= h%n).)
We define I\/I;}i[" to be the quotient of [[ M2 by H,,, where the disjoint union is over
representatives (Z,, ®p, 0,) (with the same (X, Y, @)) in (Zy, Py, 0y ), which is finite
étale over My, by construction. (The isomorphism class of M%“ 1s independent of
the choice of n and the representatives (Z,, ®,,0,) we use.) We then (abusively)
define Mi” to be the quotient of M;{_’L” by the subgroup of Ty stabilizing @y (whose
action factors through a finite quotient group), which depends only on the cusp
label [(Z34, Py, 09¢)], but not on the choice of the representative (Zq, Py, 09). By
construction, we have finite étale morphisms Mi“ — M?_[“ — My, (which can be
identified with My — My — My, for some canonically determined open compact
subgroups Hj, C Hj C Hy,).

Such boundary moduli problems M%}" are the fundamental building blocks in the
construction of toroidal boundary charts for My,. (They actually appear in the
boundary of the minimal compactification of My, which we call cusps. They are
parameterized by the cusp labels of My.)

It is important to study the relations among cusp labels of different multiranks.

Definition 1.18 (cf. [38, Def. 5.4.1.15]). A surjection
(Zn, P, 0p) — (21, 9], 67,)

n'’n
between representatives of cusp labels at level n, where ®, = (X,Y,d,0_2n,%0.n)
and @), = (X", Y', ¢, 0" 5 ., 00.n), is a pair (of surjections) (sx : X — X' sy :
Y = Y") (of O-lattices) such that:

(1) Both sx and sy are admissible surjections (i.e., with kernels defining fil-
trations that are admissible in the sense of Definition , and they are
compatible with ¢ and ¢’ in the sense that sx¢ = ¢'sy.

(2) 25, is an admissible submodule of Z_5,, and the natural embedding
GrZLQ!n — Grzlen satisfies p_g 0 (Grzflzyn — Griz)n) =s% o @L2,n‘

(3) Z_1,n is an admissible submodule of Z', ,, and the natural surjection
Gr(z)m —» Gré:n satisfies sy © po.n = gp{m o (Gr(z)m —» Gr(z):n).

In this case, we write s = ($x,8y) : (Zn, Pn,dpn) — (Z0,, P, 00)

By taking orbits as before, there is a corresponding notion for general cusp labels:
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Definition 1.19 (cf. [38, Def. 5.4.2.12]). A surjection (Zy,®Py,d0y) —»
Z , etween representatives of cus abels at leve where
(Zhy, ®4,0%) b D ' f p  label level M, h
(I)?-l = (vav(bv@fQ,H»@O,H) and (I);-L = (X/7Y/7¢/a§0L27H7(P6,H); is a pair (Of
surjections) s = (sx : X — X', sy : Y = Y") (of O-lattices) such that:
(1) Both sx and sy are admissible surjections, and they are compatible with ¢
and ¢’ in the sense that sx¢ = ¢'sy.
(2) Z3 and (¢’ 54, P04) are assigned to Zy and (p—234,p03) Tespectively
under s = (sx,sy) as in [38, Lem. 5.4.2.11].

In this case, we write s = (sx,sy) : (Za, P, 0n) = (Zy, DYy, 0%)-

Definition 1.20 (cf. [38] Def. 5.4.2.13]). We say that there is a surjection from
a cusp label at level H represented by some (Zq, Py, 0%) to a cusp label at level H
represented by some (Z,, ®4,,0%,) if there is a surjection (sx, sy ) from (Za, @3¢, 0%)
to (2%, ®Yy, 0%,)-

This is well defined by [38, Lem. 5.4.1.16].

The surjection among cusp labels can be naturally seen when we have the so-
called two-step degenerations (see [16, Ch. III, §10] and [38] §4.5.6 in the revision]).
This notion will be further developed in Definitions [1.32} [T.37], and [T.38| below.

1D. Cone decompositions. For any torus argument ®, = (X,Y, ¢, v_2.n, ¢o.n)
at level n, consider the finitely generated commutative group (i.e., Z-module)

Gl yeo(y) -y ©@o(y)
(1.21) Se. = (V) §X)/ ((biy) DX = (3v) ®(b*x)) vy €Y
X€X,beO

and set Sg, = S, free, the free quotient of S¢,. (See [38, (6.2.3.5) and Conv.
6.2.3.26].) Then, for a general torus argument ®y = (X,Y, ¢, v_2.2, po,2) at level
H, there is a recipe [38] Lem. 6.2.4.4] that gives a corresponding free commutative
group Sg,, (which can be identified with a finite index subgroup of some Sg,, ).

The group Sg,, provides indices for certain “Laurent series expansions” near the
boundary strata. In the modular curve case, it is canonically isomorphic to Z, which
means there is a canonical parameter g near the boundary — i.e., the cusps. The
expansion of modular forms with respect to this parameter then gives the familiar
g-expansion along the cusps. The compactification of the modular curves can be
described locally near each of the cusps by Spec(R[q'];cz) < Spec(R[q']icz-,) for
some suitable base ring R. For My, we would like to have an analogous theory
in which the torus with the character group Sg,, can be partially compactified by
adding normal crossings divisors in a smooth scheme. This is best achieved by
the theory of toroidal embeddings developed in [36]. Many terminologies in such a
theory will naturally show up in our description of the toroidal boundary charts,
and we will review them in what follows.

Let Sy, := Homz(Se,,, Z) be the Z-dual of Sg,,, and let (Sa,, )y := S4,., %R =

Homy(Ss,,,R). By construction of Sg,,, the R-vector space (Sa,,)§ is isomorphic
to the space of Hermitian pairings (-, ) : (Y ®R) x (Y®R) - O®R = BQR,
Z Z Z Q

by sending a Hermitian pairing (-, - |) to the function y ® ¢(y’) — Trp,g(y,y’) in
Homg (Y ®R) x (Y @R),R) = (Sg,,)%- (See |38, Lem. 1.1.4.6].)
Z Z
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Definition 1.22 (cf. [38, beginning of §6.1.1]). (1) A subset of (S, )y 1is
called a cone if it is invariant under the natural multiplication action of
RZ, on the R-vector space (S, )i -
(2) A cone in (Se,, )y is nondegenerate if its closure does not contain any
nonzero R-vector subspace of (Sa,, )5 -
(3) A rational polyhedral cone in (Sq,, )y is a cone in (S, )y of the form
oc=Rsov1 + ... +Rygv, withvy,...,v, € (S@H)(\é = S&ﬁﬂ %}Q.

(4) A supporting hyperplane of o is a hyperplane P in (Se,, )i such that o
does not overlap with both sides of P.

(5) A face of o is a rational polyhedral cone T such that T =& N P for some
supporting hyperplane P of o. (Here an overline on a cone means its closure
in the ambient space (S, )y-)

Let Pg,, be the subset of (Sg,, ) corresponding to positive semidefinite Her-
mitian pairings (-, -) : (Y ®R) x (Y ®R) — B®R, with radical (namely the
Z Z Q

annihilator of the whole space) admissible in the sense that it is the R-span of some
admissible submodule Y' of Y. (We say a submodule Y’ of Y is admissible if Y/ C Y
defines an admissible filtration on Y’; cf. Definition [[.10] In particular, the quotient
Y/Y’ is also an O-lattice.)

Definition 1.23 ([38, Def. 6.2.4.1 and 5.4.1.6]). The group I's,, is the subgroup

of elements v = (vx,7y) in GLo(X) X GLo(Y) satisfying ¢ = yx¢vy, p—2u =
tyxp_am, and ©o = vy o (if we view the latter two as collections of orbits).

The group I's,, acts on Sg,,, and its induced action preserves the subset Pg,,
of (Se,, ). (The group I'y,, is the automorphism group of the torus argument ®y.
Such automorphism groups show up naturally because torus arguments are only
determined up to isomorphism.)

Definition 1.24 (cf. 38, Def. 6.1.1.12]). A I'y,,-admissible rational polyhedral
cone decomposition of Pg,, is a collection ¥ = {0} },c; with some indexing set
J such that:

(1) Every o; is a nondegenerate rational polyhedral cone.

(2) Pg,, is the disjoint union of all the ;’s in . For each j € J, the closure
of 0 in Po,, is a disjoint union of op’s with k € J. In other words,
Py, = 1] o0j is a stratification of Ps,,. Moreover, each oy, appearing in

jeJ
the closure of o; as above is a face of o;.

(3) X is invariant under the action of I'e,, on (Sa,, )k, in the sense that Iy,
permutes the cones in X. Under this action, the set ¥/T's,, of I's,, -orbits
is finite.

Definition 1.25 (cf. [38, Def. 6.1.1.13]). A rational polyhedral cone o in (Sa,, )y
is smooth with respect to the integral structure given by S%H if we have o =
Rsov1 + ...+ Rogv, with vy, ...,v, part of a Z-basis of S%H.

Definition 1.26 (cf. [38, Def. 6.1.1.14]). A I'y,,-admissible smooth rational
polyhedral cone decomposition of Py, is a I's,, -admissible rational polyhedral
cone decomposition {o;};cs of Pa,, in which every o; is smooth.

Definition 1.27 (cf. [38, Def. 7.3.1.1]). Let Xg,, = {0} }jes be any T's,, -admissible
rational polyhedral cone decomposition of Pg, . An (invariant) polarization
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function on Pg,, for the cone decomposition Yg,, is a I's,, -invariant continuous
piecewise linear function polg,, : Pe,, — R>o such that:

(1) polg,, is linear (i.e., coincides with a linear function) on each cone o
in Ng, . (In particular, polg, (tr) = tpolg, (x) for any x € Pg,, and
te Rzo.)

(2) polg,, (Pa, NSg, ) —{0}) C Zso. (In particular, polg, (x) > 0 for any
nonzero « in Pg,,.)

(3) polg,, is linear (in the above sense) on a rational polyhedral cone o in Py,
if and only if o is contained in some cone 0; in X, .

(4) For any x,y € Pa,,, we have polg,, (x +y) > polg,, (v) + polg,, (y). This is
called the convexity of polg,, .

If such a polarization function exists, then we say that the I's,, -admissible rational
polyhedral cone decomposition Yg,, is projective.

Definition 1.28. An admissible boundary component of Pg,, is the im-
age of Py, under the embedding (Sq, )& <> (S, )y defined by some surjection
(P, 09) — (9%, 05,). (See Definition [1.19).)

We shall always assume that the following technical condition is satisfied:

Condition 1.29 (cf. [I6, Ch. IV, Rem. 5.8(a)]; see also [38, Cond. 6.2.5.25 in the
revision]). The cone decomposition Yo, = {0;};cs of Pa,, is chosen such that,
for any j € J, if yo, N7, # {0} for some v € I's,,, then a power of v acts as the
identity on the smallest admissible boundary component of Py, containing 0,00 ;.

This condition is used to ensure that there are no self-intersections of toroidal
boundary strata when the level H is neat.

To describe the toroidal boundary of M4, we will need not only cusp labels but
also the cones:

Definition 1.30 (cf. [38, Def. 6.2.6.1]). Let (®y,0%) and (9%, 0,) be two repre-
sentatives of cusp labels at level H, let 0 C (Sa,, g, and let o' C (Sqy, g We say
that the two triples (Py,09,0) and (P4, 0%,,0') are equivalent if there exists a
pair of isomorphisms v = (yx : X' = X,y : Y 5 Y") (of O-lattices) such that:
(1) The two representatives (P, dy) and (P, 0%,) are equivalent under v (as
in [38], Def. 5.4.2.4], the general level analogue of Definition [1.15)).
(2) The isomorphism (Sa, )i — (Sa,, )y induced by v sends o’ to .
In this case, we say that the two triples (Py, 03, 0) and (P, 04, 0") are equivalent
under the pair of isomorphisms v = (yx,7Vy).

Definition 1.31 (cf. [38, Def. 6.2.6.2]). Let (®3,0%) and (9%, 6y,) be two repre-
sentatives of cusp labels at level H, and let ¥g,, (resp. Zq;./%) be a I'y,, -admissible
(resp. L, -admissible) smooth rational polyhedral cone decomposition of Pg,, (resp.
Pq,;{). We say that the two triples (P, 034, Xa,,) and (<I>'H,6§{,Zq>/ﬂ) are equiv-
alent if (®yy,dy) and (PY,0%,) are equivalent under some pair of isomorphisms
v=(yx: X' 5 X,y : Y 3 Y"), and if under one (and hence every) such 7y the
cone decomposition Xa,, of Pe,, is identified with the cone decomposition Xg;, of
Py, . In this case we say that the two triples (Py, 0p, Xa,,) and (@;{,53_[,2%1)
are equivalent under the pair of isomorphisms v = (yx,vy).

The compatibility among cone decompositions over different cusp labels is de-
scribed as follows:
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Definition 1.32 (cf. [38, Def. 6.2.6.4]). Let (®3,0%) and (9%, 06,) be two repre-
sentatives of cusp labels at level H, and let Xg,, (resp. quH) be a I'p,, -admissible
(resp. I -admissible) smooth rational polyhedral cone decomposition of Pg,, (resp.
Py, ). A surjection (P, 0%, Y0, ) — (93,03, s, ) is given by a surjection
s=(sx: X =» X' sy : Y > Y'): (Py,dy) - (9,0y) (see Definition [L.19)) that
induces an embedding Pq)/H — Pg,, such that the restriction Xg,, ‘P@, of the cone
H
decomposition ¥g,, of Ps,, to P@H is the cone decomposition quﬂ of quﬂ.
This allows us to define:

Definition 1.33 (cf. [38, Cond. 6.3.3.1 and Def. 6.3.3.2]). A compatible choice
of admissible smooth rational polyhedral cone decomposition data for My
is a complete set ¥ = {¥g,,} of compatible choices of ¥¢,, (satisfying Condition
1.29)) such that, for every surjection (®qq,0%) — (9%, 0%,) of representatives of cusp
labels, the cone decompositions Xg,, and Eq)/H define a surjection (®y, 03, Xa,,) —
(P4, 0y Eq);{) as in Definition m

Definition 1.34 ([38] Def. 7.3.1.3]). We say that a compatible choice ¥ = {¥g,,} of
admissible smooth rational polyhedral cone decomposition data for My (see Defini-
tion is projective if it satisfies the following condition: There is a collection
pol = {polq)H : Po,, — Rxo} of polarization functions labeled by representatives
(P, 0%) of cusp labels, each polg,, being a polarization function of the cone de-
composition X, in X (see Definition , which are compatible in the following
sense: For any surjection (®y, dy) — (9%, 0%,) of representatives of cusp labels (see
Deﬁmtwn inducing an embedding qu — Pg,,, we have polg,, |p(1>,H = pol%,

The most important relations among cone decompositions and among compatible
choices of them are the so-called refinements:

Definition 1.35 (cf. [38, Def. 6.2.6.3]). Let (®y,0%) and (P, 04,) be two repre-
sentatives of cusp labels at level H, and let Xg,, (resp. E@;{) be a I'p,, -admissible
(resp. F¢;{—admz’ssible) smooth rational polyhedral cone decomposition of Pg,,
(resp. P@'H)' We say that the triple (Py, 0y, YXs, ) is o refinement of the
triple (@;_1,5;{,24,;{) if (Py,09) and (PY,0%,) are equivalent under some pair
of isomorphisms v = (yx,7vy), and if under one (and hence every) such v the
cone decomposition X, of Pg,, is identified with a refinement of the cone
decomposition Eq;./H of Pq;./H. In this case we say that the triple (Py, 0, Xa,,)
is a refinement of the triple (@%,5@,2@{) under the pair of isomorphisms
7= (7x,7)-
Definition 1.36 (cf. [38, Def. 6.4.2.2]). Let ¥ = {¥g,,} and X' = {X}, } be two
compatible choices of admissible smooth rational polyhedral cone decomposition data
for My We say that ¥ refines X/ if the triple (Py, 64, Xa,,) is a refinement of
the triple (9,03, X5,,), as in Definition for (®3,0%) running through all
representatives of cusp labels.

Finally, we would like to describe the relations among the equivalence classes

[(®3, 0%, 0)], which will describe the “incidence relations” among (closures of) the
toroidal boundary strata.

Definition 1.37 (cf. [38] Def. 6.3.2.14]). Let (P4, d3) be a representative of a cusp
label at level H, and let o C P};H be a mondegenerate smooth rational polyhedral
cone. We say that a triple (9%, 0%,,0') is a face of (Py, 09, 0) if:
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(1) (®%,04,) is the representative of some cusp label at level H, such that there
exists a surjection s = (sx,sy) : (Pu,0n) — (PY,0%) as in Definition
LI9

(2) o/ C Pg, is a nondegenerate smooth rational polyhedral cone, such that
H

for one (and hence every) surjection s = (sx,sy) as above, the image of o’
under the induced embedding Pg, — Pg, is contained in the Iy, -orbit
of a face of o.

Note that this definition is insensitive to the choices of representatives in the
classes [(®y, 0%, 0)] and [(P%,,d%,,0")]. This justifies the following:

Definition 1.38 (cf. [38, Def. 6.3.2.15]). We say that the equivalence class
(DY, 05,0")] of (94,04,0") is a face of the equivalence class [(Py,09,0)]
of (g, 09, 0) if some triple equivalent to (®%,,04,,0") is a face of some triple
equivalent to (P, d34,0).

1E. Arithmetic toroidal compactifications.

Definition 1.39 (cf. [38] Def. 5.3.2.1]). Let S be a normal locally noetherian alge-
braic stack. A tuple (G, \,i,cq¢) over S is called a degenerating family of type
My, or simply a degenerating family when the context is clear, if there exists a
dense subalgebraic stack Sy of S, such that Sy is defined over Spec(Op, (o)), and
such that:

(1) By viewing group schemes as relative schemes (c¢f. [23]), G is a semiabelian
scheme over S whose restriction Gg, to S1 is an abelian scheme. In this
case, the dual semiabelian scheme GV erists (up to unique isomorphism),
whose restriction Gz/gl to S1 is the dual abelian scheme of Gg, .

(2) X\: G — GY is a group homomorphism that induces by restriction a prime-
to-O polarization As, of Gs, .

(3) ¢ : O — Ends(G) is a homomorphism that defines by restriction an
O-structure ig, : O — Endg, (Gs,) of (Gsy, As,)-

(4) (Gs,,Asy,is,,31) = S1 defines a tuple parameterized by the moduli prob-
lem My.

We will only talk about (semiabelian) degenerations (of abelian varieties with
PEL structures) of this form.

Definition 1.40 (cf. [38, Def. 6.3.1]). Let (G, \,i,ay) be a degenerating family of
type My over S (as in Definition over So = Spec(Op, (o)). Let m\c/:/s =
5 s be the dual of Lieg g, and let Liegy /g = €50y ¢ be the dual of Liegy /.
Note that A : G — GV induces an O-equivariant morphism \* : @\C/;V/S — @é/s'
(Here the O-action on @\é/s is a left action after twisting by the involution *.)
Then we define the sheaf KS = KS 5)/s = KS(g 2 i,04)/5 bY setling

. . My)z—XN(2)®y
KS := (Lie/, Lief o
KS := (Lieg, s g’;flea /s)/ ( ("z) @y —a@(by) ) oCLicd/s
y,ZE@G\/ /s

beO
Analogues of the sheaf KS appear naturally in the deformation theory of abelian
varieties with PEL structures (without degenerations). The point of Definition
is that it extends the conventional definition (for abelian schemes with PEL
structures) to the context of (semiabelian) degenerating families (see Definition

1.39).
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Theorem 1.41 (cf. [38, Thm. 6.4.1.1 and 7.3.3.4]). To each compatible choice
Y¥={3s,} of admissible smooth rational polyhedral cone decomposition data as in
Definition there is associated a proper smooth algebraic stack Mgfzrz over SO =

Spec(Or, (o)

whzch is an algebraic space when H is neat (as in Definition ,

containing MH as an open dense subalgebraic stack, together with a degenemtmg
family (G, X, i, az) over M (as in Definition [1.39)) such that:

(1)
(2)

The restriction (Gm,,, AMyy» IMy,, @3¢)  Of the degenerating  family
(G, A, i, ay) to My is the tautological (i.e., universal) tuple over Myy.
M" has a stratification by locally closed subalgebraic stacks

My =TI Ziewswon
(®21.87,0)]

with [(P3, 014, 0)] running through a complete set of equivalence classes of
(P, O34, 0) (as in Definition with o C Pgﬂ and o € Ly, € X. (Here
Zy is suppressed in the notation by our convention.)

In this stratification, the [(®3,,0%,,0")]-stratum Zja, s oy lies in the
closure of the [(Py, 0%, 0)]-stratum Zj(a,, 5,0y if and only if [(Py, 634, 0)]
is a face of [(®%,,04,,0")] as in Definition

The [(®3(, 031, 0)]-stratum Zj(g,, 5,0y 15 smooth and isomorphic to the
support of the formal algebraic stack Xo,, 5, ,0/T®y,0 for any representa-
tive (P, 031,0) of (P, 03, 0)], where the formal algebraic stack Xo,, 5,0
(before quotient by I'w,, o, the subgroup of I's,, formed by elements map-
ping o to itself) admits a canonical structure as the completion of an affine
toroidal embedding Zs,, s5,,(0) (along its o-stratum Zs,, 5,,,0) of a torus tor-
80T Eg,, 5, 0ver an abelian scheme torsor Cy,, 5,, over a finite étale cover
Mi” of the smooth algebraic stack MZ{ in Definition . (Note that Zy
and the isomorphism class of M,ZH“ depend only on the class [(Py,0x,0)],
but not on the choice of the representative (P, d3,0).)

In particular, My is an open dense stratum in this stratification.

The complement of My in MtO’r (with its reduced structure) is a relative
Cartier divisor Do 2y with normal crossings, such that each connected com-
ponent of a stratum of M" — My is open dense in an intersection of irre-
ducible components of Deo 3 (including possible self-intersections). When
‘H is neat, the irreducible components of Do 31 have no self-intersections
(¢f. Condition [1.29] [38, Rem. 6.2.5.26 in the revision], and [16, Ch. IV,
Rem. 5.8(a)]).

The extended Kodaira—Spencer morphism [38, Def. 4.6.3.32] for G — M4*
iduces an isomorphism

KSG/M“’"/S : Kisc/Mtor :> QI{/I“’”/S [d IOg OO]
(see Definition [1.40). Here the sheaf QM“"/S [dlog o] is the sheaf of mod-

ules of log 1-differentials on ML™ over So, with respect to the relative Cartier
divisor Do 3¢ with normal crossings.
The formal completion

M3z,
of MY" along the [(®4, 03, 0)]-stratum Zi(p,, s,,,0)) s canonically isomor-
phic to the formal algebraic stack X, 5, ,0/T 0,0 for any representative

(®9¢,694,9)]
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(P3, 09, 0) of [(Py,01,0)]. (To form the formal completion along a given
locally closed stratum, we first remove the other strata appearing in the
closure of this stratum from the total space, and then form the formal com-
pletion of the remaining space along this stratum.)

This isomorphism respects stratifications in the sense that, given
any étale (i.e., formally étale and of finite type; see [21, I, 10.13.3])
morphism Spf(R,I) —  Xa,.6,.0/T0y,0 inducing a morphism
Spec(R) — Ea,,.6,4(0)/Te,, 0, the stratification of Spec(R) (inherited
from Ea,, 5,,(0)/T a0, ,0; see [38, Prop. 6.3.1.6 and Def. 6.3.2.16 in the
revision|) makes the induced morphism Spec(R) — MY* a strata-preserving
morphism.

The pullback to (M5")2 o) of the degenerating family (G, \, i, ayy)

Zi(®qy,0
over MY is the Mumford family

(OG, @)\7 07;7 OOC’H)

over Xa,,.651,0/Td,,0 (see 38, §6.2.5]) after we identify the bases using the
isomorphism. (Here both the pullback of (G, \, i, ay) and the Mumford fam-
ily (Y@, O\, Vi, Q7047.[) are considered as relative schemes with additional
structures; cf. [23].)

Let S be an irreducible noetherian normal scheme over Sg. Suppose we have
a degenerating family (GT,)\T,iT,aL) of type My over S as in Definition

1.39f Then (GT, AT it al) — S is the pullback of (G,\,i,a3) — MS*

via a (necessarily unique) morphism S — MY* (over So) if and only if the
following condition is satisfied:

Consider any dominant morphism Spec(V) — S centered at a geometric
point § of S, where V is a complete discrete valuation ring with quotient
field K, algebraically closed residue field k, and discrete valuation v. Let

(Gi, At ai) — Spec(V)

be the pullback of (GT,)\T,iT,aL) — 8. This pullback family defines an
object of DEGpgr,m,, over Spec(V'), which corresponds to a tuple

(A5 N X YE of () 7 [(0))

in DDpg, M, under [38, Thm. 5.3.1.17]. Then we have a fully symplectic-
liftable admissible filtration Z%_[ determined by [(agi)i]. Moreover, the étale
sheaves X* and Y* are necessarily constant, because the base ring V is strict
local. Hence it makes sense to say we also have a uniquely determined torus
argument <I>§{ at level H for Zi.

On the other hand, we have objects ®,,(G¥), Ss,, (at): and B(GY) (see
[38, Constr. 6.3.1.1]), which define objects <I>§_L, Se: and in particular Bt

H
Sg: — Inv(V) over the special fiber. Then vo B* : S : — Z defines an

H H
element of Séi , where v : Inv(V)) — Z is the homomorphism induced by
the discrete va?uatz’on of V.

Then the condition is that, for any Spec(V) — S as above, and for any
choice of 5;:_[ (which is immaterial, because this choice will not be used), there
is a cone ot in the cone decomposition Yt of Pgi (given by the choice of

H H
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¥; ¢f. Definition [1.33) such that G* contains all the vo B* obtained in this
way.

(7) If H is neat and X is projective (see Definition [1.34), then MY, is projec-
tive (and hence a scheme) over Sq.

Statement means the tautological tuple over My extends to a degenerating
family (G, A, 4, az) over M. (Since M49" is normal, this extension is unique by a
result of Raynaud; see [49, IX, 1.4] or [16, Ch. I, Prop. 2.7].) Statements (2)), (3),
, , and @ are self-explanatory. Statement @ can be interpreted as a “uni-
versal property” for the degenerating family (G, X, 7, ag) — MY" among degener-
ating families over normal locally noetherian bases, as in Definition [I.39] satisfying
moreover some conditions describing the “degenerating patterns” over pullbacks to
complete discrete valuation rings with algebraically closed residue fields. This “uni-
versal property” will be crucial in the main construction of this article (in Section

below).

2. KUGA FAMILIES AND THEIR COMPACTIFICATIONS

Let O, *, (L,(-,-)), h, and O be as in the previous section. Then we have a
moduli problem My over S = Spec(Op, (o)) for each open compact H of G(Z"),
with a toroidal compactification Mi9's, for each choice of X.

For simplicity, let us maintain the following:

Convention 2.1. All morphisms between schemes or algebraic stacks over So =
Spec(Or, (o)) will be defined over So, unless otherwise specified.

2A. PEL-type Kuga families. Let Q be any O-lattice. Consider the abelian
scheme Gu,, over My in of Theorem m By [38, Prop. 5.2.3.8], the group
functor Homy (@, Gwm,,) over My is representable by a proper smooth group scheme
which is an extension of a finite étale group scheme, whose rank has no prime factors
other than those of Disc, by an abelian scheme Hom, (Q, Gu,,)°, which we call the
fiberwise geometric identity component of Hom (Q, Gm,, ).

Ezample 2.2. If Q = O%* for some integer s > 0, then Hom,(Q,Gwm,,)° =
Homy(Q,Gm,,) = Gl\x,,; is the s-fold fiber product of Gu,, over My,.

Ezample 2.3. If O = My(Or) and Q is of finite index in OE* for some integer
k > 1, then the relative dimension of Homy(Q, Gwm,,)° over My is 1/k of the
relative dimension of Gm,, over My,.

Definition 2.4. A PEL-type Kuga family over My is an abelian scheme N —
My, that is Z(XD)—isogenous to Homy,(Q, Gmy,,)° for some O-lattice Q.

Consider Diff ! = Diffa}z, the inverse different of O over Z [38] Def. 1.1.1.11]

with its canonical left O-module structure. Since the trace pairing Diff ' x O — Z :
(y,z) = Tro z(yx) is perfect by definition, for each O-lattice @, we may identify
QY = Homgz(Q,Z) with Homp(Q,Diff ™!). By composition with the involution
*: O 3 O°, the natural right action of O on Diff ™! induced a left action of @ on
Diff 7!, which commutes with the natural left action of @ on Diff ~*. Accordingly,
the Z-module QV is torsion-free and has a canonical left O-structure induced by
the right action of @°P on Diff ! (and * : © 5 ©°P). In other words, QV is an
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O-lattice. Then the trace pairing induces a perfect pairing
(,)@:Q"xQ—=Z:(f,x) = Trosz(f(z)).
For any b€ O, f € QV, and x € Q, we have
(bf,7)q = Tro/z(f(2)b*) = Tro/z(b" f(x)) = Tro,z(f(b*x)) = (f,0*x).
Lemma 2.5. There exists an embedding jo : Q¥ — Q of O-lattices inducing an
isomorphism jq : Q¥ ® L) S0 Z(ny of O @ Zny-modules such that the pairing
Z Z Z

Gg' () o (QER) x(QER) R

is positive definite.

Proof. By the explicit classification [38 (1.2.1.10), Prop. 1.2.1.13, and Lem.
1.2.1.23], there exists an isomorphism jg o : Q¥ @R = Q®R of O ®R-modules
Z Z Z

such that the induced pairing <]élo( ) )0 (QOR) x(Q®R) — R is positive def-
’ Z Z

inite. If O is the set of all rational prime numbers, then necessarily O = Z, and the
lemma is clear. Otherwise, we know that Isomo ¢z, (QVe® Z(ny, Q ® Zny) is dense
Z Z Z

in Isom@%@R(QV (%) R,Q %R) (with the topology induced by R). Hence there exists
an element jo 1 : QY %Z(D) 5Q 629 Z gy close to jg,o in ISOmogR(Q\/ %R, Q %R)
such that the induced pairing <j§,11( ), e (@ %) R) x(Q % R) — R is still positive
definite. By multiplying jg 1 by a positive element in Z(XD), we may assume that it

maps @V to a submodule of ). Then the induced morphism jg : Q¥ — Q satisfies
the requirement of the lemma. ([

Lemma 2.6. The abelian scheme HomZ(Q\CG&H) s isomorphic to the dual
abelian scheme of Homy,(Q, Gm,,)-

Proof. Let s be the common rank of Q and QV as free Z-modules. Let {e1,...,es}
be a Z-basis of Q, and let {e}, ..., e’} be the dual Z-basis of QV, such that e} (¢;) =
di; for any 1 < 4,5 < s. Then the choices of bases define canonical isomorphisms

(27) 7H0mZ(Qa GM’H) = Glijli

and

(2.8) Homy (QY, Gy,,) = (G, )™

As a result, Hom,(Q", Gy, ) = Gy is isomorphic to the dual abelian scheme of
Homy (Q, Gwm,,) = (G, ) ** O

Lemma 2.9. Let jo : QY — Q be as in Lemma . Then the isogeny

AMyqjo.z - Homy (Q, Gm,, ) — Hom, (QY,Gyy,.)
induced canonically by jo and Am,, : Gm,, — G\l\//la’ which is of degree prime to O
because both [Q : jo(QV)] and deg(Awm,,) are prime to O, is a polarization.

Proof. We need to show that the invertible sheaf

(IdHom, (Q,Gw,, ) AMa.j@.2)" Plom, (Q,Gu,, )

is relative ample over My;. Using the choice of basis {e1, ..., es} (vesp. {e},...,el})

of @ (resp. QV) as in the proof of Lemma the morphism jg can be represented



20 KAI-WEN LAN

by e/ — > aj;e; for some integers a;;, for each 1 <4 < s. These integers form
1<j<s

a positive definite matrix a = (a;j), because the induced pairing <jé1( ) )o

(Q®R) x(Q®R) — R is positive definite. By completion of squares for quadratic
Z Z

forms, we know that there exist an integer m > 1 such that ma = ud®u for some

matrices d and v with integral coefficients, where d = diag(dy,...,d) is diagonal

with positive entries. As a result, the morphism mAwm,, j, .z factors as a composition

MAMy .2 = [ 'u]™ © AMy ..z © [u]”
of morphisms
[u]" : Homy(Q, Gm,,) — Homy (Q, Gwm,,),
Ay a2 Homy (Q, G, ) — Homy (QY, Gy, ),
[“u]* : Homy (Q", \rélﬂ) —>HoimZ(QV,G\,\§,H).
If we identify Homy(Q,Gwm, ) and Hom,(QY,Gy;, ) as dual abelian schemes

of each other using the canonical isomorphisms (2.7) and (2.8) defined by
the dual bases {ej,...,es} and {eY,...,eY}, then [‘u]* = ([u]*), and

)’ s
MMy a.z = (didwmy,) X (dadm,,) X - .. X (dsAwm,, ) : G,Cli — (G,\VAH)XS is a polarization.
Since [u]* is finite, this implies that Am,, j,z is also a polarization, as desired. [

Proposition 2.10. The abelian scheme Homq (QY, Gy, )° is Z(XD)—isogenous to the
dual abelian scheme of Homy(Q, Gm,,)°.

Proof. Since Aw,, j,,z is a polarization by Lemma the induced morphism

(211) )‘MH,J'Q : MO(Q,GMH)O ;)IloimZ(CLGMH)

AMyy i

397 Homy (QY, Gyp,,) — (Home(Q, Gy, )°)”

is also a polarization. (Since the condition of being a polarization can be checked
fiber by fiber [I4, 1.2, 1.3, 1.4], it suffices to note that the restriction of an am-
ple invertible sheaf to a closed subscheme is again ample.) Since Awm,, j,,z maps
Homy (Q,Gm,,)° onto the subscheme Homy, (QY, Gy, )° of Homy(QY, Gy, ), we
obtain an isogeny
Homy(Q", Gyy,,)° — (Home (Q, Gy, )°)”-
The degree of this isogeny is prime to O because Am,, j, .z is. O
Corollary 2.12 (of the proof of Proposition [2.10). Let jo : QY < Q be as in
Lemma [25] Then the canonical morphism
Mir.jo + Homo (Q, Gy, )® = (Home(Q, Gy, )°)”

induced by jo and Am,, : Gm, — G\,\jlﬂ (as in (2.11) is a polarization of degree

prime to O.

Corollary 2.13. If a Kuga family N — My is Z(XD)—isogenous to Hom, (@, Gwm,, )°
for some O-lattice Q, then we have canonical isomorphisms over My :

@N/MH = HOimO(Q’@GMH/MH)v va/MH = Hoirno(Qv,@GmH/MH)»

Liey /m,, = HOimo(QV,@éMH/MH)a Liexy /i, gHOimo(Q@ZJAVAH/MH)
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Remark 2.14. We do not need to choose a polarization N — NV in the isomorphisms
in Corollary The sheaves on the right-hand sides of the isomorphisms are
locally free because the order O is maximal at any good prime (see Definition
and [38 Prop. 1.1.1.17]), and because lattices over maximal orders are projective
modules (see [38], Prop. 1.1.1.20]).

2B. Main theorem. (Convention will persist until the end of this article.)

Theorem 2.15. Let Q be any O-lattice. Suppose that H is neat (as in Definition
, so that the moduli problem My it defines is representable by a quasiprojective
scheme, and so that M{" = Mgf[fz is a proper smooth algebraic space over Sg. Then
there is a set Kg 2,5, equipped with a reflexive and transitive binary relation -,
parameterizing the following data:

(1) Foreachk € Kgu s, there is a Z(XD)—isogeny K5°8 : Home (Q, Gwm,, )° — Ny

over My, together with an open immersion k' : N, < N of schemes
over Sy, such that the scheme N'** is projective and smooth over Sy, and
that the complement of N, in N (with its reduced structure) is a relative
Cartier divisor E ,, with simple normal crossings.
For each relation ' = k in Kg 3 x, there is a proper log étale morphism
LT NYT — N extending the canonical Z(XD)—isogeny

KK
Jrrm = k1598 o ((n')iSOgY1 N — Ng

such that R*(f")«Onwer = 0 for i > 0.
(2) For each k € KQﬂzj the structural morphism f. : N, — My extends
(necessarily uniquely) to a morphism fi°F : NI — MY, which is proper
and log smooth (as in [33} 3.3] and [32, 1.6]) if we equip NI°* and MYQ" with
the canonical (fine) log structures given respectively by the relative Cartier
divisors with (simple) normal crossings Eco , and Doo 3 (see above and

of Theorem |1.41)). Then we have the following commutative diagram:

+NCD t
Nn( s Nﬁor
projective
proper f proper fror smooth
smooth | /" log smooth |/
C tor
MH +NCD ’ MH proper SO

smooth

If &' = K, then we have the compatibility fi* = fi" o fio* .
(3) Let us fix a choice of k € Kg 9.5 and suppress the subscript k from the
notation. (All canonical isomorphisms will be required to be compatible with
the canonical isomorphisms defined by pullback under f,i?fﬁ for each relation
k' = k.) Then the following are true:
(a) Let th/so [dlog oo] and QI%/I%_‘[‘/SO [dlog oo] denote the sheaves of mod-
ules of log 1-differentials over Sqy given by the (respective) canonical log
structures defined in (2]). Let

ol or\ *
ror jmsgr = (ror s, [d10g 00]) / ((f*F) (Qw /s, [d1og o))

Then there is a canonical isomorphism

or \ * . ~ L
(2.16) (/") (Home (Q, Lied: jmier)) = Qpyeor jmiter
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(2.17)

(2.18)

(2.19)

(2.20)

(b)
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between locally free sheaves over N**, extending the composition of
canonical isomorphisms

J*(Homo (Q", Lieg;,, jm,,)) = f7Lieg m,, = Qjm,,

over N.
For any integer b > 0, there exists a canonical isomorphism

R F17 (Qyeor jpasge)

= (Ab(@o(Qv,va/Mggr)))ﬁ® (A (Home (Q", Lieg jpyr)))-

tor
M3

of locally free sheaves over MY*, compatible with cup products and ex-
terior products, extending the canonical isomorphism over My, induced
by the composition of canonical isomorphisms

R f.(ON) = N'Lieyy y,, = A"(Home (Q", Liegy my,))-

Let ﬁator/Mgsr = /\.ﬁhtor/M%r be the log de Rham complex associated
with f* : N*T — MY" (with differentials inherited from O/, )- Let
the (relative) log de Rham cohomology be defined by

Hiog qr(N /M) i= R L (Qior jpasge)-
Then the (relative) Hodge spectral sequence

b o4

E®Y = RV £ (Qeor o) = Histh n (NPT /M)

degenerates at Ep terms, and defines a Hodge filtration
on ﬂf(Lg_gR(Nmr/Mﬁfzr) with locally free graded pieces given by
RY :EOY(QNW/M%?) for integers a +b = i, extending the canonical
Hodge filtration on H'g (N/My,).
As a result, for any integer i > 0, there is a canonical isomorphism

/\iﬂllog—dR(Ntor/M%-czr) :> ﬂfug—dR(Nmr/M%gr)v

compatible with the Hodge filtrations defined by , extending the
canonical isomorphism N Hig (N/My) = HYx (N/Myy) over My (de-
fined by cup product).

For any jo : Q¥ — Q as in Lemma the Z(XD)-polarization

MMy jo : Homp(Q,Gwm,,)° — (Hoimo(Q,GMH)O)v in Corollary [2.12
defines canonically (as in [14l 1.5]) a perfect pairing

(3 Vi # Har(N/Mz) x Hig (N/M3) — Oy, (1).
Then ﬂllog_dR(Ntor/l\/lgfzr) is the unique subsheaf of
(Mg = M3 (Har (N/May))

satisfying the following conditions:
(i) ﬂllog_dR(Nwr/M‘;_‘zr) is locally free of finite rank over Opsor.

(ii) The sheaf f:or(ﬁiltor/Mgfzr) can be identified as the subsheaf of

(Mg = M) (£(Qnymy,)
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formed (locally) by sections that are also sections of
ﬂllog_dR(Nmr/Mg_‘Zr). (Here we view all sheaves canonically as

subsheaves of (Mg — M) (HAr (N/My)).)
(iii) ﬂllog_dR(Ntor/Mg_‘Zr) is self-dual under the push-forward

(M3 = M) (- )

)\MH’jQ .

(e) The Gauss—Manin connection

Vi Hip(N/M2) = Hip(N/My) @ Q.50
My

extends to an integrable connection
° ° —1
Vi Elog-dR(Ntor/Mg-({?r) — ﬁlog—dR(Ntor/Mg-(l)r) ® QMgg*'/sO

tor
M3

with log poles along Do 3¢, called the extended Gauss—Manin con-
nection, satisfying the usual Griffiths transversality with the Hodge

filtration defined by ([2.20)).

(4) (Hecke actions.) Suppose we have an element g, € G(A>"), and suppose

(2.23)

(2.24)

we have a (neat) open compact subgroup H' of G(ZD) such that ggl"H’gh C
H. Suppose ¥’ = {XF, /} is a compatible choice of admissible smooth ra-

tional polyhedral cone decomposition data for My, which gp-refines ¥ as
in [38, Def. 6.4.3.3]. (The notion was called “dominance” in the original
version, but changed to the more common “refinement” in the revision.)
Then there is also a set Kqg 3 s/, equipped with a reflexive and transi-
tive binary relation = as Kqgu » is, parameterizing (for ' € Ko s)
Z(XD)—isogenies Homy(Q,Gwm,,,)° — Nj, over My, together with open im-

mersions N/, — (N;,)m]r of schemes over Sy, satisfying analogues of prop-

erties (1), (2), and above. The constructions of Kqg .y and Kg n/ s

(and the objects they parameterize) satisfy the compatibility with gp in the

sense that, for each k € Kqg w5, there is an element v’ € Kqg 3 sy such

that the following are true:

(a) There exists a (necessarily wunique) finite étale morphism
[gn]k .k : NI, — Ny covering the morphism [gp] : My — My given by
[38, Prop. 6.4.3.4], inducing a prime-to-O0 isogeny N/, — N, Mx My,

H
which agrees with the Z(XD)—isogeny induced by (k')1%°8, k'*°8  and the
Z(X\])'leo.geny GMH/ — Gwmy, MXH My realizing Gwm,, MXH My as a Hecke

twist of Gm,,, by gn. (Here all the base changes from My, to My use
the morphism [gr].)
(b) There exists a (necessarily unique) proper log étale morphism
1+ ()™ N

extending the morphism [gn)e » and covering the morphism [gn]""

M7 5 — MY, given by [38, Prop. 6.4.3.4], such that

R’([gh]:;o/fn)* ﬁ(N;,)t‘" =0

for any i > 0.
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(¢) There is a canonical isomorphism
t b ~ b t
([gn] Or)*ﬂi‘oz.dR(NZ‘”/M%fz) - ﬂiloz-dR((N:c/) Or/Mg-(Z'r,zf)

respecting the Hodge filtrations and compatible with the canonical iso-
morphisms
tor \xl ~ &l
([gn] )" Onor prasgry, = Qs yeor s

t . ~ .
([9n]"™")" Liegv jsgr, = Liegv jmrer s

t =V ~ -V
([gn] Or)*@G/MtﬁfZ - @G/M;&’f‘z,v

and the canonical isomorphisms in (3)) for N and (N’,)"".
(5) (Z?D)—isogenies.) Let g; be an element of GLo g g0 (Q%AO"’D). Then the
Z

submodule gl(Q®ZD) in Q® A>T determines a unique O-lattice Q" (up
Z Z
to isomorphism), together with a unique choice of an isomorphism [gi]q :
Q®Zny = Q' ® Zny, inducing an isomorphism Q @ A" 5 Q @A®"
Z Z zZ Z

matching g,(Q @ Z2) with Q' ® Z°, and inducing a canonical Z(XD)-isogeny
Z Z

[gl]a : I—]:071/n(9(6217 GMH)O — MO(Q» GMH)O

defined by [gilg. For Homun(Q',Gwm,,)°, there is also a set Kg 1w,
equipped with a reflexive and transitive binary relation > as Kg s is,
parameterizing (for k' € Ko 3.5) Z(XD)—isogenies

mo(Qla GMH)O - Ni@'

over My, together with open immersions N/, — (N;/)tor of schemes over

So, satisfying analogues of properties , , and above. The construc-

tions of Kg w.x and Kgr . » (and the objects they parameterize) satisfy the

compatibility with g; in the sense that, for each k € Kqg 3 x5, there is an

element &' € K¢ 3,5 such that the following are true:

(a) The Z g, -isogeny (il . = K108 o [gi]& o ((K/)5°8)~1 : NI, — N, is
an isogeny (not just a quasiisogeny), and hence defines a finite étale

morphism.
(b) There exists a (necessarily unique) proper log étale morphism
* tor tor or
(2.25) ([gal )™+ (NG )™ — N
extending the morphism [qi]7, . over My, such that
(226) Ri([gl]:/7ﬂ)iorﬁ(,\l;/)cor =0

for any i > 0.
(¢) For any integer i > 0, there is a canonical isomorphism

* t * i ~ ; t,
(([92lr,0)" )"+ Higgar (NI /M3255) = Higgqr (N)™ /M3s)
extending the canonical isomorphism

(gl w)* + Ha (N /M2g) = Hag Ny /Myy)
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induced by [gi]q, respecting the Hodge filtrations and inducing canon-
ical isomorphisms

(gl )™)" Rbfior(ﬁﬁgor/mggr) = Rbfior(ﬁ?N'K,)mf/Mggr)

(for integers a + b = i) compatible (under the canonical isomorphisms
in (3) for N and (N',)*") with the canonical isomorphisms

(log)” :HOimO(Qv’mGV/MQ?) = Hoimo((Q/)vamGwmggr)
and

(l9]5)" : Home(QY, Lie; jyser) = Hom ((Q')”, Lieds yior).

2C. Outline of the proof. The proof of Theorem [2.15| consists of the following

steps:

1)

Find a PEL-type O-lattice (E, (-, ~>~,ﬁ), a fully symplectic admissible fil-
tration Z on L ® ZD a torus argument ®, and a splitting s for Z, such that,
for some ch01ces of #, ¥, and &, the [(<I> 6 ,0)]-stratum Z[(<I> 5] of
the toroidal compactification l\~/l%“ = M%’% has a canonical structure of an

abelian scheme over My, and such that there exists a canonical Z(XD)—isogeny

K508 mO(Q,GMH) — Z[( _ 5\ Ek

Then we take N, to be this Z[(q> 53]

Take K{,% 5 to be the set of all such triples x = (#,3,5), with the
binary relation

=(H,¥,&) - k= (H,%,5)
defined when H' C # and ¥’ refines 3 as in [38, Def. 6.4.2.8], and when
the [(®g,,05,,5")]-stratum of M _ is mapped (surjectively) to the

H'? H’? / E/
[(‘5~ d47,0)]-stratum  of Mti)r = Mt9r~ under the canonical morphism
M;_izf s = Mtor~ given by [38 Prop. 6 4 2.9].

For k = (’H, 3,5), take Nt to be the closure of the [(&)ﬁ7 gﬁ, 0)]-stratum
in M%’%. For ¥ = (H',¥',¢') = k = (H,%,5), the morphism f%*

K,k "
NST — N is just the morphism induced by the canonical proper morphism

M%’f s Mt°r~ given by [38, Prop. 6.4.2.9].

Show that Nf;’r is projective and smooth over S¢ for x € K%reﬂ 5

Find a condition on k that guarantees the existence of a morphism fi°r :
Nr — MY" extending the structural morphism fy; : Ny — My,

Take K,7,5 to be the subset of KQ x consisting of elements x satisfying
the condition we have found. Show that this subset is nonempty and has
an induced binary relation >; note that the conditions we need can always
be achieved after suitable refinements of cone decompositions. This verifies
and of Theorem

For each k € Kq 3.5, verify that the morphism f£°" : NI°* — M9 extend-
ing N, — My is log smooth, and verify of Theorem m
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(6) Assuming and (3), verify () and (B]) of Theorem using the Hecke

actions on the double tower {Mz 5} 5.

(7) Verify 7 , and of Theorem using explicit descriptions of

the formal fibers of fi along (locally closed) strata of M". (A crucial step
for (3b)) requires the notion of log extensions of polarizations we mentioned
in the introduction.)

We will carry out these steps in Sections We will make frequent references to
results cited in Section |1} and also to the original statements in [38].

2D. System of notation. Although the underlying ideas are simple, the notation
can be quite heavy. (This seems unavoidable in general works on compactifications.)
We decided to keep the notation informative (and hence complicated), because we
believe it is more difficult to keep track of three sets of cusp labels and cone decom-
positions with simplified notation. We understand that the heaviness of notation
will inevitably be an enormous burden on the readers, and hence we would like to
provide some guidance by explaining the key features in the system of notation, as
follows:

e The superscript *°" stands for toroidal compactifications (or objects related
to them). For morphisms this typically means extensions to morphisms
between toroidal compactifications.

e Depending on the context, the overlines can have different meanings:

— For geometric objects they almost always mean closures.

— For sheaves of differentials (or related objects) they mean the log ver-
sions.

— Notable exceptions (to the above two) are in Sections be-
low, where overlines can also stand for quotients of group schemes
or sheaves.

e Objects for the “given” moduli problem My and its compactifications are
denoted as in Section [II N

e Objects for the “larger” moduli problem Mz (mentioned in step |1| above)
will be denoted with either ™ (tilde) or ” (breve) on top of the symbols in
Section [I} The difference is the following:

— Symbols with ~ will be used for defining I\N/Iﬁ and its compactifications

I\N/I%”f§7 and for realizing the Kuga families we would like to compactify
N/ tor
of M is

— Symbols with ” will be used for the boundary strata of |\~/|;_~‘Zrz~: appearing

as boundary strata Z[(ig,ggﬁ)]

in the closure of the realizations Z %_5_~. (These strata are param-
[(257,057:9)]

eterized by faces [(éﬁ,gﬁ,%)] of [(;I;ﬁ,gﬁ,&)].) In other words, they
parameterize the boundary strata of the toroidal compactification of

the Kuga families we consider.
e In the local descriptions of toroidal boundary structures, we will encounter

notations of the forms (-)(o) and (-),.

— When the object (-) being modified is a scheme with action by some
torus, (-)(o) will stand for the affine toroidal embedding adding the
o-stratum (which then also adds all the strata for nontrivial faces of o),
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while (), will stand for the closed o-stratum (without the nontrivial
face strata).

— The formal version of (-), (often denoted in Fraktur) will mean the
formal completion of (-)(o) along (- ),-.

The notation will be most heavy in Sections[dH5] where the calculation of relative
cohomology is carried out in detail. For readers only interested in applications to
cohomology of Shimura varieties, the statements of Theorem the two propo-
sitions in Section [BD] and the applications in Section [6] are all they need.

3. CONSTRUCTIONS OF COMPACTIFICATIONS AND MORPHISMS

3A. Kuga families as toroidal boundary strata. The goal of this subsection
is to carry out steps and of Section

Let @Q be an O-lattice as in Theorem Identify QY with Home (Q, Diff 1)
and give it an O-lattice structure as in Section The (surjective) trace map
Tro/z : Diff 7! — Z induces a perfect pairing

(,)Q:Q"xQ—=Z:(f,x) = Troz(f(x)).
By extension of scalars, the pairing (-, -)o induces a perfect pairing between
@RV ®Q and Q ® Q. By Condition the action of O on L extends to an action of
Z Z

some maximal order O’ in B containing O. Let us fix the choice of such a maximal
order O’. By [38, Prop. 1.1.1.17], O® Z,) # O' ® Z, for a prime number p > 0
Z Z

only when p| Disc. Let Qo :=0"-Q C Q®Q and Q_5 := Homo(Q,Diff_,l/Z)(l) -
Z
QY ®Q(1). Then the induced pairing
Z

()@ Q-2xQo — Q1)

has values in Z(1). The localizations of this pairing at primes of Z are perfect
except at those dividing Disc.

Let (L,{-, -)7, h) be the symplectic O-lattice given by the following data:
(1) An O—latticg L:= Q_2® LDQo, where Q_5 and Qg are defined as above.
(Note that L satisfies Condition [L.9 by construction.)
(2) A symplectic O-pairing (-, -} : Lx L — Z(1) defined (symbolically) by
the matrix

T_o <'7 '>Q Y—2
(z,y) = "2 (-, ) y-1 |,
Zo _t<'7 '>Q Yo

namely by
<£L’7y>~I: <$72»y0>Q + <$—1,y—1> - <y—27$0>Q7

T—2 Y—2 _
where x = [x_1 | and y = [ y—1 | are elements of L = Q_s® LB Qq
Zo Yo

expressed (vertically) in terms of components in the direct summands.

Let jo : @V — @ be an embedding of O-lattices given by Lemma so that
the pairing <jél( ), )0 (QOR) x(Q ®R) — R is positive definite. Consider the
Z 7
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R-algebra homomorphism % : C — Ende o (L %R) defined by
Z

z=z1+vV—12
z1 IdQ72<§,R —2zo((2mv/—1) ojél)
— h(z) = h(z) ,
ZQ(jQ o (27r\/—1)71) 21 IdQO%R

where 2mv/—1: Z = Z(1) and (27v/—1)"1 : Z(1) = Z stand for the isomorphisms
defined by the choice of v/—1 in C, and where the matrix acts (symbolically) on
Tr_9 "
elements z = | z_; | of L&R by left multiplication. In other words,
zZ
T

B Xr_o 21T _9 — ZQ((QW\/jl) Ojél)(xo)
hz)[z-1 | = h(z)x_1
zo 22(jg o (2mv/—1) ") (z_2) + 2120
Then h is a polarization of (L (N (+,)7) making (L, (-, -)",h) a PEL-type O-lattice.
Note that the reflex field of (L®R (-, Y h) is also Fy.

By construction of (L ,( , )‘), there is a fully symplectic admissible filtration
on L ® Z" induced by
Z

0CQ2CQR 2BLCQoa®dLBQo=1L

More precisely, we have

Z1:=(Q292")e(LeL),
ZOZZ(Q—2<§ZD) (L®ZD) (QOQZ?ZD):Z‘%ZD>

so that there are canonical isomorphisms

Gi%, =~ Q_Q%ZD, Gi%, ~LoL°, GiZ =~ Qo Z°

matching the pairings Grﬁzi2 X Grg — Z(1) and Grz_l X Grz_l — Z7(1) induced by
(-, ) with (-, -)g and (-, -), respectively.

Let X := Homp(Q_o,Diff }(1)) and Y = Q. The  pairing
(-, )o + Q_2xQo — Z(1) induces a canonical embedding oY o X
and there are canonical isomorphisms @_o : Gr72 = Homy, (XQZ@ZD7ZD(1))

and @p : Grg = ?@ZD (of ZP-modules). These data define a torus argument

P = (X Y c;S,(p 2,<p0) for Z as in Deﬁmtlonm

Let & be the obvious splitting of Z induced by the equality Q o2PL 69 Qo =

Let G be the group functor defined by (L,{-,-Y) as in Definition For any
7P-algebra R, let PZ(R) denote the subgroup of G( ) consisting of elements g such



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 29

that g(Z_ ®R) = Z_y ® R and 9(Z_y ®R) = Z_, ® R. Any element g in ISZ(R)
VA 70 VA Vs

defines an isomorphism

Gi? (g): G2, @ RS G| @ R,
/s 7B

which corresponds under the canonical isomorphism Git SLQ@R=L ® R above to
ZD
an element of G(R). This defines in particular a homomorphism

Gr? | : P3(Z°) — G(Z9).

Let us also define P, L(Z") to be the kernel of Gr*, x Grf, where Gr”, and Gr{ are
defined analogously
Let H be any neat open compact subgroup of G( P) satisfying the following
conditions:
(1) Grz,l(ﬁﬂf"z(zm)) = Gr? [ (HNP5(Z")) = H. (Both equalities are condi-
tions. Then # is a direct factor of Gr?(H NP5(Z%)).)
(2) The splitting 0 defines a (group-theoretic) splitting of the surjection
HN IS’E(ZD) — H induced by Gr? ;.

(Such an H exists because the pairing (-, )" is the direct sum of the pairings on
Q_2®Qo and on L.) The data of O, (L, (-, Y h), O, and H C G(Z7) define a
moduli problem Mﬁ as in Definition

Take any compatible choice ¥ of admissible smooth rational polyhedral cone
decomposmon data for I\/I =~ that is projective (see Definitions and [1 . Since
H is neat, any such D deﬁnes a toroidal compactification Mt"’r = M;‘{’ri which is

projective and smooth over So by (7) of Theorem
Let (Z,®,8) be as above, and let (~ (X Y, 0,5 27_[,@0,”),5%) be the

induced triple at level H, inducing a cusp label [(Z @ 0 7)) at level H.
Let o C PgN be any top-dimensional nondegenerate ratlonal polyhedral cone
H ~ ~
in the cone decomposition ¥z in ¥. Then, by of Theorem we have a
H

— - - N tor
stratum Z[(<I>g,5,7,3)] of Mﬁ .

Since o is a top-dimensional cone in i , the locally closed stratum Z[(@ 53]
5

(not its closure) is a zero-dimensional torus bundle over the abelian scheme Cq> 5
_ _ HOH

Lo . b ls
over My;. (We have canonical isomorphisms MﬁH ~ I\/IﬁH =~ My because of the first

condition above on the choice of H. The abelian scheme torsor 55~ 5= |\~/IZ’7 is
HITH

an abelian scheme because of the second condition above on the choice of . ) I
other words, Z[(<1> 5.0.5)] is canonically isomorphic to C<1> 5 . By the construction

of C$Wg~ in [38, §§6.2.3-6.2.4], it is canonically Z(D)—lsogenous to the abelian
HOn _

scheme Hom(Q,Gwm,,)°. Let us define N, to be this stratum Z,z 5 .,

” (@5.55.5))

denote the canonical morphism N, — My by f,. This gives the Z(Xm)—isogeny K598 ¢

and



30 KAI-WEN LAN

Hom, (@, Gm,,)° — N,. Note that N, =7
C’&)& 5 for every ¥ and every top-dimensional cone ¢ in E~
'H
As planned in step of Section let us take Kp)% 5 to be the set of all

posuble such triples k = (H,%,5), with the - binary relation £’ = = (H,%,5) =
= (H,% ,0) defined when H' C H, when ¥’ refines ¥ as in [38, Def. 6.4.2.8],
and when (<I>H,75H,, o') refines (<I> (5 ,0) as in [38] Def. 6.4.2.6]. In this case, the
[(@H,,éw, o')]-stratum of Mti’r 5 s mapped to the [(<I> 6 ,0)]-stratum of Mto’r
by the canonical morphism M;_‘er S M;_izri given by [38| Prop. 6.4.2.9]. Note that

the induced morphism f,/ . : N — Ny, which is £5°8 o (s’ )is‘“g)*1 by definition,

(357.557.5)] is canonically isomorphic to

can be identified with the canonical Z(XD)—isogeny C;_ 35— C@ 5 In particular,
/) HI
it is surjective and is an isogeny of degree prime to 9
For k = (H,3,7), take N to be the closure of Z[@ ) in Mt?ri Then we

obtain the canonical immersion £'* : N,; < N,

When r' = (H',%/,5') = & = (H,%,5), the morphism fi?" : NI — N is
simply the morphism induced by the canonical proper morphisms M;_‘Zf s/ |\~/I';i{”“i
given by [38, Prop. 6.4.2.9]. Note that the latter morphism is étale locally given by
equivariant morphisms between toric schemes, and the same is true for the induced
morphism f£9* : N!* — N, Therefore, both the morphism Mti’,r 5 Mti’ri and
the induced morphlsm fen, Nt — Np°* are log étale essentially by definition (see
[33, Thm. 3.5]). Moreover, as in [I6, Ch. V, Rem. 1.2(b)] and in the proof of [38]

Lem. 7.1.1.3], we have R'(f%",). Oy = 0 for i > 0 by [36, Ch. I, §3].

Lemma 3.1. Under the assumption that H is neat, the closure of every stratum
n M;_El’ri has no self-intersection.

Proof. According to Definitions and the collection ¥ of cone decompo-
sitions for |\~/Iﬁ satisfies Condition |1.29] Hence [38, Lem. 6.2.5.27 in the revision]
implies that the closure of any stratum does not intersect itself. (See also [16, Ch.
IV, Rem. 5.8(a)].) O

Corollary 3.2. For any k = (H,%,5) € K %5 the closure Ni>* of N, =
Z[(q> 53] m Mt9r~ is projective and smooth over Sg, and the complement of Ny
mn Ntor (with its reduced structure) is a relative Cartier divisor with simple nor-

mal crossings. Thus the collection of open embeddings " : N, < N with

KngH 5, satisfies of Theorem m
Proof. Combine Lemma with and of Theorem O

From now on, let us fix a choice of k = (H, 2, 5) € KpQr’e?_L27 and suppress x and

¥ from the notation. The compatibility of various ob, jects under compositions with
or pullbacks by f27 : Ni9* — Ni°* (for ' =  in K¢)%, ) will be obvious from the
constructions.

3B. Extendability of structural morphisms. The goal of this subsection is to

carry out steps and of Section



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 31

Let (G, A, 4, ag) be the degenerating family of type |\~/Iﬁ over l\~/|;_£zr By construc-
tion of N as a boundary stratum of |\~/I;‘;1r the restriction Gy of G to N is an extension
of the pullback of the abelian scheme Gw,, over My to N by f N — My, by the
split torus TN over N with character group X. The data of )\ z and ag induce
respectively a polarization, an O-endomorphism structure, and a level H-structure
on the abelian part of éN, which agree with the pullbacks of the data A, ¢, and ay
over My to N by f : N — My,. By normality of (the closure) N*" (of N in |\~/It°r) and
by a result of Raynaud (see [49] IX, 2.4] or [I6, Ch. I, Prop. 2.9]), the embeddlng
TN — GN of group schemes extends (uniquely) to an embedding TNmr — GNmr of
group schemes, and the quotient

é = éNtor /thor

is a semiabelian scheme whose restriction to N can be identified with the pullback
of G from My to N. Similarly, we obtain G = émmr/ﬁ\ﬂor. By another result
of Raynaud (see [49, IX, 1.4] or [16, Ch. I, Prop. 2.7]), the semiabelian G carries
(unique) additional structures A : G — G, i, and @y such that the restriction of
(G, \, i,@) to N is the pullback of the tautological tuple over My, by f: N — My,
and so that (G, ), 4, @) defines a degenerating family of type My over N,

Now the question is whether the structural morphism f : N — My extends
(necessarily uniquely) to a (proper) morphism f** : N** — M" between the
compactifications. By (@ of Theorem this extendability can be verified af-

ter pullback to complete discrete valuation rings (with algebraically closed residue
fields).

The stratification of |\~/I%’r induces a stratification of N**. By of Theorem

1.41}, the strata of N** are parameterized by equivalence classes [((i) 5 ,7)] having

[(<I> (5 o)) as a face (as in Deﬁnltlon . Concretely, they are - orblts of data
of the followmg form:

(1) A fully symplectic admissible filtration Z = {Z_;} on L®Z° satisfying
zZ

(33) Z_o C 272 C 271 C AZ',1.
Any such filtration Z induces a fully symplectic admissible filtration Z =
{Z_;}on LQZP by Z_y :=Z2_5/Z_o and Z_; := Z_1/Z_5, so that there is
z

a canonical isomorphism
(3.4) 20/Z-1 27 1)7_,.

Conversely, any fully symplectic admissible filtration Z on L ® 7" induces a

Z
fully symplectic admissible filtration Z on L ® /e satisfying 1) and 1)

(2) A torus argument & = (X,Y, ¢, ¢_ 2,@0) for Z (as in Definition , to-
gether with admissible surjections sy : : X - X and Sy Y »Y satlsfymg

s ng ¢5v and other natural compatibilities with @_o, PBg, ®_2, and @q.
(See Definitions [1.18] [1.19} and [1.20})

Any @, sy, and sy determine a torus argument ® = (X, Y, ¢, p_2,¢0)
for Z by X := ker(sg), Y := ker(sy), and ¢ := g5|y, so that there is a
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commutative diagram

(3.5) 0 Y L 0
% 4{ %l
0 X X ——X 0

X

whose horizontal rows are exact sequences.
(3) The existence of some splitting of Z, inducing some liftable splitting Sﬁ
defining the cusp label (Zﬁ, <i>?_~[, Sﬁ) at level H.

Given the liftable splitting gﬁ, the existence of the liftable splitting 57_7
is equivalent to the existence of some liftable splitting dyy of Z3;. Then we
see that there is a canonical bijection between cusp labels [(Z3, P, 03] at
level H anfl cusp labels [(Z, éﬁ, 57_7)] at level H admitting a surjection to
[(Zﬁ,(bﬁ,5ﬁ)} y ~

(4) Let ®3 (resp. @) be the torus argument for Zy; (resp. Zz) at level H
(resp. H) induced by ® (resp. ®). Then induces morphisms

where the first morphism is canonical, and where the second morphism is
defined by sy and sy, whose composition is zero. (In general, the mor-
phisms in do not form an exact sequence.)

The dual of defines morphisms

+ .
(37) P;I;ﬁ — l)q;.77 - P‘Pv-u
where the first morphism is defined by sy and sy, and where the second

morphism is canonical, whose composition is zero.
Then 7 C Pg is a cone in the cone decomposition Xz  having a face
H H

o that is a I'g_-translation (see Definition [1.23)) of the image of & C Pg
H H
under the first morphism in (3.7)).
By of Theorem the formal completion

nAtoryA
(M7

[(éﬁjgf)]

s T

is isomorphic to the formal scheme Xy 5 . =Xg 5 _
HITH?

/T . for any representa-
L. o HOH s
tive (‘I’ﬁ, 57_7, 7) of [((I)ﬁ, 57_7, 7)]. Here Ty

H

. is trivial by [38, Lem. 6.2.5.27 in the

s T

revision], and 3~€&>~ 5 - is the formal completion of §<i>~ : (7) along its F-stratum
HITH H

# 8
(“‘1)77’577)7 -
Let us describe the structure of the scheme Z5 5 (7) in more detail:
HUH

(1) By construction, ééw 5 (7) is a scheme over |\~/I%’7, the latter of which is
HTH
isomorphic to I\/IiH because of 1D and 1) By the two conditions satis-
~ ~ G L 5
fied by ‘H above, we have Mﬁ“ ~ M;}j‘ as finite étale covers of M%“ ~ I\/Ifrz*.

(Note that |\~/I%77 =~ M%* is a scheme by [38, Cor. 7.2.3.10].)



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 33

By abuse of notation, we shall simply denote the push-forward

(:é’ﬁvgﬁ(T) - C‘i’ﬁjﬁ)*ﬁgéﬁ,sﬁ )

by 0= _ .,andview 0= . asan Ox_ _ -algebra when there is no
~<1>~,5~(T) ~q>~,5ﬁ("') Crp\,a\

confusion. We shall adopt a similar convention for other affine morphisms.
(2) Let (A, Aa,ia, 1) be the tautological object over M4, Then Cé,q 5

. . ., i
is the abelian scheme torsor over the finite étale cover Mﬁ” = M;E“ of

M2

H

X — AV, &Y 1Y — A), compatible with ¢ : Y < X and satisfying certain

liftability and pairing conditions (coming from the so-called symplectic-

liftability on the level structures). By construction, Cg s — M;ﬂ” is a
HITH

~

=~ M%* parameterizing liftings (to level H) of data of the form (¢ :

torsor under an abelian scheme Z(Xm)—isogenous to Hom,, (}V/, A)°.
(3) The scheme Eéﬁ,ég is a torsor over Céqﬁg under (the pullback of) the

split torus £y = Hom(Sg , Gy,), which can be identified with the relative
H H

spectrum
Spec ( &) ‘I’éygv(v))
ﬁ%q,sg Zeséﬁ TR
where ‘T’@v 5~(Z) is the subsheaf of &= (considered as an
T Ty
O, ] -algebra by our convention) on which Ez acts by the character £.
b8 H

In the case when / = [ ® x], where § € Y and ¥ € X, there is a canonical
identification between Wy (/) and the pullback of (&Y(i),&(X))*Pa
HOTH

over CN'(BM 5_- (See [38, Conv. 6.2.3.26 and end of §6.2.4].)
HH
(4) Consider the subsemigroups of S‘i’q (see [38] Def. 6.1.1.9 and 6.1.2.5]):
PV ={leSy_:(Ly) =0Vyer)
Ty = {Ze Séﬂ : (f,y) > 0,Vy € 7},
Th={leSy_:(Ly)=0Vyer} =75
The scheme Eéq 3 (7) is constructed as an affine toroidal embedding

OH

along 7 over the abelian scheme Cg s , which can be identified with the
HITH
relative spectrum

Specﬁé (ng ‘I’&» S»(Z))-
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(see [38, Lem. 6.1.2.6]) defines the F-stratum (Eé )#, which can be iden-

tified with the relative spectrum
6~ ( &) \Ij<i>~ 5~( ))

Cy  « Jerl
b5~ teT
HH

Spec

Here j; isan O= (%)—ideal represented as an Oz -submodule of
o PHOH
O= ) (the latter being viewed as an Oz -algebra by our conven-
Py S

REvaLlirs RETabEY;

tion).
Suppose ¢ is the face of 7 that is a I'y_-translation of the image of 7 C Pg
H H

under the first morphism in (3.7). Similar to the definition of 7V, 7y, and ¥+ above,
consider the following subsemigroups of Sg _:
H

&V ={le S, (0,y) >0,Vy € 5},
gy ={l e S‘i‘g (l,y) > 0,Vy € 5},
st={le S () =0,Yy e 5} =5Y/5y.

Note that 7 C ¢ and 7+ C 51, but 7y ¢ &y in general. The closure (iim 5 )5 (7)
HITH

of the g-stratum on Eég,S (7) = Spec,, ( @ \T/&) 5 (Z)) is defined by the

)
Cp_5 erv ’
Ry S

sheaf of ideals @ \Tl&, (E) Then we have a canonical isomorphism

q

lesy nxv 7R
(B 5,)0(7) = W, (zefm o Vg ))’
HOH
with the 7-stratum
(B i) = s, o (éeEEL Vi )>
HOH
(as a closed subscheme of (Eéw 5. )s(7)) defined by the sheaf of ideals
s
Ts = Uy 5 (0).
ag,T Zea—i- A "6/ @ﬁ,é,ﬁ( )
Let xégﬁqﬁf denote the formal completion of (Eéq’gﬁ)&(%) a}ong (Eég’gq)"v—’
which can be canonically identified as a closed formal subscheme of X35 _ « induc-

e
ing the closures of the [(5ﬁ,gﬁ,5)]—strata on any good formal (ffﬁ, gﬁ, 7)-model.
(See [38, Def. 6.3.1.11] for the definition of good formal models, and see [38], Def.
6.3.2.16 in the revision] for the labeling of the strata by equivalence classes of triples
of the form [(ZI;ﬁ, gﬁ, 7)].) By (5) of Theorem the strata-preserving canonical

isomorphism (M%7 )2 = X4 5, then induces a canonical isomorphism
S Zis s 05T
Ntor A o~ :"{'v .
( )Z[(*i)ﬁ«gﬁ«*)] <I>ﬁ,5g,o,'r

(Alternatively, one may refer directly to the gluing construction of I\N/Ig_izr in [38]
§6.3.3], based on the crucial [38, Prop. 6.3.2.13].)
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By the theory of two-step constructions (see [16, Ch. III, Thm. 10.2] and [38]
§4.5.6 in the revision]), the degeneration data of the pullback of (G, \,i, @) to
affine open formal subschemes of X5 _ 5 . . can be obtained from the degeneration

7955

data of pullback of (éj,z ag;) to affine open formal subschemes of %éN 5 by
HPTH?

restricting objects defined on X and Y to the subgroups X and Y. Therefore, in
order to verify (6]) of Theorem [1.41] it suffices to verify the following:

v 9

Condition 3.8 (cf. [16, Ch. VI, Def. 1.3]). For each (®5,05,7) as above, the
image of 7 in Pg,, under the (canonical) second morphism in (3.7) is contained in
some cone T C P;ﬁn in the cone decomposition Xa,, .

If Condition is satisfied (for k = (H,,5)), then the structural morphism
f + N — My extends to a (unique) morphism f* : N** — MY", which is étale
locally given by morphisms between toric schemes equivariant under (surjective)
morphisms between tori. By construction, we have a commutative diagram

tor NV o o o
(3.9) N X5 5 o —Co 5

AL

t
M?-?r :{‘1)“,5%,7— C<1>7-¢~,5’H

30-17—

of canonical morphisms whenever the image of ¥ under the (canonical) second
morphism in (3.7)) is contained in 7.

Remark 3.10. Condition [3.8]is analogous to the condition in [48] 6.25(b)], used in
for example [26], Lem. 1.6.5] and related works based on [4]. Unfortunately, we must
point out that, apart from some pleasant (and often suggestive) analogies, there is
no logical implication between the analytic theory in [4] and [48], and the algebraic
theory in [I6] and [38]. (One cannot even use G(Q) in the algebraic theory.) The
applicability of Condition in our work cannot be proved using [48] 6.25(b)].

As planned in step of Section let us take Kg 7,» to be the subset of
K?Qr;a,z consisting of elements k satisfying Condition Since Condition can
be achieved by replacing any given ¥ with a refinement, we see that Kg 3 » is
nonempty and has an induced binary relation which we still denote by >.

From now on, assume that our fixed choice k = (H,%,5) lies in Kg % 5.

3C. Logarithmic smoothness of f'°*. The aim of this subsection is to carry out
step of Section

We need to show that the morphism f*" is log smooth (as in [33] 3.3] and
[32, 1.6]) if we equip N* and MY with the canonical fine log structures given
respectively by the relative Cartier divisors with simple normal crossings given by
the complements N*" — N and M" — My, with their reduced structures. According
to [33, 3.12], we have the following:

Lemma 3.11. To show that the morphism f°* is log smooth, it suffices to show
that the first morphism in the canonical eract sequence

or\ * Al
(3.12) ()" (e s, [d10g 00]) — Qyror s, [d10g 0] = Dpyror jpger — 0

is injective, and that ﬁ,{,mr Mo is locally free of finite rank.
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By of Theorem the extended Kodaira—Spencer morphism [38 Def.
4.6.3.32] for G — MY" induces an isomorphism

KS¢/meer/s, + KSqmeer = QI{A;;"/So [d1og oo]

over MY, while the extended Kodaira-Spencer morphism for G — l\~/|;§r induces
an isomorphism

: 1
KSG/M?/SO : gsé/mtor = QMtor/s [d1og 0]

over I\/I;_izr. Over N*' we have canonical extensions 0 — Tytor — Gptor — G — 0

~ ~ —V . .
and 0 = Tyior — Gy — G — 0 of group schemes, inducing exact sequences

— Lle~ — Lle —0

O_>LleG/Ntor Gtor /Ntor Tytor /NtOT

and

0— Lle— — Lle — Lle — 0.
/Ntox Ntor/Ntor Ntor/Ntor

Therefore, there is a canonical surjection

(3.13) KS — KS~

222G tor /NtOT Ntor/Ntor7

where Kistm /Ntor is the pullback of the sheaf

Ay W)@z = A% (2)@y
K8, s 1= (Lier, s, 2 Liety js,)/ ( (o) @y -2 d(by) ) “Hh
y,zELleTV /5o

bGO

defined (as for degenerating families in Definition | by the split tori T and TV
over Sg with respective character groups X and Y. The kernel

K := ker(KSg — KS#

Gytor /NtoT weor /Ntor )

contains KSx JNtor 85 2 natural subsheaf, and the quotient of K by KSx Ntor 18
isomorphic to
(LleG/Nmr %m Lle Nm /Ntor)/ ((b*l‘) QY — I@(by)) IELle@/Nmr

’t/ELle
bEO

/Ntor

= Hom,, ® Oror (LleT\/ /Ntor) LleG/Ntor)

Ntor

=~ Hom, ® Oyor (HomZ(Y7 Opgor ), Lleé/Nmr)
= Hom,, (Y LleG/Nmr)
= Hom, (QV Lleg/Nm)

Since the pullback of (G, A, 4, ) under N** — MY is isomorphic to (G, \, 7, &),
we have canonical isomorphisms
(ftor)*Kisg/M;fzr = &a/Ntor

and
(f*")* (Home (QY, Lied jmrer)) = Home (Q, Liegs yuer )-
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Since the étale local structure of |\~/I;_~‘Zr along the [(i)ﬁ, Sﬁ,%)]—stratum is the same

as ééN 5 (7), the calculation in the proof of [38, Prop. 6.2.5.14] shows that
HTH

the isomorphism KSgz /R /s, induces by restriction (to the closure N** of the

[(CT)?:[, gﬁ, 0)]-stratum) an isomorphism

(3.14) K= Q,l\,m/so [d1og 0]

making the diagram

(F1°0) KS e K
KSc/Mggr/s{z | (314)
(fror)* (%ggr/so [dlog o0]) —— Q&Im/so [d1og o0

commutative. In particular, the bottom arrow (which is the first morphism in
(3.12) is injective, and the isomorphism (3.14) induces a canonical isomorphism

Or  * . ~ Al
(3.15) (f*") (Lomo(Qva@é/ng)) — Cyeor jmitor

of coherent sheaves over N'***. (The restriction of to N is compatible with the
composition of isomorphisms because of the same calculation in the proof of
[38, Prop. 6.2.5.14].)

Thus the desired isomorphism is a consequence of . Moreover, since

HomO(QV,@é/Mﬁr) (see Remark [2.14)) is locally free of finite rank over MY, the

isomorphism 1b shows that the sheaf ﬁ,l\,mr /Mter is also locally free of finite rank
over N**, By Lemma [3.11] this shows that f*°T is log smooth, and completes the
proof of (2)) and of Theorem [2.15]

3D. Equidimensionality of f'°'. Let us take a closer look at the diagram (3.9)).
By construction of f**, given any stratum Z,, s5,,,-)] of M¥", the preimage

Zi(@ 60,1 = (F) T Z (@30,600,70)

has a stratification formed by 2[( L where 7 runs through cones in ii«
H

$57.857.7)
satisfying the following conditions:

(1) #cPL .
£
(2) 7 has a face & that is a I'y_-translation of the image of ¢ C Pg under
a _

H
the first morphism in (3.7]).
(3) The image of ¥ under the (canonical) second morphism in (3.7)) is contained
: +
inT CPg, .
The formal completion (N**)2 admits a canonical morphism
[(®3y,69,7)]
N2 — C. ,
( Zi(03.65,7)) Pe,0m

whose precomposition with the canonical morphism

Ntor A — Ntor A
( )Z[@»ﬁ«,sﬁ«,;)] ( )Z[(cbﬂ,sﬂ,r)]’

for any stratum 'Z[(&, 58] of Z((a,, 6, ,7), coincides with the composition of canon-

HITH

ical morphisms xéﬁ’ 3 — Ca,, .5, by its very construction.
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Since f'* is étale locally given by morphisms between toric schemes equivariant
under (surjective) morphisms between tori, to determine if ft°T is equidimensional
(cf. [I6, Ch. VI, Def. 1.3 and Rem. 1.4]), it suffices to determine if the relative
dimension of each of the induced (smooth) morphism Z[(%gﬁ’%)] = L[(®30,69,7)]
between strata is at most dimpw,, (N), the relative dimension of f : N — My.

By abuse of language, we define the R-dimension of a cone to be the R-dimension
of its R-span. Then the codimension of N = Z[@\ 5.5 In |\~/|;_izr is dimg(c) =

HITH?
dimR((Sgﬁ)ﬁ) because & is top-dimensional. The codimension of

Zi( 7 85,7

t

Il

(Zg,8,)7

in I\N/I%jr is equal to dimg(7). Therefore, the codimension of Z[(&,ﬁ)gﬁ’m in N is
equal to dimg(7) — dimg(¢) = dimg(7) — dimR((S;I;g)D{). On the other hand, the
codimension of Z(@,, 5,,,7)] = (E@s,6, )~ in MiQ" is dimg (7). Hence we have

(3.16)  dimg, Z

(585
= dimm,, (N) — (dimg(7) — dimR((S;I;ﬁ)%)) + dimg(7).

(@9¢,09¢,7)] (

Let 7/ denote the image of 7 in (Se,, ). By assumption on 7, we have 7/ C 7.
If 7/ = 7, then

dimR(T) = dimR(Tl) S dlmR(%) — dlmR((S$~)§)7
H
and hence (3.16)) implies
dimz[(%,én,rn (Z[(ég,sﬁ,f)]) < dimpw,, (N).

(If this is true for all Z[(ég,sgﬁ)]’ then f*' is equidimensional.) On the other
hand, suppose 7" C 7. Then there exists a face of 7”7 of 7/ such that 7/ C 7
and dimg(7"”) < dimg(7). Note that 7" is the image of at least one face of 7
satisfying the three conditions in the first paragraph of this section. By dropping
redundant basis vectors, we may assume moreover that this face ¥ of 7 satisfies

dimg () = dimg () — dimg((Sz_)Y). Then we have

diIIlR(T) > diIIl]R(T”) = diHlR(’f'”) — diIIlR((S&)‘)ﬁ),
H
and hence (3.16) implies

dimz[(@u,aumn (Z[(éﬁ,s )]) > dimp,, (N),

ﬂ,ﬂv.//

which means £ cannot be equidimensional.
This motivates the following strengthening of Condition [3.8}

Condition 3.17 (cf. [I6l Ch. VI, Def. 1.3]). For each (éﬁ,éﬁ,%) such that
Z[(ég,sgf)] is (a stratum) in N, the image of ¥ C P?{;H under the (canonical)
second morphism in 1} is exactly some cone ™ C Pgﬂ in the cone
decomposition Lg,, .

Proposition 3.18. The morphism f'° : N** — MY is equidimensional (with
relative dimension equal to the one of f : N — My), and hence flat, if and only if
Condition is satisfied, if and only if f*°° is log integral (see [33, Def. 4.3]).
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Proof. The equivalence between Condition [3:17] and equidimensionality has been
explained above. Since both N*" and MY" are regular (because they are smooth
over Sg = Spec(Op, (o)), the equidimensionality and flatness of f*°* are equivalent
by |21, IV-3, 15.4.2 b)<e’)]. By [33, Prop. 4.1(2)], the log integrality of ft*
is equivalent to the flatness of each of the canonical morphisms Z[7"] < Z[7Y]
(defined when Z[(ég,sgﬁ')} is mapped to Za,,,s5,,,7)), Which is equivalent to the
equidimensionality of any such morphism (by the smoothness of Z[rV] and Z[#V]
over Z, and by [2I] IV-3, 15.4.2 b)<e’)] again), which is equivalent to Condition
by the same (dimension comparison) argument. [

Proposition 3.19 (cf. [16, Ch. VI, Rem. 1.4]). Condition can be achieved by
replacing both the cone decompositions ¥ and ¥ with some refinements.

Proof. Instead of taking reﬁnements of ¥ and separately, we consider the mor-
phism P~ —- Pg,, in and consider the graph of Y. More precisely, us-

ing the canomcal morphisms X < XandY < Y compatible with ¢ and z;b,
we obtain canonical morphlsms X = X®X - Xand VY =YaY - Y
compatible with ¢’ := ¢69¢ and ¢, inducing morphisms Sg @S@H - Sg

and P(i)’7 — Péﬁ@qu. The image of this latter morphlsm is the graph of
P‘i);g — Pg,,. Let us define S’ by X', Y', and ¢’ as in , and let S’ be its
free quotient. Define P’ accordingly as the subset of (S’ ) consisting of positive
semidefinite pairings with admissible radicals, containing the graph of Pfi,; —- Pg,,
canonically as an admissible boundary component (cf. Definition . The cone
decomposition ié~ defines a cone decomposition on this graph, which might fail
to be projective or smooth with respect to the structure of the ambient space. But
we can find a projective smooth cone decomposition of P’, admissible with respect
to the actions of all elements in GLo(X’) x GLo(Y”) respecting ¢, such that its
restriction to the graph refine the cone decomposition defined by iig' Thus we

obtain a simultaneous smooth projective refinement of X3 and ¥g,,, such that
H
image of cones in X3 _ under Py _ — Pg,, are cones in ¥g,,. Since this construc-
H H

tion is compatible with surjections between different choices of éﬁ and ®4, we can
conclude by induction on magnitude of cusp labels (P4, d3;) as in the proofs of [38]
Prop. 6.3.3.3 and 7.3.1.5]. O

Remark 3.20. We will not need Propositions and in what follows. We
supply them here because knowing flatness or log integrality of f** is useful in
many applications.

3E. Hecke actions. The aim of this subsection is to explain the proof of state-
ments and (5) of Theorem with and conditional on and
of Theorem These statements might seem elaborate, but they are self-
explanatory and based on the following simple idea: Since N and N®* are con-
structed using the toroidal compactifications of M, we can use the Hecke actions
on '\7'7-7 and their (compatible) extensions to toroidal compactifications provided by
[38, Prop. 6.4.3.4 in the revision].

Let gn, H', ¥/, g;, and Q' be as in and of Theoremm (For proving (4)
and of Theorem we may assume in what follows either g, =1 or g; = 1,
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although the theory works in a more general context.) Using the splitting 5 of Z,

we obtain an element g in P3z(A>?) such that Gr*,(g) = gy, and such that Gr(g)

is identified with g; ' under g : Gr5 = Qo @ Z° = Q @ Z°. (See Section ) Let
Z zZ

H' be a (necessarily neat) subgroup of 6(2[‘) such that g~ H'g C H, and such
that H' = Gr®,(H' NP5(Z")). By [38, Prop. 6.4.3.4 in the revision], there exist
some choices of ¥’ such that the canonical morphism [g] : Mg, — Mg extends

canonically to [§]*" : M;_‘Zf s Mtor . By replacing ¥’ with a refinement such

that it satisfies Condition (with E’ _and) with some choice of ¢', and such that
the morphism [§]"*" sends the stratum Z[(<1> S 1O Z[(q) 5, We see that the

induced morphism from the closure of Z[( 52050 to the closure of Z[(@ 5

7{/7 ;{70)]
glveb the existences of the morphisms [g4] . «, [gn] O il ., and ([gl]n,,ﬁ)tor as in

.) and of Theorem where x/ = (H',¥/,5) lies in Ko w s,
except that and 2.26)) still have to be explained.

As in the case of showing Ri(flor ) ﬁNm =0 for ¢ > 0 in Section since the
)tOr

morphisms [gh}ﬁ,ﬁ and ([g1]% )" are etale locally given by equivariant morphisms
between toric schemes, we have (by [36, Ch. I, §3]) R ([gn]'>" )« (O, yror) = 0 and

HH

Ri([gl]:,’n)ior(ﬁ(,\,, ytor) = 0 for i > 0, which are 1) and (2.26)) of Theorem

The remaining statements in and (bd) of Theorem [2.15( now follow if we
assume statements and (3¢ of Theorem 2.15] (See the end of Section [5| below.)

4. CALCULATION OF FORMAL COHOMOLOGY

Throughout this section, unless otherwise specified, we fix the choice of an
arbitrary (locally closed) stratum Zj,,.s,,,7) of ML". The aim of this section
is to calculate the relative cohomology of the pullback of the structural mor-
phism f%* to the formal completion (l\/ltor)zl(p S’ (See of Theorem

for a description of this formal completion. See also the first paragraph of Sec-
tion for a description of the formal completion (N**)2 of N*T along

Z((®3¢.53,.7)]
Zi@ysnm) = (P Z@r80.m)))

4A. Formal fibers of f'r. Let Fv ~ be the subgroup of elements in Fv _ sta-

bilizing (both) X and Y and mducmg an element in I'y,, » (the subgroup of g,

formed by elements mapping 7 to itself). Since we have tacitly assumed that I'g,, -

is trivial by Conditions and [38] Lem. 6.2.5.27 in the revision], I'y . isalso the
T

subgroup of elements in I'y_ fixing (both) X and Y. Let I'z By be the subgroup
H H

of I'y _ _ inducing trivial actions on X and Y under the two surjections
0

SX:)Z'—»)Z' and s)v,:iv/—»f/,

which can be identified as a subgroup of Homo()? ,X), with index prime to O,
sending ¢(Y) to ¢(Y). (Note that I'z ®,, depends not just on @z and 3 but
0

also on <f> J)
Since F@ ®,, does not modify s ¢ and sy, it does not modify the first morphism

in . Therefore, if we denote the image of ¢ in Pcig by &, then 1“57?%{ maps &
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to itself. On the other hand, by Condition [1.29|(and Lemma , if a cone ¥ C P}

H
in ¥4 has a face that is a 'y _-translation of &, then it cannot have a different

face that is also a g —translatlon of . Let us denote by X5 . _ the subset of
Y4 __ consisting of concs 7 satisfying the following conditions (cf sunilar conditions
’H
in the first paragraph of Section [3DJ):
. +
(1) rcP by
(2) 7 has & as a face.
(3) The image of 7 under the (canonical) second morphism in (3.7)) is contained
inT C PJr .
Then, to obtain a complete list of representatives of the equivalence classes

[(CD 5 ,7)] parameterizing the strata of Z[(@H 5., it suffices to take

representatlves of ¥g . modulo the action of Fq> By . (That is, we do not have
5T

to consider Fq) @,,~translations of &.)
Let Eé’g, %( 7) denote the toroidal embedding of éiw’ 5 formed by gluing the
affine toroidal embeddings ééN S~(7U') over Cv'éw 3, where 7 runs through cones in
HH HOTH
b b5, (T2)
even when [((i) 5 )] = [(Cf 5 73)]. For each 7 as above (hav1 ng & as a

face), recall that we have denoted the closure of the g-stratum of Z5 5 (7) by
s

(Eé SH);,(%). Let (Eéﬂygﬁ)g(T) denote the union of all such (Eéﬁ’sﬁ)g(

To minimize confusion, we shall distinguish Z5 5 (7;) and 2
HITH

(“‘1’;775@) denote the Lmion of all such (Eg)ﬁ,gﬁ);7 and let %ig,sq,éﬁ denote the
formal completion of (Eiﬁ75ﬁ)5(7) along (Eég,&q)f'

For each 7 € Xy consider the open subscheme Uz of (Eé& 5V)T formed
HITH

0'7"

by the union of all (locally closed) strata of (§<i>~ 5 )r that contains the stratum
HITH

(§é~ 5A); in its closure, and consider the open formal subscheme 4l: of ’%é~ 3
H

1097,0,T

supported on U;. The subscheme U; of (EéN S~)T is the closed subscheme of
HITH

(i)HS ( ),and
f (Eg. 5 )5(F)

o
along Uz. The collection {U;}%egv , . forms an open covering of (Eé ) We

_q)%%( ¥) given by the intersection of = S 5. (7) and (Eég,SQ)T in =

the formal subscheme s of x% i_ 5 . is the formal completion o
300570,

:ﬂt

can interpret §é~ 5 5., @S constructed by gluing the collection {4} rexy . of
7079 T 70T

formal schemes along their intersections (of supports).
Explicitly, let us denote by 7y the intersection of (¥)y for ¥/ running through
faces of 7 in E (including 7 itself). Then we have the canonical isomorphism

O'T

2/

of schemes affine over C<i> 3 . As 05 -modules, we have a canonical isomor-

T

phism
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If we equip 7V — 7Y with the semigroup structure induced by the canonical

bijection (7Y — 7Y) — 7V/7), then we may interpret @ \I/éﬁ 5 (0) as an
lerv—yy ~HTH
O -algebra, with algebra structure given by canonical isomorphisms

Vg a0, ® Vg5 ()= Ty 5

ol

(inherited from those of Oz

=5~

H
= o \IICE,N(;Q(E))if@—i—@’é%v—%};andby

By definition, we have

o\ o\
T —Ts

(7“'/ face of ¥
in ¥4

6T

The formal scheme 1z, being the formal completion of

(Z5 5 )s(#) 2 Spec (o Wy s 0)
®30n 61317,597 lest nyv P30

along Uz, can be canonically identified with the relative formal spectrum of
the ﬁaéﬁ’sﬁ—algebra ge&?ﬂ;v \Iléﬁ’gﬁ(f) over C&)g,gﬁ, where @ denotes the

completion of the sum with respect to the 5~ -ideal ® @é
R lestnry
that all the above canonical isomorphisms correspond to canonical morphisms
of O  -algebras formed by sums of sheaves of the form Wy s (£) (with
b8 HOH

O, ] -algebra structures inherited from that of 0= s ).
D~ 0~ =P .5~

3 (7). Note

HOH

HH HH
The above descriptions imply the following simple but important facts:

Lemma 4.1. Suppose 7 and 7' are two cones in E&)@&J such that 7' is a face of
7. Then:

(1) We have a canonical open immersion Uy — s (resp. Uz — Uz) of formal

subschemes of Xg_ 5

T

70T

(2) The canonical restriction morphism from Sy to Lz corresponds to the
canonical morphism

& Uy s ()= b Uy 5 ()
1N

lestnyv H lesL n(¥)V HITH
of O -algebras, where the two instances of @ denote completions
S5~
TH

of the sums with respect to the sheaves of ideals <) \Tl&) % (Z) and

y -
festn HUH

Q<

‘If(fﬁ,gﬁ(Z), respectively.
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(3) The canonical restriction morphism from Uz to Uz corresponds to the
canonical morphism

Wy s (0)— ® Uy < (0)
ferv—ry TR ey —(ry  HOR

of O -algebras, which maps \Il~ < (0) to \Tlévgw( ) when

O
b5~ ’Hv H 10"
’H'(;H

le(® — ()5 =F =5)n(#)" = (),

o

and to zero otherwise.
(4) The correspondences in and above are canonically compatible with
each other.

By Condition (and Lemma , the action of I'y ;. induces only the
T
trivial action on each stratum it stabilizes. Therefore, the quotient morphism

(4.2) /Ts.,

of formal schemes over Sy is a local zsomorphzsm The morphlsm is not defined

over Cq) 5 when the action of Fq> ®,, ON C@ 5 is nontrivial. Nevertheless since
H H

F<I>g,<1>u acts trivially on ®4, it acts trivially on Cg,, s,,, and hence is defined

over Cg,, s,

D37,057,0,T @47, H,O’T

Proposition 4.3. There is a canonical isomorphism

toryA ~ ~u o ~
(44) (N )Z[(q)’l-t“s?-tvf)] - %‘1’77’597’&”/F‘1’ﬁ7‘1>%

of formal schemes over Cs,, 5,,, characterized by the identifications

(Ntor)§ o

S
[(Po7057,7)]

H o,T

Ho
of formal schemes over 55% . (compatible with the canonical morphisms

(Ntor)/\ (Ntor)é

[(1» ) Z(@34,69¢.7)]

and 65%7,5;{ — Ca,,.6,,)- (The formation of the formal completion here is similar

to the one in of Theorem [L.41])
Proof. Let 7 € X3 . . Let ﬁ% denote the completion of éé'(g’(%) along Uz,
H HITH

70-77—
which contains {; as a closed formal subscheme (with the same support Uz ).

Since Uy is the union of (H(I, 5 )7 with 7/ running through faces of 7 in 3 o

which are cones in PVN the tautologlcal degeneration data over Ll7 batlsﬁes the

positivity condition (Wlth respect to the ideal defining U ), and we obtain by Mum-
ford’s construction a degenerating family (OG, N Yi, %a ag) — U asin 38 §6.2.5;
especially the paragraph preceding Def. 6.2.5.17], called a Mumford family. Note
that a Mumford family is defined in the sense of relative schemes, namely as a
functorial assignment to each affine open formal subscheme Spf (R) of Uz a degen-
erating family over Spec(R). Therefore @ of Theorem applies, and implies

the existence of a canonical (strata-preserving) morphism Ll — I\/Ito’r under which

(OG, N, Vi, Ya ag) — 4 is the pullback of (G, )\727014,[) M;Q‘?r. Moreover, if



44 KAI-WEN LAN

7 e Xy

1ntersect10n )J.; ﬂﬁ;/. o

By taking the closures of the [(®,d5,0)]-strata (not as closed subschemes of
the supports, but as closed formal subschemes, as in the second last paragraph
preceding Condition , we obtain canonical morphisms $; — N for all ¥ in

then the morphisms from l+ and from Uz to l\~/|';1{Jr agree over the

(77'7

Zég,&,r’ which patch together, cover all strata above [(®4, 03, 7)], and define 1}

as desired. O]
By (5)) of Theorem [1.41] we have a canonical isomorphism

(4'5) (M’t;"zr)é\[(cp,,{),;?{),.)] = xq}’Hvé”H’T'

By the very constructions, we may and we shall identify the pullback of ftor to

(Mtor)zw ) with the canonical morphism xéﬁgﬁjéﬁ/r%% — Xay 60,7

By abuse of notation we shall also denote this pullback by
tor .
f x&) S5, T/ B, Py = Xy 63,7
For each 7 € X4 let Uz denote the image of il; under , which is
isomorphic to iU+ as a forrnal scheme over Cg,, 5,,- By admissibility of 2§, we know

that theset ¥y, /T'z 4 s finite. Then %q) S /T%_ 5, canbe constructed
o 'z 7

by gluing the finite collection { bpes, , vy, of formal schemes over their
T P tu

JT’

intersections. Let us denote by
f[tf]r P = Xogy o007

the restriction of f'°* to Uz If we choose a representative 7 of [7], then we can

identify fto‘" : Ups) = Xayy,6,,» With the canonical morphism f1 : Uz — X, 5,

induced by the canonical morphism %q> Somr X®,,,65,7- Let us denote by

T :LL)‘- — xéy,é;{,‘r X CV 5 Y

By 09 305
h: Ci)« 577 — O<1>H,Zv-u
and B
hy: .‘f@H,gH,.,- X C&)N 5o — :fq),_“g%,-,—
Caygy.50 HOH
the canonical morphisms. Then we have a canonical identification fI°" = h; o gs.
(Note that gz is a morphism between affine formal schemes over CN'&)?? 5y and that

h; is the pullback of h to the affine formal scheme X4, s, + over Cs,, s, )

For simplicity, let us view Ox,_ and 0%, ,, . as sheaves over Co,,
and suppress (Xe,,.5,,r = Coy,55 )% a0d (Z((@,,.50,7)] = Cdyy,60 )+ from the no-
tation. For push-forwards (to Cg,, s, ) of sheaves over X4, s,,,-, we shall use the
notation & to denote the completion with respect to (the push-forward of) the ideal
of definition of Ox,_,

Based on Lemmai we have the following important facts:

[ E7R)

SqyT

Lemma 4.6. (1) For any T € ¥4
canonical isomorphisms

(47) RUENOn) = & R (V5 (D)

and any integer d > 0, we have the

575,77
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and
(4.8) RUfED(Ov) = &  RUh)(Py_ s (D)
lerV -7y
over Xa,, 5,7
(2) For anyyeTg_ By WE have a commutative diagram

e
Uy il ﬂ,ﬁ—
gr I~y ¥

~ v
Xog o0, X Ctiﬁ,éﬁ xq’?—tﬁﬂﬁc X Cé« 5+

P09 By 5y HTH
hr hr
%qht,tsﬂﬂ' %qhuts?-u‘r

of formal schemes, (naturally) compatible with the commutative diagram

U

9% Gv#

—_ Y —_
(‘:“bﬂﬁﬂ)‘r X Cé« s (‘:‘(I)Hv(;H)T X C<§~ 5o

Caoyo9 HTH Cappoy M
h. h.
(Eén,éu )T (E"I)Hﬁn )‘F

of their supports. Then (4.7) and (4.8) are compatible with the canoni-
cal isomorphisms v* Oy . — Oy, induced by the canonical isomorphisms
V*q’ég,é»ﬁ (75) :> \D‘i’g»gq(f) over Céq,5~‘

For any integer d > 0, if ¥ is a face of T, then the canonical morphism
RA(fior), Oy, — RU(fL7). Oy, induced by restriction from Uz to Uz cor-

responds to the morphism

~ o, ~ o,

& RV 5 (D) = VLGE RI(hr)(Wg_ 5 (0))

o 057 . O
lestn H = (#1)V HOOH

over X, 6,7, and the canonical morphism R(f°%).0y,  —

F3

Rd( ;?r)*ﬁU%, induced by restriction from Uz to Uz corresponds to the
morphism

lerv—ry HH e(#)V —(#)Y H

over Xo,, 5,,,7- Both of these morphisms send Rd(hT)*(\i/&)ﬁySﬁ (0)) (iden-

tically) to Rd(hr)*(\fléy gv(f)) when it is defined on both sides, and to zero
HTH
otherwise.
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4B. Relative cohomology of structural sheaves. By , we shall identify
(M%f[’r)é\[(qmﬁ%ﬂ] with Xg,,,6,,-, and identify Zj(q,, 5,,,r)) With (Ee,,.5,,)-. For sim-
plicity of notation, we shall use Xe¢,, s, » and Zj(4,, s, 7)) more often than their
counterparts.

Recall that Cg,, s, is an abelian scheme torsor over the finite étale cover M;{_?"
of M%f (see Lemma|1.17). Let (A, Aa,ia,0az, ) be the tautological tuple over M?_Z“.
Let T (resp. T) be the split torus with character group X (resp. Y). For simplicity
of notation, we shall denote the pullbacks of A, AV, T, and T, respectively, by the
same symbols. The pullback of G (resp. G) to Xo,, z,,,~ is an extension of A (resp.
AY) by T (resp. TV), and this extension is a pullback of the tautological extension
G' (resp. GV'F) over Cs,, .5, For simplicity, we shall also denote the pullbacks of
G" and GV'!, respectively, by the same symbols.

Lemma 4.9. The morphism h : 5’5)‘ 5 — Cayy 5, is proper and smooth, and
HUH

is a torsor under the pullback to Cs,, 5,, of an abelian scheme Z(XD)-isogenous to

Homo()aA)o — I\/I%“.

Proof. By forming equivariant quotients, we may (and we shall) replace H and
H with principal level subgroups of some level n, so that Cy s = Cz s and

0% n0n
Co,,.54 = Cs, ., are abelian schemes over M;E” = M2, For simplicity, let us
denote the kernel of Cy 5 — Cg, s, by C, viewed as a scheme over M2z,

While the abelian scheme torsor 5'(571 5, MZ» parameterizes liftings (to level
n) of pairs of the form (¢ : X — AV, & : Y — A) satisfying the compatibility
éd = Aaé" and the liftability and pairing conditions, and while the abelian scheme
torsor Cgp, 5, — M%" parameterizes liftings (to level n) of pairs of the form (c :
X — AV ¢V 1Y — A) satisfying the compatibility c¢ = Aac” and the liftability
and pairing conditions, the scheme C' — M?%" parameterizes liftings of pairs of
the form (¢ : X — AY,¢Y : Y — A) satisfying the compatibility ¢¢ = Aac¥
and the liftability and pairing conditions induced by the ones of the pairs over

Cg. 5. — Mir. Therefore, the same (component annihilating) argument in [38,
§§6.2.3-6.2.4] shows that the kernel C of h is an abelian scheme Z(XD)—isogenous to
Hom,, (X, A)°.

Consequently, all geometric fibers of h are smooth and have the same dimen-
sion (as the relative dimension of C' — MZ"). Since both afmgn and Cy, 5, are
smooth over Sy, the morphism h is smooth by [2I, TV-3, 15.4.2 ¢’)=b), and IV-4,
17.5.1 b)=-a)]. By [, §2.2, Prop. 14], smooth morphisms between schemes have sec-
tions étale locally. This shows that h is a torsor under the pullback of C' to Cs, 5, .
(Regardless of this argument, the morphism h is proper because the morphism

O&)ﬂ/?gn — MEL" iS.) O

Consider the union ‘)N’I;,J of the cones 7 in ¥y which has a closed covering

70,7

by the closures 7! (in {)v’t(;’r) of the cones 7 in X (with natural incidence

57,0, T

relations among their closures inherited from their realizations as locally closed

subsets of (Sg_)g). By definition, the nerve of the open covering {{s}zcx, . of
H H

iiﬁ,& » or equivalently the open covering {U%};—Egi)ﬁyéj of (Eéﬁ,sﬁ)g(T) (by

9>
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the supports of the formal schemes {l; }:ex, ), is naturally identified with the
H)UVT N
nerve of the (locally finite) closed covering {#'}+ex, . of My -. Then the nerve
P
of the open covering

of (Ntor)i\ = %i’~5 o T/F(%H

Z{(@3¢,67,.7)] w0

Ui bimess /s

oy
or equivalently the open covering

P

—_
—

Wiktress o M _wy, O Zi@usnr = Ea5)7/Ms a0

7.(_7

of the supports of formal schemes, is naturally identified with the nerve of the
(finite) closed covering

vicl >
{[T] }[%]Ezéﬁ,&,r/riﬁgbﬂ of m&,f = m&,r/rgg’q)ﬂ,

where [#]” denotes the closure of [7] in My .

For any sheaf .# on (:iq,sg)f/rig,qm (such as ﬁ(Ntor)/\[(q}H o =
Oz - ), let us define for any integer d > 0 the constructible sheaf
xcpﬁ,aﬁ,&,r/rq)ﬁ,qsﬂ

AHUAM) on Ny, which associates with each [7] in Ty i LT BD locally
constant coefficients in
AN AN F)) = H Uy, M 0,)-
Then, by [I8| II, 5.4.1], there is a spectral sequence
(4.10) Ey® = H N 7, HUM)) = HFUEg 5 )e/T5_ gy ).

The construction of My, depends only on the cone decomposition ¥y . _, while
0

the constructions of both ##%(.#) and the spectral sequence (4.10)) are compatible

with restrictions to affine open subschemes of Z(4,, 5,,,r)- Therefore, we can define

the sheaves %d(,///) (of constructible sheaves on Ny ) over Zj(¢,, s5,,,r)], and obtain
a spectral sequence

(4.11) By = H Ny 7, (M) = R (A).

Here H*(Ms -, %d(///)) is interpreted as a sheaf on Z(¢,, s,,,r)), and the formation
of (4.11) is compatible with morphisms in .#. In particular, we have compatible
spectral sequences

(4.12)  ES? = HY My 7, (O pioryn ) = RET LT (O oy
EIC TV IVEES) Z[(Im 53¢:7)]
and
cd c d( 5 c+d ptor

(4.13) Byt = H N (O, T)])) = RSO 5

To calculate the left-hand sides of and -7 we define the sheaves
%”d(ﬁ~ } ) and %”d( - ) (of constructlble sheaves) on My -+ (in the

~—,8~,5,T — 5~

obvious way) which, by Lemma carry canonical equivariant actions of the group
'y 4., and descend to the sheaves i (Onroryn ) and L%”d(ﬁ? )

o “U@3g89057)] 228307
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on Ns -, respectively. Hence we obtain compatible spectral sequences

)

,;[,6,7_[,0‘,7‘

= H N7, (O prory

7

(414) B5 0= H (g g H (o, (O,
(®3¢:63(,7)]
and

(4.15) B = H Ty . ,H My, AN Oz )

Do, Py’

= H My, (05 ).

[(@9¢,094,7)]

Lemma 4.16. For any d > 0, the canonical morphisms

d _ 0/qt. d(
(417) R (hT)*(ﬁ%q),Hya,HyT C¢:,5H Céﬁ*gﬁ) — H (ma,'ry K (ﬁxéq,gﬁ,&,r))
and

d _ 0(1. d( g~
(418) R (hT)*(ﬁz[(q:H,JH,T)] C(p: . C‘i’ﬁvgqq) — H (m0,77£ (ﬁ(Eé~,Sﬁ)"’))

are isomorphisms compatible with each other. Moreover, for any integer e > 0, we
have

e~ d s _
(419) H (ma,‘raﬁ (ﬁx‘i)ﬁ,gﬁ,&ﬂ'>) =0
and
(4.20) H* (W7, YOz, ) =0,
o 8a)T

Proof. By (4.7), we have
HNOx, )(7) = RY(f5). (O, ) = jé R(hr)« (g

H’gﬂ’é”'
and for any face 7' of 7, the canonical morphism
d - vel d 5 oyl
A O, S Ay, )

d T . . 7 . . . d T . . b
sends tuhe subsheaf R (hT),k(\II(I)@(Sﬁ (£)) either (identically) to R (hT)*(\I/q)ﬁ,éﬁ(ﬁ))
when ¢ € 5+ N(#)V, or to zero otherwise. Since U 7 = U 7 is a contractible

igrv igrv
or empty subset of 915 . for any given [ e &t (because it is a deformation re-
tract, defined compatibly over the polyhedral cones overlapping with the bound-
ary, of the convex subset of My . over which ¢ is negative), this shows 1} for
e > 0 as usual (by the argument in [36, Ch. I, §3]). On the other hand, since

Eﬂ (6+N+Y) = 7V, we see that (4.17) is an isomorphism. The proofs for
TE %

Sﬁ,é‘,r

T
and are similar. (Since the nerves involve infinitely many cones, let
us briefly explain why we can work weight-by-weight as in [36, Ch. I, §3]. This
is because, up to replacing the cone decompositions with locally finite refinements
not necessarily carrying I'y _-actions, which is harmless for proving this lemma, we

can compute the cohomology as a limit using unions of finite cone decompositions
on expanding convex polyhedral subcones, by proving inductively that the coho-
mology of one degree lower has the desired properties, using [52, Thm. 3.5.8]; then
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we can consider the associated graded pieces defined by the completions, and work
weight-by-weight, because taking cohomology commutes with taking infinite direct
sums for Cech complexes defined by finite coverings, as desired.) O

Lemma 4.21. The topological space Nz » is homotopic to the real torus

— - v ~
T@g,tbﬂ T (Féq@,{)R/I‘@ﬁ’@Hv

whose cohomology groups (by contractibility of (I'g__ <I>H)ﬁ) are
T

HJ‘(T%’@H,Z) >~ HI(T'x 7) = /\J‘(Homz(r%’%,Z))

Do, Py’
for any j > 0. Over Cs,, s,,, we have a canonical isomorphism

(4.22) HJ’(F%%,Z) ® O, 5, = N (Homo(QV, Liepy JCary,)-

(which has &

as a face) is generated by & and some rational basis vectors not contained in the
image of the first morphism in (3.7). Moreover, the image of 7 under the second
morphism in 1) is contained in 7 C Pgﬂ. By choosing some (noncanonical) split-

ting of sy ®Q : X®Q - X ®Q, we can decompose the real vector space (Sg_ )%
Z Z Z i

Proof. Since ¢ is a top-dimensional cone in P% ,any T € Xg
H H

~70.7T

(noncanonically) as a direct sum (Sg_)g ®(Tg_ 4, )& (Sa,, ), on which the ac-
H H

tion of I'z _ By is realized by its canonical translation action on the second factor.
T

Along the directions of (Sz_){ and (Ss,, ), we can contract Ny, (say, towards
H
some arbitrarily chosen points in the convex sets o and 7) in a way compatible with

the actions of I'z Therefore, Ny, = Ns - /T'5_ By is homotopic to the real
0

D7, P
LT~ — (T~ VT -
torus T@g,cby = (Féﬁ,éH)R/Fé,QH'
The canonical isomorphism (4.22]) then follows from the composition of the fol-
lowing canonical isomorphisms:

HJ(F%,% ,Z) % Ocs,, 5, = (AJ‘(HomZ(F@ﬁ@H ,Z))) QZ@ Ocy,, s,
o~ (Aj(HomZ(Homo(i,X),Z(D))))Z@ Ocy,, 5.,
(@)

=~ A (Homo (QY, Homg(Y, Ocy,, s,,)))
= /\j(HOmo(Qv,@TV/C@HﬁH)))' 0

Lemma 4.23. There are compatible canonical isomorphisms

RY(h.). (O Gy s ) = /\d(Hoimo(Qva@AV/%<I>

"x’\bH,sH,rc X

)

PO T

and

d
R (h7'>*(ﬁz[(q>ﬂ’5”’,.>]c X aéfV,Sﬁ

. ) = /\d(Hoimo(vi@AV/z[@H
B2y ,69

)

S30.T)

for any integer d > 0.
Proof. By Lemma the morphism h : C&,ﬁ,gﬁ — Cs,, 5, is a torsor under

an abelian scheme Z % -isogenous to Hom,(Q, A)° (and hence has a section étale

(@)
locally). Since the cohomology of abelian schemes (with coefficients in the structural
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sheaves) are free and are compatible with arbitrary base changes (see [5, Prop. 2.5.2]
and [43], §5]), we obtain compatible canonical isomorphisms

1%

d d(r:
R (hr)*(ﬁxq)H)éH,T X C. S~) A (@(Homo(Q,A)O)V/%éHJH,T)

Cay65 HOH

1%

A (Homo (QY, Lie vz, )

and
d _ ~ A d(T
R (hT>*(ﬁz[<‘D’H,5’H,T)] Cos Co 5y " (@(HOJO(Q’A)O)V/Z[(‘PHvSHvTﬂ)
HOH
o~ £d :
=A (HOiIH(g(Q\C@AV/Z[@HJH’T)]))
for any integer d > 0. O

Proposition 4.24. There are compatible canonical isomorphisms

(4.25) H My, 4 (Oporys )

2[(®4,62¢,7)]
= (A“(Homo(Q, Lier jx, . )

® (/\d(iHomo(Qva@AV/x@

354’9_‘,59_‘,7'

)

HOH T
and

(4.26) H° My ., 205 )

Z[(@qy 590, 7)]
> (A (Homo(Q” Lierv /7, , )))

®  (A(Homp(QY, Lie v 7,

[(@94,094,7)]

)

%4 (29¢,89,7)]

for any integers c,d > 0.

Proof. By Lemma {4.16| the spectral sequences (4.14) and (4.15)) degenerate and

show that for any integers ¢ and d we have compatible canonical isomorphisms

(4.27)  H (N7, O (nroryr

2[(@94,89¢,7)]

= HCg g, H Mo (0%, )
7055
~ (T~ d C
~H (F<1>,’I7‘I’H7Z) %R (h"')*(ﬁX¢H,6H,T crb:.SH C&iﬁ,é,ﬁ)
and
c 5 d( 7.
(428) H (ma',‘rai (ﬁZ[((pHQH,T)]))
= Hc(rf‘ﬁﬁ,@uyHo(m&T?%d(ﬁ(é“N5~)7—)))
HOH
~ ST~ d C
~H (]_—‘(I)ﬁ’q)H,Z) %R (h”')*(ﬁz[(éﬂ,én,ﬂ] o x C(T)~,5~).

Dy8q  HOH

Now combine (4.27) and (4.28)) with Lemmas and O
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Lemma 4.29. The spectral sequence degenerates at Ey terms. Consequently,
since the choice of the stratum Z|,, s, s arbitrary, by Grothendieck’s funda-
mental theorem [21), III-1, 4.1.5] (and by fpgc descent for the property of local free-
ness |20, VIIL, 1.11]), the sheaf R®fY°"(Oyior) is locally free of the same rank as
AP(Hom (QY, Liegv jmigr)) over M3g".

If, for every maximal point s of Zj(s,,,s,,,-) (see 22, 0, 2.1.2]), we have

4. : b ptor(
( 30) dlmk(s)((R * (ﬁz[(¢uv5nvf)1))ﬁz[@fin,r)] k(S))
> dimy o (B (Ooryy ) © K(s)),
HOHT Pay Sy ,T

then the spectral sequence (4.13|) degenerates at Eo terms as well, and there is a
canonical isomorphism

(4.31) R fI (Oner) ® O3

tor
My

| R0 ).

(P41:594:7) Z((@3,,89,.7)]

Proof. Let Spf(R,I) be any connected affine open formal subscheme of Xg,, s5,,.7,
with the ideal of definition I satisfying rad(I) = I for simplicity. Since MJ* is
smooth and of finite type over So = Spec(Op, (o)), the ring R is a noetherian
domain. (See [39, 33.1 and 34.A].) Since Z(4,,.5,,-) 15 @ smooth subscheme of
ML, the quotient R/I is also a noetherian domain. Let K := Frac(R) and k :=
Frac(R/I) be the fraction fields. By abuse of notation, we shall denote pullbacks
of schemes to Spec(K) (resp. Spec(k)) by the subscript K (resp. k).
Since we have an exact sequence

0— QT\//%‘PH,(;H,T - @Gv’”/x%{,sﬂ,r - @Av/}:q@‘,aﬂ,r —0

of locally free sheaves, we have an equality

(432) Y dimpc(A"(Homo(Q, Lieay ))) (A (Homo (QV, Liery )
c+d=b

= dimK(/\b(Homo(Qv, Lieg}j)))
= dimg (A*(Home (Q", Liegy ))),

and an analogous equality with K replaced with k.
By construction of the spectral sequences (4.12)) and (4.13)), by the canonical

isomorphisms (4.25) and (4.26)), and by the equality (4.32)), we have

(4.33) Y dimg (H My r, (O (o) ) ® K)
c+d=b @2 530m) - Oy 5y r
= dimg (A’ (Home (QV, Liegy )))
> dlmK((Rb :Or(ﬁ(Nmr)g )) ® K)

z T %
[(@3¢:6%,7)] Xy 69,7
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and
. e, d( .
(4.34) > dimg(H s 5 s0en)) y, © K
Srraltt [(®3y:8%,7)]
= dimy (A" (Homo (Q", Liegy)))
Zdimk(Rb :or(ﬁ~ ) ® k).

ZU(®30.890.7)) T2(03,534,7)

tor

Since the pullback of f' to the open dense subscheme My of MY9" is simply the
abelian scheme f : N — My, we have

(R i (Opeer)) @ Owm,, = RYfu(ON)

mior
= /\b@NV/MH = Ab(@O(Q\/’@GMH/MH))'

Since the canonical morphism Spec(K) — MY" factors through some maximal
point of My, this implies that the inequality in is an equality, and hence
that the spectral sequence degenerates at Ey terms after pullback to K.
Since all E5 terms of this spectral sequence are locally free sheaves, this shows
that degenerates at Ey terms after pullback to R. Since the choice of R is
arbitrary, this shows that degenerates over the whole Xs,, 5,,,-, and hence
RY ftor (Oyror) is locally free of the same rank as /\b(Hoimo(Qv,va/M;?)) over
ML". (Nevertheless, since f*" is not necessarily flat, this does not imply that the
formation of RPf{°F(Oyior) is compatible with arbitrary base change.)

Since the canonical morphism Spec(k) — Zj(s,,,s,,,7) factors through some max-
imal point of Z{(q,, s,.,r)), the inequality (4.30)) implies that

dimy (R? ftr (05 ) ® k)
[(®3y:894,7)] ﬁz[(q}%&%f)]
> dimy,((R? (O neoryn ) ® k)
Z[(@3¢:69¢57)] 03&@%,5%,7—
= dimg (R f1" (O nrory ), @ K,
Z[(@gy89¢5m)] ﬁx@%,é%,r

and hence the equality in (4.33) implies the equality in (4.34]), because

dimy (A°(Homo (QY, Liegy))) = dimg (A*(Homo (Q", Liegy ))).
Therefore, by the same reasoning as in the case of (4.12)) above, the spectral se-
quence (4.13) also degenerates at Eo terms. Since the spectral sequences (4.12) and

(4.13)) are compatible with each other (by their very construction), their degeneracy
implies that the canonical morphism

b rtor O inor O N b rtor O~
R f* ( b )%\[@H,Sn,r)])ﬁx&@s Z1(@a4.03.7)] R f* ( Z[(@Hv’snv‘f)])
HOH T
is an isomorphism (by comparing graded pieces) and induces (4.31]). |

Remark 4.35. By upper semicontinuity for proper flat morphisms (see [43} §5, Cor.
(a)]), the assumption is satisfied when f'%T is flat, or equivalently when
Condition is satisfied (by Proposition , which can be achieved by refining
both ¥ and & (by Proposition .
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Corollary 4.36. For any integer b > 0, the canonical (cup product) morphism
A (RY L8 (Oppor)) — RO fL% (Opior) is an isomorphism.

Proof. As in Lemma by properness of f%r, this is true if and only if it is
true over the formal completion along each stratum Z((s,, s,,,7), Which is the case
because the canonical morphism induces isomorphisms on all graded pieces defined
by spectral sequences such as , which are compatible with cup products by
the very construction (see [I8, II, §§5-6]). O

4C. Degeneracy of the (relative) Hodge spectral sequence. As in of
Theorem let Hjo, qr (N*'/MET) = R’f:orQNtor/Mggr be the (relative) log de

Rham cohomology. By the definition of Hj,, 45 (N'"/Mi") as the “relative hyper-
cohomology”, the natural (Hodge) filtration on the complex Qpyeor /mior defines the
(relative) Hodge spectral sequence :

B = R P @ ) = B (N /M),
By of Theorem m (which we have proved in Section , there is a canonical
isomorphism

Dor e = A1) (Home(QY, Lieh )|

[~ (ftor)* { NG (Hoimo(Q\/’mé/M%?))}

of locally free sheaves over N**. Then (by the projection formula [21], 01, 5.4.10.1])
we have canonical isomorphisms

(437) R F @or pgr) = (R (Oner)) © (A (Homg (Q, Liek, ).

tor
M3

Lemma 4.38. If R’ fi"(Oyuer) is locally free for every integer b > 0, then the

*

spectral sequence (2.20) degenerates at the Ey terms.
Proof. By (4.37), if R®f"(Oyior) is locally free for every integer b > 0, then all

*

the E; terms R?fir (Qpeor /M%,r) of the spectral sequence |i are locally free.

Therefore, to show that (2.20) degenerates at F; terms, it suffices to show that it
degenerates at F; terms over the open dense subscheme My of M{*, which is true
because f*'|y = f : N — My is an abelian scheme. (See for example [5, Prop.
2.5.2].) O

This proves of Theorem because the local freeness of R? f1°(Oyior) has
been established in Section B]for every integer b > 0.

4D. Gauss—Manin connections with log poles. In Section we proved the
log smoothness of f*r : N*" — M" by verifying Lemma For simplicity, let
us set

—1 —=1
O Q;,,gjr/so [dlogoo] and  Qyeorss, = Q,l\,m/so [dlog oo].
Then (3.12)) can be rewritten as the exact sequence
g =1 =1
(439) 0 — (fto ) (QME;.(‘"/SO) — QNtor/SO — QNtor/Mgfzr — O,
which induces the Koszul filtration [35], 1.2, 1.3]

K¢ (ﬁ;lcor/sg) = image(ﬁ&;ﬁ/so 6’® (ftor)* (ﬁlL\L/lgg"/So) — ﬁ&tor/so)

Ntor
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on Qs /s, with graded pieces Gry (Qpor s,) = QN;?/M;gr ﬁ@ (ftor)*(ﬁ(,i,,w/so).
Ntor

On the other hand, we have the Hodge filtration

—e>a

F¢ (ﬁNtor/So) = QN"OY/SO

on Qpior /s, giving the Hodge filtration

F*(Hiogar (N /M) := image(R' 1 (F*(Qiors,)) = R FL (Qeor s,)
on H fog_dR(NtOr /MYT). By applying R® ff°" to the short exact sequence

—eo—1 xS =
(4.40) 0 = Qror jpor @ (f*9) (Dwmsers,) — K? /K% = Qyior s, = 0,

Ntor
we obtain in the long exact sequence the connecting homomorphisms
(4.41)  Hiop qr(N7/M5) = R £ (Quor juasgr)
V. pit+l ptor(® 1 ol ~ 770 t t ot
= RN (Qeor pmaser ﬁ%ﬁ Qo s,) = Higgar (N*"/M5Y) Szzor Ot s,
H

As explained in [35] 1.4], the pullback of V in (4.41]) to My, is nothing but the usual
Gauss-Manin connection on H)z (N/My). Since the sheaves involved in (4.41) are
all locally free,

i T T i T T Al
V: Hipg ar (N /M5) = Hjoy qr (N /M) @ Omeer /s,

tor
M3

satisfies the necessary conditions for being an integrable connection with log poles
(because its restriction to the dense subscheme My, does). If we take the F-filtration

on (4.40), we obtain
a—1,0° ory* ()L a a0
0— (F 1(QNtor/M§2r) ﬁ%or(ft ) (QME&“/SO))[i]‘] —F (Kz/KO) —F (QNtor/SO) —0
and hence the Griffiths transversality
a 0 or or a— % or or ol
V(F (flog-dR(Nt /M5))) CF 1(f10g—dR(Nt /M ))ﬁ® Omeer /s,

tor
MY

(as in [35] Prop. 1.4.1.6]). This proves of Theorem
Remark 4.42. By of Theorem the (relative) Hodge spectral sequence

BT = RO (Qor jasgr) = Higgan (N* /M)

degenerates. Then we have Grg(ifog_dR(Nwr/Mg_‘zr)) = Rifaflfor(ﬁﬁ,mr/wzr),

and we can conclude (as in [35] Prop. 1.4.1.7]) that the induced morphism
a rri or or a— i or or ol :

V : Grg Hipp g (N7 /M) — Grg 1ﬂ10g_dR(Nt /MY )6@ Qumter/s, agrees with

MEQT
the morphism
i—a ptor [O% i—a+1 ptor a1 Al
R f* (QNtor/Mgi)r) — R f* (QNtor/Mgi)r) ﬁ® QM%,(Zr/So
mtor
H

defined by cup product with the Kodaira—Spencer class defined by the extension
class of (4.39)). We will revisit a special case of this in Section
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5. POLARIZATIONS

The aim of this section is to prove (3b)) and of Theorem by studying
the log extension of polarizations on the relative de Rham cohomology.

5A. Identification of R’ f!°"(Oysor ). By Corollary any morphism jg : QY <
Q in Lemma (together with the tautological polarization Am,, : Gwm,, — Gy,
over My ) induces canonically a polarization

)\M'H_JQ : @O(Qa GM'H)O — (@O(Qv GM'H_)O)V

of degree prime to O, and hence an isomorphism
d)\MH,jQ : HOimO(vaGMH/MH) = Hoimo(Qv,@GthH/MH).
Therefore, it induces canonically a ZFD)—polarization AMyjo * N — NV, and hence
an isomorphism dAwm,, jo : @N/MH — @NV/MH- Over M%*, the morphisms
Jjo : QY — @ and dX : Lieg/migr — Liegv mrer induce canonically an isomor-
phism d)j, : Homy(Q, Lieg mior) = HomO(QV,@GV/Mgir) extending dAwm,, jo :
m@(Qa@GMH/MH) — HOimO(QvamG&H/MH)'
- —1 -

Let us define Derior jyeer := Homg, (QNto,»/Mgir, Optor). Tts restriction to My

can be canonically identified with Dery /y,, := Hom, (Q&/MH, On).

Let us denote by 7 : My — MY" the canonical open immersion. Then we have
the commutative diagram

(5.1) fior (Deryeor jser ) #HO&O(Q,@GMH/MH)

Ix(fe(Derym,, ) ——— J*(Hoimo(Q,@GMH/MH))

I (d)‘MH JQ) dAjQ
1o . (0N)) == . (Homo(Q, Licgy suy,))
leior(ﬁNtor) HOmo (Q, @G\//M%&)r)

of sheaves over MY9", with the dotted arrow induced by j.(dAwm,, j,)- By abuse of
notation, let us denote the dotted arrow also by j.(dAwm,, j, ). We have the following
simple observation:

Lemma 5.2. If j.(d\wm,,,j,) maps the image of the canonical injection
f:or(@wor/mggr) > 7« (fe (@N/MH))
isomorphically to the image of the canonical injection
R [ (Onver) = 32 (R f.(ON)),
then induces the desired canonical isomorphism
(5.3) R 1 (Opgor) = Hom (Q; Liegv jmser)

extending the canonical isomorphism R' f.(On) = Hom,, (Q,@Gm /Mn) over My .
H
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Remark 5.4. The question is whether the assumption of Lemmal5.2]can be satisfied.
Since this is a question about morphisms between locally free sheaves over the
normal base scheme M4J", it suffices to verify the statement after localizations at
points of codimension one. Therefore, since the statement is tautologically true
over My, it suffices to verify it over M* %Q.

5B. Logarithmic extension of polarizations. By construction (see Section
, XV(1) = Hom@(X,Diff(_Q,l/Z(l)) is the submodule Q_3 of QY ®Zx)(1), and
z

Y is the submodule Qo of Q®Zy. Therefore, the embedding jo : Q¥ — Q
Z
corresponds to an element ¢;, of Sz ®Zny. The positive definiteness of the
H7Z

induced pairing <jél(-), -)o then translates to the strong positivity condition

that (¢;,,y) > 0 for any y € P<T>,7 — {0}. By replacing jo with a multiple by a
positive integer prime to O, we may and we shall assume that /;, € S&)ﬁ (without
siltering t~he above strong positivity condition). Then we obﬁain an invertible sheaf
\Ilig,gg(fjcz) over the abelian scheme N — My,;. Note that £;, € 7.

Lemma 5.5. The invertible sheaf \Ilivg\(zm) is relatively ample over My, and
HIOTH

. . X . : _ - . Vv X 3
induces twice of a Z(D)—polamzatwn )\‘%ﬁ,gﬁ % N — NY (namely a Z(D) isogeny

whose sufficiently divisible positive multiple is a polarization). Under the canonical
isomorphisms in Corollary the induced morphism

Ny 5 (B L, = Lieny

s twice a positive Z(XD)-multiple of

Ay o  Home (@, Lieg,,  /m,,) = Hoimo(Qv’@GthH/MH)-

In particular, d\g_ @) s an isomorphism over My ® Q.
37570 7z

X

Proof. Just note that the morphism Ag > is twice a positive Z - -multiple
Vs 5 (Lig) (@

X
of the Z(D)

The invertible sheaf \Tlg,
and the morphism

-polarization Awm,, j, in Corollary O

N g»v(’ﬁva) over N defines a global section of R f.(0y),
HH
dlog : OF — Oy, :a > a” 'da
induces a global section DZjQ = dlog(ﬁliﬁygﬁ(ém)) of le*(QlN/MH). Then it
is standard (cf. [38, Prop. 2.1.5.14]) that the cup product with D; induces a
iQ
composition of morphisms

UDZJ can.
fe(Derym,,) —° R'f(Dery ® Om,) = R f.(On),

and that this morphism f.(Dery y, ) = R'f«(On) can be identified with the mor-
phism d\g 7 ) under the canonical isomorphisms

£
@97,677( iQ

f«(Dery,,) = Lieyy,, and  R'f.(On) & Lieyv -
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The first question is whether we can extend the morphism f.(Dery y,, ) —
RYf.(ON) to ML"; and the second question is whether the extended morphism is
an isomorphism, at least in codimension one. N

A naive approach is to extend the invertible sheaf Ej%g,gg (¢j,) to N*T. Since
Nt is projective and smooth over Sg = Spec(O Fo,(0)), it is locally noetherian and
locally factorial. Then [2I, IV-4, 21.6.11] implies that the canonical restriction
morphism Pic(N*") — Pic(N) is surjective.

However, since f** : N*" — M" is not smooth, we have little control on

res.

the canonical restriction morphism R f;or(th/M%r) = 2«(R (Qh/MH)), and

there is no obvious reason that the image of the class defined by any extension of

\I/g)ﬁ,gﬁ (j,) should induce an isomorphism extending d)‘\flg,,v,g,v(%) (at least) in

codimension one. (This is mentioned in [I6, Ch. VI, end of §2], but with no details.)
An alternative approach is to consider the canonical restriction morphism

or 1 res.
(5.6) le: (QNtor/Mggr) — J*(le*(Qll\l/MH))'

By Lemma and by of Theorem R* flor (ﬁi,m Jmior) is locally free over
MZ9". Therefore, the morphism (5.6) is injective.

Remark 5.7. The use of R* ftor (ﬁhtor/Mtor) is inspired by Kato’s idea of (relative) log
H

Picard groups mentioned in [32] 3.3]. An application of this idea has been carried

out in [46].

So far we have refrained from introducing the log structures (because they had
not been necessary), but they are needed (at least formally) here. We shall adopt
a notation slightly different from those of [33] and [32]. Let 7: N — N denote the
canonical open immersion. Then the canonical (fine) log structure on N'*' (which
we have been using so far) given by N** — N (with its reduced structure) can be

defined explicitly as the sheaf of monoids Esmr := Onror N ] Oy (sheafification of

the obvious presheaf), with associated sheaf of groups Esfrp. Clearly, the restriction

of ﬁ;frp to N is canonically isomorphic to O .
Definition 5.8. A relative log invertible sheaf over f* : N** — MY* is a global
section of le,for(ﬁ,iff).

Since we do not assume that f'°T is flat (or log integral), the appropriate inter-

pretation of relative log invertible sheaves can be quite delicate (and beyond this
article).

Lemma 5.9. To define a global section of le,for(ﬁsfrp), it suffices to have the

following data:
(1) A collection of schemes U, over N** forming an étale covering. We shall
denote the fiber product U, Nz< Ug (i.e., “intersection” in the étale topology)

by Uag, denote Uaﬁ'N = Uag x N by Uyg, and use similar notations for
Ntor

higher fiber products.

(2) A usual invertible sheaf L, over each Ul,.

(3) A comparison isomorphism La|u,, = Lglu,, over each Uag, satisfying the
usual cocycle condition over triple fiber products Uqyp~ .
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Proof. Since the restriction morphism @ yie (Uap) = 5;J§rp(Uag) > OF (Uap) is a
bijection when the image of U,z in N** is sufficiently small, the data above define a
section of HL(N*r @ /5), which then defines a section of HO (MY, R! flor (Gs))
by the Leray spectral sequence in low degrees. (See [18] I, 4.5.1].) O

In the construction of toroidal compactifications in [38| §6.3.3] (following [16] Ch.
IV, 8§5]), there is a strata-preserving étale covering U — M;i;r (serving as an étale
presentation for the algebraic stack I\/I;i_zr), where U is a finite union of the so-called
good algebraic models of M';i;r. (See [38] Def. 6.3.2.5].) By taking the closures of the
[(®g,05,0)]-strata, we obtain a strata-preserving étale covering U — Nt with
strata labeled by triples [(®4,05,7)] havin% [(®g,05,0)] as a face.

Each connected component U, of U is given by the UCIOS}H‘G of the
[(®g,05,0)]-stratum  in a so-called good algebraic (®g,0d4,7)-model
Ua = Spec(Ry) — M;:t‘?r, where (éﬁ, 57_7, 7) is a representative of some [(CTL;L, 5?_7, 7))
having [(®4,05,0)] as a face (cf. second property in [38, Def. 6.3.2.5]), which we
may assume to satisfy 7 € Z&)ﬁ’&ﬁ. (See Section There are usually many «

for each [(éﬁ,gﬁ,ﬂ]) Then we also have a strata-preserving étale morphism

Uy = (E4_5 )s(7), which we shall call a good algebraic (&’ﬁ,gﬁ,%)—model of

N®*r. The (open) [(&)ﬁ,gﬂ,g)]—stratum in U, is exactly the open subscheme

Lemma 5.10. Suppose that, for each 7 € ¥g we have chosen an element Zj
H

0, T QT
in 7y that is mapped to ZjQ in oy under the second morphism in 1) and that
ng,ﬁ = 'ylﬁij forany~ € FEI;qsIm' (Note that the choice onjQ_,; is unique only up
to translation by 5+.) Let U — N be any strata-preserving étale covering formed
by a finite union of good algebraic models. Then the choices of {{;, #}rex

G, T

b
H
and U determine a relative log invertible sheaf L over N** — MY* extending the
rigidified invertible sheaf Vg =
HH

algebraic (éﬁ, 571, 7)-model U, of N*, with ¥ € ¥4
H

~70-77-’

(EJQ) over N, in the following sense: For each good
let L, denote the pullback
of \Ilniﬁ,ég((j@f) under the composition U, — (E&)ﬁvsﬁ)i(%) — Cég,ég; Then
gﬁﬁ(@@) (from N = C’@qsﬁ)
to U,. Furthermore, the collection {(Uy, Lo)} satisfies the requirements in Lemma
and defines a log invertible sheaf as in Definition [5.9]

Lo|u, is canonically isomorphic to the pullback of \T’Ef)

Proof. Let (G,X,Z ag) be the degenerating family of type |\~/Iﬁ over |\~/|;_izr Let
B(@G) : S — M(Mgr) be constructed as in [38, Constr. 6.3.1.1]. If U, is

25-(G)
a good algebraic (éﬁ,sﬁﬁ)—model, then for any /e Si@f the invertible sheaf

Y,

B(G)(Uy)(f) over U, is canonically isomorphic to the pullback of \iég,sg (¢) under

9

the composition U, — (Eq, Sﬁ)&(T) — 5’@77’59: (cf. third property in [38, Def.
6.3.2.5]).
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Given that B(G) is defined over |\~/Itor and functorial with respect to pullback
morphisms Uaﬁ — Ua, the restrlctlon of the pullback of \I!(D 5 (EJQ #) to the
[(<I> 5 ,0)]-stratum of U, is isomorphic to the pullback of \IJ@ ka (ém) when

(CD (5 ,0) is a face of [(CDH, 5?-[7 7)]. In other words, L,|v, is 1somorphic to the
pullback of U b5, (6 ) over each U,. Since the isomorphisms L, |v,, = Lslu, s

induced by such identifications satisfy the cocycle condition because \I!q> 5y (€ )
is defined on N, the claim follows, as desired. O

Remark 5.11. Any (usual) invertible sheaf over N** extending \Il b (éj o) satisfies
the requirements in Lemmal[5.9]trivially. The point of Lemmamls {hat it provides
an explicit extension of Uz b5 (€j,,) (useful for our later argument) over an étale

covering of N**. (We do not have such an explicit description of a global invertible
sheaf extension over N'°T.)

Definition 5.12. To any relative log invertible sheaf L over N — MY* defined by
a global section of R! :Or(ﬁ;frp), we define dlog(L) to be the image of L under the

canonical morphism letor(ﬁsfrp) — leior(ﬁ,\,mr/wy) induced by the canonical

morphism dlog : ﬁNfrp — QNtor/Mtor

Corollary 5.13. There exists a (unique) global section D;{)r of R fﬁor(ﬁﬁm/M%r)

Q
whose image under the canonical injection (5.6) is 3.(Dj. ), which satisfies D%Or =
IQ iQ

0

dlog(L) for any L constructed in Lemma |5.10| (with any choices of ZjQ’; ’s).

Proof. The existence of D" is clear because there is always some (usual) invertible
ig
sheaf over N'** extending \1’5;{,5@ (o) (by [21, TV-4, 21.6.11], since N** is locally

noetherian and locally factorial, as mentioned above). The uniqueness of DT is

iQ
clear because 1) is injective. Once we know the unique existence of D%‘_’r , it has
to agree with dlog(L) for any £ constructed in Lemma O

Thus we are led to state the following:

Proposition 5.14. Cup product with the global section Dg; of R! ftor (ﬁhmr/M%r)
in Corollary induces a composition of morphisms
(515) " (Detyior )
Dtor
letor(DerNtor/Mfor ® QNtor/Mtor)

Oytor
B R (Opgeor).
This composition is an isomorphism over M %Q. (By Lemma and Remark
this implies the existence of the canonical isomorphism (5.3)).)

We will carry out the proof of Proposition in the next subsection.
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5C. Induced morphisms over formal fibers. We fix the choices of
{jg.rtrex, , and U, so that L is constructed as in Lemma [5.10} and so that
T

D" = dlog(L) as in Corollary [5.13
iQ

Since f** is proper and the sheaves involved are all coherent, by Grothendieck’s
fundamental theorem [21], III-1, 4.1.5], Proposition can be verified by pulling
back to formal completions along strata of M%". Let us fix the choice of a cusp
label [(®3,d%,0)] of M, and consider the canonical morphism

tor tor
:{q:"}-t O3, T = (M )Z[(q, 2459 - MH .

By abuse of notation, we shall also denote by +*(-) the pullbacks of objects un-
der pullbacks of the morphism 2. We would like to show that the morphism
z*fﬁor(m,\,m/wgr) — * R (Opror) defined by cup product with z*(D%‘_’r) is
iQ
an isomorphism over Xg,, 5, ® Q.
Z

As said in Section #A] the pullback of f* to X, s, - can be identified with
the canonical morphism x(i 3, T/F5 @y > Xy 00,7, and %5,@5%&77/1%%@“

has a finite open covering by the collectlon {44 Fires, of open formal

— s/ Ta
<I>,Ho'r fI’,Hi‘H

subschemes. Let 7 € ¥5 . _be arepresentative of [7] € Xy 5 T/Fq> ®,,- Foreach
7

)5 (7) along

such 7, recall that the formal scheme ; is the completlon of ( .
H
#) over C’q) S

Uz. By abuse of notation, let us denote the pullback of \I/<I> . (E
(see Lemma

jQT
to Lz by the same notation. For any v € 'z since ém A,T 75

Dog Py’

7‘“—
, we have a canonical isomorphism ~* \Péﬁ,éﬁ(@o,w) (
v : 4 = 4> is the canonical isomorphism (see Lemma . Hence \Il‘i,ﬁjﬁ(ﬁm,;)

descends to an unambiguous invertible sheaf \AI;&,M 5 (EjQ7[%]) on Upz.
HOTH

#), where

The étale covering U — Nt induces (by taking formal completion along the
pullback of Zj(g,, s,,.0)) an étale (i.e., formally étale and of finite type; see [21, I,
10.13.3]) covering of (Ntor)z[@ o If U, is a good algebraic (éﬁ,gﬁﬁ')—model
of N**, then the formal completion (UO‘)/Z\[(¢H,5H,U>] of U, along the pullback of
Z((y,,50,0)] 18 €tale (in the same sense as above) over ;.

Lemma 5.16. The pullback of L, to (UQ)A[

7 is 1.somorphic to the pullback
~ y (Py,694,0)]
of \Pég,gg (Ujo,2) from L.

Proof. The canonical morphisms

T7T \A TT7 tor TT7 tor

(Ua)z[(%,%o” —Us,— N and (U, )Z[@ e s — N
are induced respectively by morphisms

T \A 7 ntor T \A < \tor

(Ua)z[(CP—H,éfH,d)] — Uoc — Mﬁ and (Ua)z[(q)H’&Hﬁ)] — LL,- — Mﬁ

over |\~/I';_~‘Zr Under both these morphisms, the pullback of (G, X, 14, ag) — |\~/I';_~‘Zr
is canonically isomorphic to the pullback of the Mumford family (as in the
proof of Proposition [4.3)). Since the isomorphism class of the pullback of £, to

(UQ)Q[(@H’%J)] is determined by the pullback of B(G) : S; (@ IIlJ(M%”) (as
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in the proof of Lemma , we can pullback along (UQ)Q[@H sy $l — Ntor
and conclude that £, is isomorphic to the pullback of \Tlé % (ZjQ,;) from Y. O

HOH
By Lemma [£.29] we have

0 I (Opror) 2 fLO7 (O pgion) ) = HO Ny, ., H°(Onioryy

Zl(@g¢,83¢:7)] ))
and 2* R fLo (Onror) =2 RY :Or(ﬁ(Nm)iA[(@H,sH,ﬂ]) is equipped with a decreasing fil-
tration with (locally free) graded pieces

Gr (v R f1o" (Opror)) 2 HO (N7, (O pytory

7

A
2[(®q4,62¢,7)]

(@H 157—{ ,7)]
and

Gr' (" R fLo" (Onior ) 2 HY (Mg 7, (O ptor) ).

2[(®q4,69¢,7)]

Thus, to show that (5.15) is an isomorphism over M4 ® Q, it suffices (by com-
Z

parison of ranks of locally free sheaves) to show that it induces surjections from
subquotients of Z*ﬁor(Deerr/Mg?) to these graded pieces over Xg,, 5,,,r ® Q.
z

By tensoring the above filtration with z*ﬁﬁm /Mitgr (and by ), we obtain a

decreasing filtration on ¢* R £ (Qyeor /Migr) With

Gr( R fir (ﬁr{nor/mggr)) =~ H° (m&,nﬁl(@*ﬁr{nor/mggr))
and

Grl(@*lei‘”(ﬁEmr/M;;r)) = Hl(mé,r,ﬁo(l*ﬁitor/mggr))'
Since ENmr/Mtﬁr = (ftor)*(mo(Q,mGMH/MH)), we have

VL (Dexyior g ) = HO (N, A0 ("Detyon s ),

and the morphism

o [ (Detyeor jmsgr) — HO Ny 7, A (O (nrorys )

(@9 59¢-7)]
induced by ([5.15) can be identified with the morphism
(5.17) H°(My ., 2° (1" Derpror Migr)) = H (N 7, (O nor) ))

2[(®q4,69¢,7)]

given by cup product with the image of +* (D%Or) in Gro(l*leior(ﬁhtor/M!ﬁr)) =
iQ

« L
HO(‘ﬁ&’T,ﬂl (Z QNtor/M%-ct)r)).

For simplicity, let us define Xo,, 6,7 = Xoy 60,7 X O&,"g‘. Then the
Coygy.59 HOH
structural morphism xég,&;,&,r — Xo,,,5,,r factors as x&)ﬁygﬁ7&77 — Xy 60,0 —
Xa,, 54,7 Over X@@gﬁﬁ&ﬁ, there is an exact sequence
0— (X5 x . —Cy 5 ) (QL
( D57,057,0,T @ﬁ,éﬁ) ( C<I>ﬁ,5ﬁ/c‘1’7-t*57-¢

—1 —=1
* ~ ~
— 1 QNtor/Mtor — Q}:$~~‘5A,&,r/x¢ - —0
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of locally free sheaves, where 2 QNtor Mtor = Qx . By taking duals,

<1>~ 597 s, 7/x‘1>7-¢ 8347
we obtain an exact sequence

0— Der — Z*Deerr/M;Sr

T L S
<I>,H5,Ho‘r HOH

— (%ég,sg,ffﬂ' — C(i)ﬁ’g ) (Der ‘1>g 5\/CI>;.¢ 57-1) — 0.

We have Nsirnilar sequences with §‘i’g,5g7&ﬁ replaced with the locally isomorphic
quotient %‘5@ 5o / Fiﬁ@,{- (For simplicity, in the notation of such differentials,
we shall suppress the locally isomorphic quotients by I'z ®yy 2
~ o H ~
Since \Ijéﬁ,éﬁ(gjce,*) is the pulllback of an invertible sheaf on C"iﬁqu77 the image
of * (D%Or ) in HO (M, 2 (@*ﬁNtor/Mgﬁr)) lies locally over each {l; in the image of

iQ

(s — Ca,y,.6,,) R4 (Q5

C§~ 5~/C<1>H 59

(8~ Cy 5 )7 (0

N

5z /C.
(I)ﬁ'sﬁ/ P09
1 **1
— I (Z QNmr/M%gr).

Hence (5.17)) factors as
H (M 7, A° (" Detpior jpser))
= B o, (X s e > Caps,)" (Derg ))

o . ZRs s/ Onryon

(@C<}~ <>~/C‘I>H o )

he(Og, )

‘I’ﬁ«‘sﬁ

= (%‘bH’(S”H,T - C‘I’H75H)
- (xq)?hé?-tﬂ' - C‘I”Hvéﬁ)
= HOM il(ﬁ(,\,my

(@H 594> )]

Lemma 5.18. The morphism

R°h, (Derc ) — R'1. (O )

Co 5
@H,éH

5 /C‘I>

defined by cup product with dlog(\I!‘i,K 5v(€jQ,;)) depends only on the image ZjQ of
HH

Loz in S@g under the second morphism in |i (and hence is independent of the

choice of U;, z). Moreover, this morphism is surjective over Xa,, 5, %Q.

Proof. By forming equivariant quotients and invariants, we may (and we shall)
replace H and H with principal level subgroups of some level n, as in the proof of
Lemma Then the morphism h : C@ 5 Cs, s, is a torsor under its kernel C,
which is an abelian scheme Z( o) -isogenous to Hom, (Q, A)° — M%». The restriction
of qjén,ﬁn (KjQ,%) to C depends only on the image ZjQ of ZjQy% in o, and is relatively
ample by the same proofs of Corollary and Lemma (with Gm,, — My
replaced with A — M®»). Hence the lemma follows. O
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Corollary 5.19. The morphism (5.17)) is surjective over M%3" %Q. Its kernel is the
subsheaf H*(Ny,7, 2 (Derg )) of H(Ns 7, #°(r*Deryor jprser))-

ﬁ,ﬁﬁ,&,r/x‘ﬁnﬁﬂy‘r
Now consider the induced morphism

H(Ny -, #° (Derz )) = HO(Ng ., A° (" Dexyror jpaser)

5),;1.5,;{,5-,7-/:{‘1)%’57{!7

= Rof:m(l*@Ntor/Mgzr) — leior(ﬁ(Ntor)i\

Ll @gq,87¢,7)]
defined by cup product with z*(Dg’ ). This composition has image in
iQ
HY (N7, A (O oy ),
Ll(@g¢,89¢,7)]
because its further composition with
Rl :Or<ﬁ(Ntor)i\ ) - Ho(m&’77il(ﬁ(|\|tor)i\ ))
[

2[(@q4,89¢,)] 2[(@q4,62¢,7)]

is zero (by Corollary[5.19). Thus the question is whether cup product with +* (D%‘_)r )
iQ

induces a morphism
(5.20) L
Ho(m&,nio(hg ) = H' My -, (O (yroryn )

b 55/ Xy
P o TR HOMT 2@y 594.7)]

surjective over Xo,, 5,7 %} Q.

Lemma 5.21. Suppose 7 € X and U € &+. Suppose U is an affine open

~ 70,77 ~ .
formal subscheme of Xa,, s, .+ over which the pullback of Vg 5 (£) is a principal
HIUH
ideal of Oy generated by some section x. Let U:=4Uy  x T and let 7;7@ be

Xog 59,7

the pullback of ﬁ,ﬁt’ip to 4. Let
Oy™ = (- 0).(0,).

Then there exists a canonical injection E/é (Z) — ﬁ;{gp over ‘U, and the value

7o
of the section dlog(z) of (M4 — m)ﬁ;/x%éw determines a canonical section of

ﬁ;/g(bﬂ,éﬂj (which is independent of the choice of the generator x).

Proof. If we replace « with az, for some a € Og, then dlog(az) = dlog(a) +
dlog(z) = dlog(x) because dlog(a) =0 in (4 — ‘B)*ﬁil/xq)% . O

89,7

Corollary 5.22. Suppose T € X and I € . Then the local generators of

70,7’

{f;(i)ﬁ’sﬁ (0) in Lemma |5.21| determine a well-defined section ofﬁill%/gcp%%ﬁ, which

we denote by dlog(‘flq; < (0)).

1057

H
Proof. Since \If(i N SW(Z) is defined over iq;H’gH’-,- (or rather 6<i>w 5. ), we can always
HITH HITH
cover iz by open formal subschemes 4l as in Lemma [5.21 (]
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such that ¥ and 7' are adjacent to each

AT [#]D to

Lemma 5.23. For any 7,7 € E‘i’ﬁ,&,r

other, let us define the section ujz) 21 ofzo(ﬁgg(is
be

q,sq,am/%@?iﬁﬂﬁ)([

dlog(\yég,gﬁ(&@j — éij/))
(as in Corollary |5.22)). Then this is well defined and determines a section u of

Hl(m&,T,%O(z*ﬁNm/M%r)) that induces by cup product the same morphism as
520).

Proof. If 7 and 7' are adjacent, then y7 and 7’ are adjacent for v,7" € I'z_ .
L
only when v =~/ (by Condition [1.29} cf. Lemma [3.1)), in which case

oot = biar = Vigr = biar = Vjgr = bigr = big e — g
(because Féq,qm acts by the same translation on /;, » and £, #). This shows that

the assignment of u( [z is independent of the choices of the respective represen-
tatives 7 and ¥ of [¥] and [7], and that u is well defined.

Cup product with u induces the same morphism as because the canonical
morphism

Der

—=1
& Z*QNtor/Mg_(zr — ﬁ(Ntor)g

X,
2[(Dqy,824,7)]

<I>ﬁ~,5ﬁ~,é,r/xq)%vé7-t*"

factors through

Der; ® 0%,

% — O(Ntoryr
Xy 5 5./%s . (Nter)Z )
4’;{,5;{,”,7'/ L EVRLEVE

T S S I
FOq o TR0 Z[(@gy.59¢.7)]

and because cup product with the image of +* (DI%Or )in HO(My ., (z*ﬁi,mr/w;zr))
i

Q

induces the zero morphism (cf. the paragraph preceding Lemma [5.18)). a

Consider any sequence 7y, 72, ..., 7 of adjacent cones in X3 . _, such that
%

T, = 71 for some v € F@q@a‘ The union of the cones in any such sequence form

a subset of ‘jvtg,r contractible to a path joining a point in 7 with its translation
by v in 77, whose image in 915, defines a loop. Suppose we have a class s in
Hl(‘ﬁ&mio(ﬁ(,\,m)g )) represented by a collection of sections

Z(@34,63,,7)]
vicl orycl
s € 220 (Oiory ([N 1)
[(@9y:09¢,7)]
for [7],[] € Eég 5.+/T5_ 3, and suppose we define formally sz z = s(7 (7 for
7, T
Then we can define the path integral of s along the sequence

vy
n, Y ou .
any 7,7 € &5,7

#, T2, ..., T, to be the sum

k—1
E S Py
i=1

This defines a morphism

(5.24) Hl(m&ﬂ—,%o(ﬁ(mor)ﬁ )) — ﬁ;{q)ﬂﬁ

Sqy,7°
Z{(03y,694,7)] M
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Note that this is a realization of the cap product
Hi{(My.-, Z) x H (N5 7, H°(O(neor) )
Z[(Pgy89¢57)]

— Ho(m&,q—,ﬁo(ﬁ(wor)ﬁ )) = ﬁ}:@w_,

A
Z((@3.,594.7)] T

Lemma 5.25. For any /e Sg__ that is mapped to ZjQ in oy under the second
H

morphzsm n l} the assignment v dlog(\ll<i,~75ﬁ(7€ — 1)) for v € FE);_‘[,¢"H
induces a morphism
—1
F‘i‘ﬁ,‘b’;{ % ﬁi@ﬁ,g,ﬁ,ﬁ,? - Qxéﬁ,gﬂ,ﬁﬁ/XCDH‘&H*T’
which is an isomorphism over }C&)%S@&J %Q.

Proof. Since ’yf and ¢ have the same image EjQ in ¢y under the second morphism
in || the difference 757 — 7 lands in 1. For any 7 e 5+, an elementary matrix
calculation (using any splitting of sy ®Q : X ® Q - X ® Q) shows that v/’ — ¢
Z Z zZ
lies in S¢,, = (Sa,, ®Q)NSy _ (identified as the image of the first morphism in
7 H

(3.6)). Therefore, we have (y1y2l — £) — (yil — 0) — (4ol — 0) = (72l — 0) —
(72¢ — £) € Sg,,, which shows that the assignment v +— ¢ — ¢ defines a group

homomorphism I'z — (&l/Sq,H). By the choice of jg, the element /;, is

B
represented by a positi?ife definite matrix with respect to any choice of basis, and
hence the homomorphism FZ’;{,@;{ — (61 /Se,,) induced by v — ~0 — 7 is injective
(by another elementary matrix calculation over Q). By comparison of dimensions,
this shows that the induced injective homomorphism

riﬁ,qm %Q — (&L/S%{)%@

. .. . . =1 .
is bijective. Since Q3~€<i> is generated over 0% by

b6 —~,5,7

I TUNY L S S
,H,E,H,U,T HOH > 0

{dlog(\lléﬂygﬁ(é’)) : 0/ representatives of 5% /Sg,, },
the lemma follows. O

Lemma 5.26. Let 71, T2, ..., Tx be a sequence of adjacent cones in Xy _ . _, such
that T, = y71 # T1 for some v € FE’ﬁﬂ’H' Then the composition of .5'20) and

5.24)) is surjective over X@g}gﬁﬁﬁ % Q.

Proof. If ~7, # 7, then ZjQﬂ;l = vij,ﬁ # ZjQﬁ by the proof of Lemma

v v

By Lemma , this implies that dlog(\I/(iﬁ’gﬁ(éjQ7%1 — Lj, %)) defines a

nonzero section of ﬁgé over every U @ Q. Let ¢ be any section
z

— 5.5 /§<I’ s T
77{,5%,0,1— HOH >
of HO(‘JT&,T,ﬁo(z*m,\,mr/,\wr)). Cup product with u (see Lemma | sends
t to the class s in Hl(‘)’tg,m%o(ﬁ(,\,mr)g )) represented (up to a sign

(@9 259¢7))
convention) by the collection of sections
orel ~ runel
str i) € 2 (O(eoryy )([F N )

2[(Dqy,82¢,7)]
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determined by Sy ¢ = tU(leg(\Tf&,g75ﬁ (ZjQﬂu' — ZjQﬂ“—/))) for any 7%,7%/ S Ei’ﬁ,&ﬂ"

Therefore, if locally there exists ¢ such that tU(dlog(\Tl(iﬂ’g;7 (EjQ,i—l - EjQ,i—k))) is

the pullback of (local) generators of ﬁxqm} 530r @ Q> which is possible by Lemma
Z

5.25} then the path integral

k—1

k—1
S¥ Fit1 — thu(dlog(\yég,gﬁ(gjc)ﬂﬁ - ngle)))

=1 1=

=tU(dlog(Vy_ 5 (Lo — Lig.n))

H

is defined locally by generators of 0%, ;. .. This shows that the composition
z

® Q, as desired. (Il
z

of (5.20) with (5.24) is surjective over Xg_ 5
HTH

)O-)T

Corollary 5.27. The morphism (5.20) is surjective over %&MS ® Q.

00T

Proof. By Lemma[4.21] (4.25)), and Lemma [5.25] the morphism (5.20)) is surjective

over %ég,sgﬁ,f %) Q if its composition with ([5.24]) is surjective over xiqﬁqﬁ,f QZ? Q

for some collection of sequences 71, T2, ..., T defining loops in s , generating
H,{(MNs +,Z). Hence the corollary follows from Lemma O

Now Proposition follows from the combination of Corollaries and
By Lemmal5.2)and Remark[5.4] Proposition implies the existence of the canon-

ical isomorphism ({5.3). Thus Corollary implies:

Corollary 5.28. For any integer b > 0, we have a canonical isomorphism
b r ~ Ab :
R ::0 (ﬁNtor) = A (HOmO (Qv, @Gv/M%)r))

of locally free sheaves over M%S", compatible with cup products and exterior products,
extending the composition of canonical isomorphisms (2.19) over My,.

This completes the proof of and of Theorem [2.15] using respectively

(3a)) and of Theorem As explained in Section [3E] this also makes and
(5c) of Theorem unconditional. The proof of Theorem is now complete.

6. CANONICAL EXTENSIONS OF PRINCIPAL BUNDLES

6A. Principal bundles. Consider (Gm,,, AMy,» iMy, > O2) — My, the
restriction of the degenerating family (G, \,i,ay) — MY", which is iso-
morphic to the tautological tuple over My; and consider the relative
de Rham cohomology H\g(Gm, /M%) and the relative de Rham homol-
ogy H{™(Gum,/My) = Homg, (Hig(Gw,/Mx),0Om,).  We have the
canonical pairing (-, <)y QTR(GMH/MH)XQTR(GM,{/MH) - Om, (1)
defined as the composition of (Id x Am,, ). followed by the perfect pairing
H{™(Gw,, /My) xﬂfR(G\,&,H/MH) — Owm,, (1) defined by the first Chern class of
the Poincaré invertible sheaf over G, X G, (See for example [14} 1.5].) Under
H

the assumption that Av,, has degree prime to O, we know that Av,, is separable,
that (Am,, )« is an isomorphism, and hence that the pairing (-, - ) above is perfect.
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Let (-, -)x also denote the induced pairing on Hig(Gwm,, /My) x Hig(Gm,, /M)
by duality. By [5, Lem. 2.5.3], we have canonical short exact sequences

0= Liegy smy, = H1™ (G /Mu) = Lieg,,, =0
and
0— @éMH/MH - ﬂ(liR(GMH/MH) - @G(AH/MH — 0.

The submodules @é& /M, and @éMH /M, are maximal totally isotropic with
H

respect to (-, - ).
Consider the O ® C-module
7

(6.1) L&C — (L®C)/Py,
Z Z

where Pp, := {v/—-1lz — h(v/-1)z:2 € LR} C L®C.
z Z

Now suppose there exists a finite extension Fjj of Fy in C, and a subset O
of O, such that F{ is unramified at all primes in O’, and such that, by setting
Ro := Opy (o), there exists an O ® Ro-module Lo such that Lo @ C = (L ®C)/Pp,.

Z R Z

Once the choice of F{ is fixed, the choice of Ly is unique up to isomorphism because
O ® Rp-modules are uniquely determined by their multiranks. (See [38, Lem. 1.1.3.4

Z
and Def. 1.1.3.5] for the notion of multiranks.) Let
(5 ean. + (Lo® Ly (1)) X (Lo ® Ly (1)) — Ro(1)

be the alternating pairing defined by ((z1, f1), (22, f2))can. := f2(x1) — f1(z2) (cf.
38, Lem. 1.1.4.16)).

Definition 6.2. For any Ry-algebra R, set
(g,7) € GL@(%R((LO @ Ly(1)) 1(? R)x Gn(R) :
0
(92, gY) can. = (T, Y)can., Y,y € (Lo @L(Y(l)) 1‘? R
0

Po(R) :={(g:7) € Go(R) : g(Lg (1) @R = Ly(1) @ R},
Mo(R) := GLog r(Lg (1) ® R) x G(R),

where we view Mo(R) canonically as a quotient of Po(R) by
Po(R) = Mo(R) : (g,7) — (9|Lg(1)}<§> RsT).
0

The assignments are functorial in R and define group functors Gg, Py, and My
over Ry.

Lemma 6.3. For any complete local ring R over Ry with separably closed residue
field, there is an isomorphism

(L%Ra<'a ~>)2(L0@L8/(1),<~, '>Can-)1%Ra

and hence an isomorphism G(R) = Go(R). (Consequently, Po(R) can be identified
with a “parabolic” subgroup of G(R).)
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(In practice, it is not necessary to take R to be complete local. Much smaller
rings would suffice for the existence of isomorphisms as in Lemma )

In what follows, by abuse of notation, we shall replace My etc with their base
extensions from Spec(Op, (o)) to Spec(Ry), and replace So = Spec(Op, (o)) with
Spec(Ry).

Definition 6.4. The principal Py-bundle over My is the Po-torsor

Ep, = Isomo(% O, ((ﬂ‘fR(GMH/M’H), () I, ﬁMn(1)7@éMH/MH)’

((LO D L(Y(l)) 1? ﬁM’H’ < Tyt >Can~> ﬁM’H(l)7 L(\)/(l) 1(? ﬁMH))’
0 0
the sheaf of isomorphisms of Owm,, -sheaves of symplectic O-modules with mazimal
totally isotropic O ® Ry-submodules. (The group Py acts as automorphisms on
zZ

(L®Owmyy, (- In, Oy, (1), LY (1) @ Om,,) by definition. The third entries in the

Z Ro
tuples represent the values of the pairings.)
Definition 6.5. The principal My-bundle over My is the Mg-torsor

v, = 7ISOIHO(§7? Owm,, ((@é,\vﬂﬂ/MHa ﬁM’H(l))? (La/(l) I%)) 4V ﬁMH(l)))7

the sheaf of isomorphisms of Ow,,-sheaves of O® Ro-modules. (We view
z

the second entries in the pairs as an additional structure, inherited from the
corresponding objects for Py. The group My acts obviously as automorphisms on
(Ly (1) ® Ow,,, Om,, (1)) by definition.)

Ro

These define étale torsors because, by the theory of infinitesimal deformations
(cf. for example [38, Ch. 2]) and the theory of Artin’s approximations (cf. [3, Thm.
1.10 and Cor. 2.5)),

(H™ (Gwye/Mag), (- - )xs Oy, (1), Liedy )
H
and
((LO D L(\)/(l)) 1(? ﬁM’H’ < Tyt >Cann ﬁM%(l)v L(\)/(l) 1(? ﬁMH)
0 0
are étale locally isomorphic.
Definition 6.6. For any Ry-algebra E, we denote by Repg(Po) (resp. Repr(Mo))
the category of E-modules with algebraic actions of Py 1(? E (resp. Mg 1(? E).
0 0

Definition 6.7. Let E be any Ro-algebra. For any W € Repg(Py), we define
Po® FE
Ro
Epo,p(W) = (&p, ® B) x W,
0

called the automorphic sheaf over My ® E associated with W. It is called an

Ro
automorphic bundle if W is locally free of finite rank over E. We define similarly
Eny. 2(W) for W € Repp(Mg) by replacing Py with Mg in the above expression.

Lemma 6.8. Let E be any Ro-algebra. If we view an element W € Repg(Mp)
as an element in Repg(Po) via the canonical surjection Py — My, then we have a
canonical isomorphism Ep, g(W) = &y, 5 (W).
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6B. Canonical extensions. By taking Q = O, so that Homy(Q, Gum,,)° = Gm

and so that there exists some Z(XD)—isogeny k'8 : Gm,, — N as in Theorem 2.15’,

the locally free sheaf Hig(N/My) =2 HAig(Gwm,, /M) extends to the locally free
sheaf Hj,, qr (N /ML) over Oppigr. Let

og-d T r T r
HYS (N /M) i= Homyg, (Hjoyar (N /ML), Gagr)-

can

Proposition 6.9. There exists a unique locally free sheaf H{® (Gw,, /M)
ﬁ’Mggr satisfying the following properties:
(1) The sheaf HY®(Gm,, /M3)®®", canonically identified as a subsheaf of the

quasicoherent sheaf (My — M) (HT®(Gwm,, /M3)), is self-dual under the
pairing (My — MY").(-,-)x. We shall denote the induced pairing by

over

(-, )%
2) ETR(GMH/MH)CM contains @év/wgr as a subsheaf totally isotropic under
(5.

(3) The quotient sheafﬂ(liR(GMH/MH)Can/@éV/Mggr can be canonically iden-
tified with the subsheaf Lieg yior of (May — Mg'?r)*mGMH/MH'

(4) The pairing (-, -)" induces an isomorphism Lieg /mter = Liegv meer
which coincides with dA.

(5) Let Hin(GunMs)™ = Homg,, (HI™ (Guae/My)™, Ouagr). The
Gauss—Manin connection

& ﬂfliR(GMH/MH) - ﬂfllR(GMH/M”H) ﬁ® QI{AH/SO
My

extends to an integrable connection
—1
(6.10) V : Hyg (G, /M) = Hgg (Gay, /M3)™" S8 Qg s

tor
M3

with log poles along Do 34, called the extended Gauss—Manin connection,
such that the composition

(6.11) @ZJ/M;?I" < Hag(Gmy, /M) ™"
v N —1 . 1
= Har (G, /M) ™ L2 Sgrysg = Liegy g © s,
MEQT MEQT
induces by duality the extended Kodaira—Spencer morphism

Y sV ol
LleG/Mfﬁr ﬁ® LIEG\//ME;Zr — QM;{Z[‘/SO

mEor
in [38, Thm. 4.6.3.32], which factors through KS (in Definition [1.40) and
induces the extended Kodaira—Spencer isomorphism KSG/Mg;)r/SO n of
Theorem [L41]

With these characterizing properties, we say that (H{N(Gwm,, /M), V) is the
canonical extension of (H{®(Gw,,/M#%), V).

Proof. The uniqueness of H®(Gm,, /M) is clear by the first four proper-
ties. To show the existence, let us take H{®(Gw, /M#)® to be the sheaf
HPEIR(Ntr /M) (for Q = O, as mentioned before this proposition). It is locally
free with a Hodge filtration by of Theorem Moreover, by taking some
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integer N > 0 prime-to-0 such that N Diff ™' ¢ O, we obtain by multiplication by
N a morphism jg : Q¥ = Diff ' Q=0asin Lemma such that pullback by
k'%°8 identifies (-, >)‘MH o HéR(N/MH) X HéR(N/MH) — Om,, (1) canonically
with (-, )a,, * Hig(Guy /Mag) x Hig(Gwm,, /Mag) = Oy, (1). Then (1), (2), and
. ) follow from (3d ) of Theorem [2.15| Wd . 4]) follows from Proposition [5.14] (which
is used to prove (3b]) of Theorem |2 It remains to verify . By definition,
HdR(GMH/MH CC‘“ ~ Hi . qr(N®T/MET). The existence of V in (6.10) follows
from (| of Theorem By Remark m, the pullback of (6.11) to My is
induced by the usual Kodairafspencer class. Since the extended Kodaira—Spencer
morphism in [38, Thm. 4.6.3.32] is defined exactly as a morphism induced by the
usual Kodaira—Spencer morphism (by normality of M%" and local freeness of the
sheaves involved), it is induced by duality by (6.11]), as desired. O

Remark 6.12. The notion of canonical extensions is closely related to the notion
of regular singularities of algebraic differential equations. (See [I3] and [34] for
the notion of regular singularities. See [45], [I6, Ch. VI], [24], [25], and [40] for
the notion of canonical extensions over C, and see [42] for an earlier treatment of
canonical extensions in mixed characteristics. See in particular [24] Thm. 4.2] for
the explanation of why and how the two notions are related.)

Then the principal bundle &p, extends canonically to a principal bundle £g"
over M* by setting

((LO @Lg(l)) 1(%8; ﬁMg_‘zra < N >can.7 ﬁMg_‘Zr(l)v L(\J/(l) 1(%) ﬁMgf)):

gcan = ISOHIO® O, or ((H?R(GM'H/M’H)CEH]) < N >f\an? ﬁMtor(1)7méV/M°°")7
% M’H H H

and the principal bundle &y, extends canonically to a principal bundle Ey" over
ML™ by setting

Ey = Isﬂogmwr((@évmggm Ower (1)), (Lg (1) g% Owmier, Onpigr (1))
Definition 6.13. Let E be any Ro-algebra. For any W € Repg(Po), we define
Py ® E
Ro
gcan ( ) (Ecan ) X W"
called the canonical extension of Sme(W), and define

Erp(W) =57 (W) @ o

tor
M3

oo, H?

called the subcanonical extension of &p, (W), where Sp_ ,, is the Oyor- zdeal
defining the relative Cartier divisor Doy (with its reduced structure) in of
Theorem (141, We define similarly £y 5(W) and EMP (W) with Po (and its
principal bundle) replaced accordingly with My (and its principal bundle).

Lemma 6.14. Let E be any Ro-algebra. If we view an element in W € Repg(My)
as an element in Repg(Po) in the canonical way, then we have canonical isomor-
phisms Eg (W) = Sf/f;‘E(W) and 5153‘(‘)]?E(W) = Sﬁ}[‘[}’E(W)
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6C. Fourier—Jacobi expansions. Let us fix a representative (Zy, Py, d%) of a
cusp label [(Zy, ®y, d%)] for My (as in Section . As usual, we shall omit Zy
from the notation.

Definition 6.15. The principal My-bundle over Cs,, s5,, is the My-torsor

Py, 0m :
5MZ){ = m(ﬁ%ﬁc@%, ((@évvh/c¢uwgﬂ7ﬁc¢ﬂ,aﬂ (1))7

(L(\)/(1> I(? ﬁGbH,&H ) ﬁClpH,z;H (1)))7

On

with conventions as in Definition [6.5].

Then we define Eﬁzf’g” (W) for any Ry-algebra E and any W € Repp(Mp) as in
Definition [6.71

Lemma 6.16. Let E be any Ry-algebra. For any W € Repg(My), there is a
canonical isomorphism

(X dree = M) ET (W) = (Ra e = Capetnd) Eniy ™ (W).
Proof. This is because of the canonical isomorphism

tor\*t : .V ~ Y
(x‘I’H,fSH,U - M?—L ) @GV/M;:Zr = (x‘buatsma - C‘I’Hﬁﬂ) @GV’N/C%{,JH' U

By the construction of X,, 5,,,0 — Ca,,5, as a formal completion, we have a
natural morphism

(Xop 60,0 = Cq’?—tﬁu)*ﬁx@,.‘,«sﬂ,a - H Va5, ()
ZESrbH

of ﬁcq)% 53, -modules. By Lemma we have the composition of canonical mor-
phisms
F(Mg_?r,gf/i?(W)) — F(x@{,éuam (xi’ﬂ,éu,a - M%-(L)r)* K/?(?(W))
= DXy 53000 (X 0 = Ciene) En 7 (W)
6
= I TCose Varsn (D) @ &G (W),

€€Sq,, R SVRLEY
which we call the morphism of algebraic Fourier—Jacobi expansions.
Definition 6.17. The ¢-th algebraic Fourier—Jacobi morphism
DM 0 (V) = D(Ca s Vo () EGOT (W)
Cagy in,
is the £-th factor of the morphism of algebraic Fourier—Jacobi expansions.

Remark 6.18. If Gr%; = {0}, then the abelian scheme Cs,, 5, — M%* is trivial (i.e.,

the structural morphism is an isomorphism), and M?_[H is finite over Sg = Spec(Ry).

Hence T(Cay e Way, () ® (W) = T(MZE, Oy © W). In this
H R,

Caqy,6
HOH
case, the Fourier—Jacobi expansions are often called g-expansions (because no gen-

uine “Jacobi theta functions” are involved).
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