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Abstract. We explain how compactifications of Kuga families of abelian vari-

eties over PEL-type Shimura varieties, including for example all those products
of universal abelian schemes, can be constructed (up to good isogenies not af-

fecting the relative cohomology) by a uniform method. We also calculate the

relative cohomology and explain its various properties crucial for applications
to the cohomology of automorphic bundles.
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Introduction

To study the relations between automorphic forms and Galois representations,
it is desirable to understand the cohomology of Shimura varieties with coefficients
in algebraic representations of the associated reductive groups (i.e., the so-called
automorphic bundles).

In the case of PEL-type Shimura varieties, the associated reductive groups are
(up to center) twists of products of symplectic, orthogonal, or general linear groups.
According to Weyl’s construction [53] (see also [17] and [19]), all algebraic repre-
sentations of a classical group can be realized as summands in the tensor powers
of the standard representation of the group. In geometry, one is led to consider
the cohomology of fiber products of the universal families of abelian varieties over
the PEL-type Shimura varieties. Such fiber products are special cases of what we
will call PEL-type Kuga families, or simply Kuga families. When the PEL-type
Shimura variety in question is not compact, the total spaces of such Kuga families
are not compact either.

To study cohomology properly, one is often led to the question of the existence
of projective smooth compactifications with good properties, such as allowing the
Hecke operators to act on their cohomology spaces (but not necessarily the geo-
metric spaces). In what follows, let us simply call such compactifications good
compactifications. In characteristic zero, such questions can often be handled by
the embedded resolution of singularities due to Hironaka [28, 29]. However, more
explicit theories exist in our context. The work of Mumford and his collaborators in
[4] provides a systematic collection of good compactifications of Shimura varieties
with explicit descriptions of local structures, while the work of Pink [48] provides
a systematic construction of good compactifications of the Kuga families as well.
These compactifications are called toroidal compactifications. Their methods are
analytic in nature and cannot be truly generalized in mixed characteristics.

Based on the theory of degeneration of polarized abelian varieties initiated by
Mumford [44], Faltings and Chai [15, 8, 16] constructed good compactifications over
the integers for Siegel moduli spaces defined by the moduli space of principally po-
larized abelian varieties. In [16], they also constructed good compactifications of
fiber products of the universal families by gluing weak relatively complete models
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along the boundary. We ought to point out that, although most works on compact-
ifications spend most of their pages on the construction of boundary charts, it is
only the gluing argument that validates the whole construction. (This is not nec-
essarily the case for works using the moduli-theoretic approach, such as [2], [1], or
[47]. However, the questions there are not less challenging: What can one say about
the boundary structures? Are they equally useful for applications to cohomology?)
Thus, even if the construction of toroidal compactifications of Siegel moduli spaces
in [16, Ch. IV] has been generalized for all PEL-type Shimura varieties in [38], the
gluing of weak relatively complete models has to be carried out separately when
one works along the original idea of [16, Ch. VI]. (This is the case in for example
[50], in which the assumption that the boundary divisors are regular, i.e. have no
crossings, unfortunately rules out all cases where choices of cone decompositions
are needed for the Shimura varieties.)

Note that gluing is not just about techniques of descent. Any theory of descent
requires an input of some descent data. Since a naive generalization of the con-
structions in [16, Ch. IV] introduces unwanted boundary components, which have
to be studied and removed carefully by imposing liftability and pairing conditions
as in [38], we have reason to believe that a naive generalization of the construction
in [16, Ch. VI, §1] requires delicate modifications, without which even the strongest
descent theory cannot be applied.

The aim of this article is to avoid any further argument of gluing, and to
treat all PEL-type cases on an equal footing. We shall reduce the construction
of toroidal compactifications of PEL-type Kuga families to the construction of
toroidal compactifications of Shimura varieties in [38], by systematically realizing
the Kuga families as locally closed boundary strata in the toroidal compactifica-
tions of (larger) PEL-type Shimura varieties. Partly inspired by Kato’s theory of
log abelian schemes, we can show that, up to refinements of cone decompositions,
the structural morphisms from the Kuga families to the Shimura varieties extend
(up to good isogenies not affecting the relative cohomology) to log smooth mor-
phisms with nice properties between the toroidal compactifications. This approach
differs fundamentally from the one in [16, Ch. VI]. As Chai pointed out, although
no technique can be truly shared between analytic and algebraic constructions, our
idea is close in spirit to Pink’s in [48]. (See Remark 3.10 below.)

Since we replace Faltings and Chai’s construction with a different one, we need
to explain that our simpler (but perhaps cruder) construction is not less useful.
Thus our second task is to calculate the relative (log) de Rham cohomology of
the compactified families. We show that such relative cohomology not only enjoys
the same expected properties as in [16, Ch. VI, §1], but also admits natural Hecke
actions defined by parabolic subgroups of larger reductive algebraic groups, because
our construction uses toroidal boundaries of larger Shimura varieties. This exhibits
a large class of endomorphisms on our cohomology spaces, including ones needed in
the geometric realization of Weyl’s construction (i.e., the realization of automorphic
bundles as summands in the relative cohomology of Kuga families).

The outline of this article is as follows. In Section 1, we review some of the
results we need from [38]. We consider the investment of this summary worthwhile
because, although we do not need to carry out another gluing argument, we do
need the full strength of the long work [38]. In Section 2, we define what we mean
by PEL-type Kuga families, state our main theorem, and give an outline of the
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proof. In Section 3, we carry out the construction of toroidal compactifications for
these Kuga families that admit log smooth morphisms to the Shimura varieties in
question. (This section serves roughly the same purpose as [16, Ch. VI, §1].) In
Sections 4 and 5, we show that these toroidal compactifications are indeed good by
justifying what we mentioned in the previous paragraph. (These two sections serve
roughly the same purpose as [16, Ch. VI, §2].) We would like to mention that the
use of nerve spectral sequences in Section 4 imitates immediate analogues in [26]
and [27] (based on techniques that can be traced back to [36, Ch. I, §3]), while
the use of log extensions of polarizations is inspired by Kato’s idea of (relative) log
Picard groups [32, 3.3]. (See Remark 5.7.) The article ends with Section 6, in which
we explain how to define canonical extensions of the so-called principal bundles.

Although used as the main motivation for our construction, applications to co-
homology of automorphic bundles will be deferred to some forthcoming papers.
There the readers will find the construction of proper smooth integral models use-
ful for studying cohomology with not only rational coefficients, but also integral
and torsion coefficients.

We shall follow [38, Notations and Conventions] unless otherwise specified. (Al-
though our references to [38] use the numbering in the original version, the reader
is advised to consult the errata and revision (available online) for corrections of
typos and minor mistakes, and for improved exposition.)

1. PEL-type moduli problems and their compactifications

In this section, we summarize definitions and main results in [38] that will be
needed in this article. We will emphasize definitions such as the ones involved in
the description of boundary structures, but will have to be less comprehensive on
some fundamental definitions including the ones of level structures.

1A. Linear algebraic data. Let O be an order in a finite-dimensional semisimple
algebra over Q with a positive involution ?. Here an involution means an anti-
automorphism of order two, and positivity of ? means TrO⊗

Z
R/R(xx?) > 0 for any

x 6= 0 in O⊗
Z
R. We assume that O is mapped to itself under ?. We shall denote

the center of O⊗
Z
Q by F .

Let Z(1) := ker(exp : C → C×), which is a free Z-module of rank one. Any
choice

√
−1 of a square-root of −1 in C determines an isomorphism (2π

√
−1)−1 :

Z(1)
∼→ Z, but there is no canonical isomorphism between Z(1) and Z. For any

commutative Z-algebra R, we denote by R(1) the module R⊗
Z
Z(1).

By a PEL-type O-lattice (L, 〈 · , · 〉, h) (as in [38, Def. 1.2.1.3]), we mean the
following data:

(1) An O-lattice, namely a Z-lattice L with the structure of an O-module.
(2) An alternating pairing 〈 · , · 〉 : L×L → Z(1) satisfying 〈bx, y〉 = 〈x, b?y〉

for any x, y ∈ L and b ∈ O, together with an R-algebra homomorphism
h : C→ EndO⊗

Z
R(L⊗

Z
R) satisfying:

(a) For any z ∈ C and x, y ∈ L⊗
Z
R, we have 〈h(z)x, y〉 = 〈x, h(zc)y〉,

where C→ C : z 7→ zc is the complex conjugation.
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(b) For any choice of
√
−1 in C, the R-bilinear pairing

(2π
√
−1)−1〈 · , h(

√
−1) · 〉 : (L⊗

Z
R)×(L⊗

Z
R)→ R

is symmetric and positive definite. (This last condition forces 〈 · , · 〉
to be nondegenerate.)

The tuple (O,? , L, 〈 · , · 〉, h) (over Z) then gives us an integral version of the tuple
(B,? , V, 〈 · , · 〉, h) (over Q) in [37] and related works. (We favor lattices over Z
rather than their analogues over Q (or over Z(p) for some p) because we will work
with isomorphism classes rather than isogeny classes; cf. Remark 1.7 below.)

Definition 1.1 (cf. [38, Def. 1.2.1.5]). Let a PEL-type O-lattice (L, 〈 · , · 〉, h) be
given as above. For any Z-algebra R, set

G(R) := {(g, r) ∈ GLO⊗
Z
R(L⊗

Z
R)×Gm(R) : 〈gx, gy〉 = r〈x, y〉,∀x, y ∈ L⊗

Z
R}.

In other words, G(R) is the group of symplectic automorphisms of L⊗
Z
R (respecting

the pairing 〈 · , · 〉 up to a scalar multiple; cf. [38, Def. 1.1.4.11]). For any Z-algebra
homomorphism R → R′, we have by definition a natural homomorphism G(R) →
G(R′), making G a group functor (or in fact an affine group scheme) over Z.

The projection to the second factor (g, r) 7→ r defines a morphism ν : G→ Gm,
which we call the similitude character. For simplicity, we shall often denote
elements (g, r) in G by simply g, and denote by ν(g) the value of r when we need it.
(If L 6= {0} and R is flat over Z, then the value of r is uniquely determined by g.
Hence there is little that we lose when suppressing r from the notation. However,
this suppression is indeed an abuse of notation in general. For example, when
L = {0}, we have G = Gm.)

Let 2 be any set of rational primes. (It can be either an empty set, a finite
set, or an infinite set.) We denote by Z(2) the unique localization of Z (at the
multiplicative subset of Z generated by nonzero integers prime to 2) having 2 as

its set of height one primes, and denote by Ẑ2 (resp. A∞,2, resp. A2) the inte-
gral adeles (resp. finite adeles, resp. adeles) away from 2. Then we have defini-

tions for G(Q), G(A∞,2), G(A∞), G(R), G(A2), G(A), G(Z), G(Z/nZ), G(Ẑ2),

G(Ẑ), U2(n) := ker(G(Ẑ2)→ G(Ẑ2/nẐ2) = G(Z/nZ)) for any n prime to 2, and

U(n) := ker(G(Ẑ)→ G(Ẑ/nẐ) = G(Z/nZ)).
Following Pink [48, 0.6], we define the neatness of open compact subgroups H

of G(Ẑ2) as follows: View G(Ẑ2) as a subgroup of GLO⊗
Z
Ẑ2(L⊗

Z
Ẑ2)×Gm(Ẑ2).

(Or we may use any faithful linear algebraic representation of G.) Then, for each
rational prime p > 0 not in 2, it makes sense to talk about eigenvalues of elements
gp in G(Zp), which are elements in Q̄×p . Let g = (gp) ∈ G(Ẑ2), with p running
through rational primes such that 2 - p. For each such p, let Γgp be the subgroup

of Q̄×p generated by eigenvalues of gp. For any embedding Q̄ ↪→ Q̄p, consider the

subgroup (Q̄× ∩ Γgp)tors of torsion elements of Q̄× ∩ Γgp , which is independent of

the choice of the embedding Q̄ ↪→ Q̄p.

Definition 1.2 ([38, Def. 1.4.1.8]). We say that g = (gp) is neat if ∩
p 6∈2

(Q̄× ∩

Γgp)tors = {1}. We say that an open compact subgroup H of G(Ẑ2) is neat if all
its elements are neat.
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Remark 1.3. The usual Serre’s lemma that no nontrivial root of unity can be con-
gruent to 1 modulo n if n ≥ 3 shows that H is neat if H ⊂ U2(n) for some n ≥ 3
such that 2 - n.

Remark 1.4. Definition 1.2 makes no reference to the group G(Q) of rational ele-
ments. For the related notion of neatness for arithmetic groups, see [6, 17.1].

1B. Definition of moduli problems. Let us fix a PEL-type O-lattice
(L, 〈 · , · 〉, h) as in the previous section. Let F0 be the reflex field of
(L⊗

Z
R, 〈 · , · 〉, h) defined as in [37, p. 389] or [38, Def. 1.2.5.4]. We shall denote the

ring of integers in F0 by OF0
, and use similar notations for other number fields.

(This is in conflict with the notation of the order O, but the precise interpretation
will be clear from the context.)

Let Disc = DiscO/Z be the discriminant of O over Z (as in [38, Def. 1.1.1.6]; see
also [38, Prop. 1.1.1.12]). Closely related to Disc is the invariant Ibad for O defined
in [38, Def. 1.2.1.17], which is either 2 or 1, depending on whether type D factors
are involved. Let L# := {x ∈ L⊗

Z
Q : 〈x, y〉 ∈ Z(1),∀y ∈ L} denote the dual lattice

of L with respect to the pairing 〈 · , · 〉.

Definition 1.5. We say that a prime number p is bad if p| Ibad Disc[L# : L]. We
say a prime number p is good if it is not bad. We say that 2 is a set of good
primes if it does not contain any bad primes.

Let us fix a choice of a set 2 of good primes. By abuse of notation, let OF0,(2)

be the localization of OF0
at the multiplicative set generated by rational prime

numbers not in 2. Let S0 := Spec(OF0,(2)) and let (Sch /S0) be the category of

schemes over S0. For any open compact subgroupH of G(Ẑ2), there is an associated
moduli problem MH defined as follows:

Definition 1.6 (cf. [38, Def. 1.4.1.4]). The moduli problem MH is defined as the
category fibred in groupoids over (Sch /S0) whose fiber over each S is the groupoid
MH(S) described as follows: The objects of MH(S) are tuples (G,λ, i, αH), where:

(1) G is an abelian scheme over S.
(2) λ : G→ G∨ is a polarization of degree prime to 2.
(3) i : O → EndS(G) defines an O-structure of (G,λ) (satisfying the Rosati

condition i(b)
∨ ◦ λ = λ ◦ i(b?) for any b ∈ O).

(4) LieG/S with its O⊗
Z
Z(2)-module structure given naturally by i satisfies the

determinantal condition in [38, Def. 1.3.4.2] given by (L⊗
Z
R, 〈 · , · 〉, h).

(5) αH is an (integral) level-H structure of (G,λ, i) of type (L⊗
Z
Ẑ2, 〈 · , · 〉) as

in [38, Def. 1.3.7.8].

The isomorphisms (G,λ, i, αH) ∼isom. (G′, λ′, i′, α′H) of MH(S) are given by (naive)

isomorphisms f : G
∼→ G′ such that λ = f∨ ◦λ′ ◦f , f ◦ i(b) = i′(b)◦f for all b ∈ O,

and f ◦ αH = α′H (symbolically).

Remark 1.7. The definition here using isomorphism classes is not as canonical as the
ones proposed by Grothendieck and Deligne using quasiisogeny classes (as in [37]).
For the relation between their definitions and ours, see [38, §1.4]. We introduce
the definition (using isomorphisms) here mainly because this is the definition most
concrete for the study of compactifications.
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Theorem 1.8 ([38, Thm. 1.4.1.12 and Cor. 7.2.3.10]). The moduli problem MH is
a smooth separated algebraic stack of finite type over S0. It is representable by a
quasiprojective scheme if the objects it parameterizes have no nontrivial automor-
phism, which is in particular the case when H is neat (as in Definition 1.2).

We shall insist from now on the following technical condition on PEL-type
O-lattices:

Condition 1.9 (cf. [38, Cond. 1.4.3.9]). The PEL-type O-lattice (L, 〈 · , · 〉, h) is
chosen such that the action of O on L extends to an action of some maximal order
O′ in B containing O.

1C. Cusp labels. Although there is no rational boundary components in the the-
ory of arithmetic compactifications (in mixed characteristics), we have developed
in [38, §5.4] the notion of cusp labels that serves a similar purpose. (While G(Q)
plays an important role in the analytic theory over C, it does not play any obvious
role in the algebraic theory over OF0,(2). This is partly due to the so-called failure
of Hasse’s principle; see for example [37, §8] and [38, Rem. 1.4.3.11].)

Unlike in the analytic theory over C, where boundary components are naturally
parameterized by group-theoretic objects, the only algebraic machinery we have is
the theory of semiabelian degenerations of abelian varieties with PEL structures.
The cusp labels are (by their very design) part of the parameters (which we call
the degeneration data) for such (semiabelian) degenerations.

Definition 1.10 (cf. [38, §1.2.6]). Let R be any noetherian Z-algebra. Suppose we
have an increasing filtration F = {F−i} on L⊗

Z
R, indexed by nonpositive integers

−i, such that F0 = L⊗
Z
R.

(1) We say that F is integrable if, for any i, GrF−i := F−i/F−i−1 is integrable

in the sense that GrF−i
∼= Mi⊗

Z
R (as R-modules) for some O-lattice Mi.

(2) We say that F is split if there exists (noncanonically) some isomorphism

GrF := ⊕
i

GrF−i
∼→ F0 of R-modules.

(3) We say that F is admissible if it is both integrable and split.
(4) Let m be an integer. We say that F is m-symplectic with respect to

(L, 〈 · , · 〉) if, for any i, F−m+i and F−i are annihilators of each other under
the pairing 〈 · , · 〉 on F0.

We shall only work with m = 3, and we shall suppress m in what follows. The
fact that Ẑ2 involves bad primes (cf. Definition 1.5) is the main reason that we may
have to allow nonprojective filtrations.

Definition 1.11 ([38, Def. 5.2.7.1]). We say that a symplectic admissible filtration Z

on L⊗
Z
Ẑ2 is fully symplectic with respect to (L, 〈 · , · 〉) if there is a symplectic

admissible filtration ZA2 = {Z−i,A2} on L⊗
Z
A2 that extends Z in the sense that

Z−i,A2 ∩ (L⊗
Z
Ẑ2) = Z−i in L⊗

Z
A2 for all i.

Definition 1.12 ([38, Def. 5.2.7.3]). A symplectic-liftable admissible filtration Zn
on L/nL is called fully symplectic-liftable with respect to (L, 〈 · , · 〉) if it is the

reduction modulo n of some admissible filtration Z on L⊗
Z
Ẑ2 that is fully symplectic

with respect to (L, 〈 · , · 〉) as in Definition 1.11.
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Degenerations into semiabelian schemes induce filtrations on Tate modules and
on Lie algebras of the generic fibers. While the symplectic-liftable admissible fil-
trations represent (certain orbits of) filtrations on L⊗

Z
Ẑ2 induced by filtrations on

Tate modules via the level structures, the fully symplectic-liftable ones are equipped
with (certain orbits of) filtrations on L⊗

Z
R induced by the filtrations on Lie alge-

bras via the Lie algebra condition (4) in Definition 1.6. (One may interpret the Lie
algebra condition as the “de Rham” (or rather “Hodge”) component of a certain
“complete level structure”, the direct product of whose “`-adic” components being
a level structure in the usual sense.) Such (orbits of) filtrations are the crudest
invariants of degenerations we consider.

Definition 1.13 (cf. [38, Def. 5.4.1.3]). Given a fully symplectic admissible filtra-

tion Z on L⊗
Z
Ẑ2 with respect to (L, 〈 · , · 〉) as in Definition 1.11, a torus argu-

ment Φ for Z is a tuple Φ := (X,Y, φ, ϕ−2, ϕ0), where:

(1) X and Y are O-lattices of the same O-multirank (see [38, Def. 5.2.2.5]),
and φ : Y ↪→ X is an O-equivariant embedding.

(2) ϕ−2 : GrZ−2
∼→ HomẐ2(X ⊗

Z
Ẑ2, Ẑ2(1)) and ϕ0 : GrZ0

∼→ Y ⊗
Z
Ẑ2 are iso-

morphisms (of Ẑ2-modules) such that the pairing 〈 · , · 〉20 : GrZ−2×GrZ0 →
Ẑ2(1) defined by Z is the pullback of the pairing

〈 · , · 〉φ : HomẐ2(X ⊗
Z
Ẑ2, Ẑ2(1))×(Y ⊗

Z
Ẑ2)→ Ẑ2(1)

defined by the composition

HomẐ2(X ⊗
Z
Ẑ2, Ẑ2(1))×(Y ⊗

Z
Ẑ2)

Id×φ→ HomẐ2(X ⊗
Z
Ẑ2, Ẑ2(1))×(X ⊗

Z
Ẑ2)→ Ẑ2(1),

with the sign convention that 〈 · , · 〉φ(x, y) = x(φ(y)) = (φ(y))(x) for any

x ∈ HomẐ2(X ⊗
Z
Ẑ2, Ẑ2(1)) and any y ∈ Y ⊗

Z
Ẑ2.

Definition 1.14 (cf. [38, Def. 5.4.1.4 and 5.4.1.5]). Given a fully symplectic-liftable
admissible filtration Zn on L/nL with respect to (L, 〈 · , · 〉) as in Definition 1.12,
a torus argument Φn at level n for Zn is a tuple Φn := (X,Y, φ, ϕ−2,n, ϕ0,n),
where:

(1) X and Y are O-lattices of the same O-multirank, and φ : Y ↪→ X is an
O-equivariant embedding.

(2) ϕ−2,n : GrZ−2,n
∼→ Hom(X/nX, (Z/nZ)(1)) (resp. ϕ0,n : GrZ0,n

∼→ Y/nY )
is an isomorphism that is the reduction modulo n of some isomorphism
ϕ−2 : GrZ−2

∼→ HomẐ2(X ⊗
Z
Ẑ2, Ẑ2(1)) (resp. ϕ0 : GrZ0

∼→ (Y ⊗
Z
Ẑ2)), such

that Φ = (X,Y, φ, ϕ−2, ϕ0) form a torus argument as in Definition 1.13.
We say in this case that Φn is the reduction modulo n of Φ.

Two torus arguments Φn = (X,Y, φ, ϕ−2,n, ϕ0,n) and Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ
′
0,n)

at level n are equivalent if and only if there exists a pair of isomorphisms

(γX : X ′
∼→ X, γY : Y

∼→ Y ′)
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(of O-lattices) such that φ = γXφ
′γY , ϕ′−2,n = tγXϕ−2,n, and ϕ′0,n = γY ϕ0,n. In

this case, we say that Φn and Φ′n are equivalent under the pair of isomorphisms

γ = (γX , γY ), which we denote as γ = (γX , γY ) : Φn
∼→ Φ′n.

The torus arguments record the isomorphism classes of the torus parts of de-
generations of abelian schemes with PEL structures. These are the second crudest
invariants of degenerations we consider.

Definition 1.15 ([38, Def. 5.4.1.9]). A (principal) cusp label at level n for a
PEL-type O-lattice (L, 〈 · , · 〉, h), or a cusp label of the moduli problem Mn, is an
equivalence class [(Zn,Φn, δn)] of triples (Zn,Φn, δn), where:

(1) Zn is an admissible filtration on L/nL that is fully symplectic-liftable in the
sense of Definition 1.12.

(2) Φn is a torus argument at level n for Zn.

(3) δn : GrZn
∼→ L/nL is a liftable splitting.

Two triples (Zn,Φn, δn) and (Z′n,Φ
′
n, δ
′
n) are equivalent if Zn and Z′n are identical,

and if Φn and Φ′n are equivalent as in Definition 1.14.

The liftable splitting δn in any triple (Zn,Φn, δn) is noncanonical and auxiliary
in nature. Such splittings are needed for analyzing the “degeneration of pairings”
in general PEL cases (unlike in the special case in Faltings–Chai [16, Ch. IV, §6]).

To proceed from principal cusp labels at level n to general cusp labels at level H,
where H is an open compact subgroup of G(Ẑ2), we form étale orbits of the objects
we have thus defined. The precise definitions are complicated (see [38, Def. 5.4.2.1,
5.4.2.2, and 5.4.2.4]) but the idea is simple: For anyH as above, consider those n ≥ 1
sufficiently divisible such that 2 - n and U2(n) ⊂ H. Then we have a compatible
system of finite groups Hn = H/U2(n), and an object at level H is simply defined
to be a compatible system of étale Hn-orbits of objects at running levels n as above.
Then we arrive at the notions of torus arguments ΦH = (X,Y, φ, ϕ−2,H, ϕ0,H) at
level H, and of representatives (ZH,ΦH, δH) of cusp labels [(ZH,ΦH, δH)] at level
H. (The liftability condition is implicit in such a definition, as in the definition
of level structures we omitted.) By abuse of language, we call these H-orbits of
Φ = (X,Y, φ, ϕ−2, ϕ0), (Z,Φ, δ), and [(Z,Φ, δ)], respectively.

For simplicity, we shall often omit ZH from the notation.

Lemma 1.16 (cf. [38, Lem. 5.2.7.5 in the revision]). Let Zn be an admissible
filtration on L/nL that is fully symplectic-liftable with respect to (L, 〈 · , · 〉).
Let (GrZ−1, 〈 · , · 〉11) be induced by some fully symplectic lifting Z of Zn, and

let (GrZ−1,R, 〈 · , · 〉11,R, h−1) be determined by [38, Prop. 5.1.2.2 in the revision]
by any extension ZA2 in Definition 1.11 (which has the same reflex field F0 as
(L⊗

Z
R, 〈 · , · 〉, h) does). Then there is associated (noncanonically) a PEL-type

O-lattice (LZn , 〈 · , · 〉Zn , hZn) satisfying Condition 1.9 such that:

(1) [(LZn)# : LZn ] is prime to 2.
(2) There exist (noncanonical) O-equivariant isomorphisms

(GrZ−1, 〈 · , · 〉11)
∼→ (LZn ⊗

Z
Ẑ2, 〈 · , · 〉Zn)

and

(GrZ−1,R, 〈 · , · 〉11,R, h−1)
∼→ (LZn ⊗

Z
R, 〈 · , · 〉Zn , hZn).
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(3) The moduli problem MZn
n defined by the noncanonical (LZn , 〈 · , · 〉Zn , hZn) as

in Definition 1.6 is canonical in the sense that it depends (up to isomor-
phism) only on Zn, but not on the choice of (LZn , 〈 · , · 〉Zn , hZn).

Definition 1.17 (cf. [38, Def. 5.4.2.6 and the errata]). The PEL-type O-lattice

(LZH , 〈 · , · 〉ZH , hZH)

is a fixed (noncanonical) choice of any of the PEL-type O-lattice (LZn , 〈 · , · 〉Zn , hZn)
in Lemma 1.16 for any element Zn in any ZHn (in ZH = {ZHn}, a compatible col-
lection of étale orbits ZHn at various levels n such that 2 - n and U2(n) ⊂ H). The
elements of Hn leaving Zn invariant induce a subgroup of G(LZn ,〈 · , · 〉Zn ,hZn )(Z/nZ).
Let Hh be the preimage of this subgroup under

G(LZn ,〈 · , · 〉Zn ,hZn )(Ẑ2) � G(LZn ,〈 · , · 〉Zn ,hZn )(Z/nZ).

Then we define MHh to be the moduli problem defined by (LZn , 〈 · , · 〉Zn , hZn) with
level-Hh structures as in Lemma 1.16. (The isomorphism class of this final moduli
problem is independent of the choice of (LZH , 〈 · , · 〉ZH , hZH) = (LZn , 〈 · , · 〉Zn , hZn).)

We define MΦH
H to be the quotient of

∐
MZn
n by Hn, where the disjoint union is over

representatives (Zn,Φn, δn) (with the same (X,Y, φ)) in (ZH,ΦH, δH), which is finite

étale over MHh by construction. (The isomorphism class of MΦH
H is independent of

the choice of n and the representatives (Zn,Φn, δn) we use.) We then (abusively)

define MZH
H to be the quotient of MΦH

H by the subgroup of Γφ stabilizing ΦH (whose
action factors through a finite quotient group), which depends only on the cusp
label [(ZH,ΦH, δH)], but not on the choice of the representative (ZH,ΦH, δH). By

construction, we have finite étale morphisms MΦH
H → MZH

H → MHh (which can be
identified with MH′h → MH′′h → MHh for some canonically determined open compact

subgroups H′h ⊂ H′′h ⊂ Hh).

Such boundary moduli problems MZH
H are the fundamental building blocks in the

construction of toroidal boundary charts for MH. (They actually appear in the
boundary of the minimal compactification of MH, which we call cusps. They are
parameterized by the cusp labels of MH.)

It is important to study the relations among cusp labels of different multiranks.

Definition 1.18 (cf. [38, Def. 5.4.1.15]). A surjection

(Zn,Φn, δn) � (Z′n,Φ
′
n, δ
′
n)

between representatives of cusp labels at level n, where Φn = (X,Y, φ, ϕ−2,n, ϕ0,n)
and Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ

′
0,n), is a pair (of surjections) (sX : X � X ′, sY :

Y � Y ′) (of O-lattices) such that:

(1) Both sX and sY are admissible surjections (i.e., with kernels defining fil-
trations that are admissible in the sense of Definition 1.10), and they are
compatible with φ and φ′ in the sense that sXφ = φ′sY .

(2) Z′−2,n is an admissible submodule of Z−2,n, and the natural embedding

GrZ
′

−2,n ↪→ GrZ−2,n satisfies ϕ−2,n ◦ (GrZ
′

−2,n ↪→ GrZ−2,n) = s∗X ◦ ϕ′−2,n.
(3) Z−1,n is an admissible submodule of Z′−1,n, and the natural surjection

GrZ0,n � GrZ
′

0,n satisfies sY ◦ ϕ0,n = ϕ′0,n ◦ (GrZ0,n � GrZ
′

0,n).

In this case, we write s = (sX , sY ) : (Zn,Φn, δn) � (Z′n,Φ
′
n, δ
′
n)

By taking orbits as before, there is a corresponding notion for general cusp labels:
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Definition 1.19 (cf. [38, Def. 5.4.2.12]). A surjection (ZH,ΦH, δH) �
(Z′H,Φ

′
H, δ

′
H) between representatives of cusp labels at level H, where

ΦH = (X,Y, φ, ϕ−2,H, ϕ0,H) and Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ
′
0,H), is a pair (of

surjections) s = (sX : X � X ′, sY : Y � Y ′) (of O-lattices) such that:

(1) Both sX and sY are admissible surjections, and they are compatible with φ
and φ′ in the sense that sXφ = φ′sY .

(2) Z′H and (ϕ′−2,H, ϕ
′
0,H) are assigned to ZH and (ϕ−2,H, ϕ0,H) respectively

under s = (sX , sY ) as in [38, Lem. 5.4.2.11].

In this case, we write s = (sX , sY ) : (ZH,ΦH, δH) � (Z′H,Φ
′
H, δ

′
H).

Definition 1.20 (cf. [38, Def. 5.4.2.13]). We say that there is a surjection from
a cusp label at level H represented by some (ZH,ΦH, δH) to a cusp label at level H
represented by some (Z′H,Φ

′
H, δ

′
H) if there is a surjection (sX , sY ) from (ZH,ΦH, δH)

to (Z′H,Φ
′
H, δ

′
H).

This is well defined by [38, Lem. 5.4.1.16].
The surjection among cusp labels can be naturally seen when we have the so-

called two-step degenerations (see [16, Ch. III, §10] and [38, §4.5.6 in the revision]).
This notion will be further developed in Definitions 1.32, 1.37, and 1.38 below.

1D. Cone decompositions. For any torus argument Φn = (X,Y, φ, ϕ−2,n, ϕ0,n)
at level n, consider the finitely generated commutative group (i.e., Z-module)

(1.21)
...
SΦn := (( 1

nY )⊗
Z
X)/

(
y⊗φ(y′)− y′⊗φ(y)

(b 1
ny)⊗χ− ( 1

ny)⊗(b?χ)

)
y,y′∈Y
χ∈X,b∈O

and set SΦn :=
...
SΦn,free, the free quotient of

...
SΦn . (See [38, (6.2.3.5) and Conv.

6.2.3.26].) Then, for a general torus argument ΦH = (X,Y, φ, ϕ−2,H, ϕ0,H) at level
H, there is a recipe [38, Lem. 6.2.4.4] that gives a corresponding free commutative
group SΦH (which can be identified with a finite index subgroup of some SΦn).

The group SΦH provides indices for certain “Laurent series expansions” near the
boundary strata. In the modular curve case, it is canonically isomorphic to Z, which
means there is a canonical parameter q near the boundary — i.e., the cusps. The
expansion of modular forms with respect to this parameter then gives the familiar
q-expansion along the cusps. The compactification of the modular curves can be
described locally near each of the cusps by Spec(R[qi]i∈Z) ↪→ Spec(R[qi]i∈Z≥0

) for
some suitable base ring R. For MH, we would like to have an analogous theory
in which the torus with the character group SΦH can be partially compactified by
adding normal crossings divisors in a smooth scheme. This is best achieved by
the theory of toroidal embeddings developed in [36]. Many terminologies in such a
theory will naturally show up in our description of the toroidal boundary charts,
and we will review them in what follows.

Let S∨ΦH := HomZ(SΦH ,Z) be the Z-dual of SΦH , and let (SΦH)∨R := S∨ΦH ⊗Z
R =

HomZ(SΦH ,R). By construction of SΦH , the R-vector space (SΦH)∨R is isomorphic
to the space of Hermitian pairings (| · , · |) : (Y ⊗

Z
R) × (Y ⊗

Z
R) → O⊗

Z
R = B⊗

Q
R,

by sending a Hermitian pairing (| · , · |) to the function y⊗φ(y′) 7→ TrB/Q(|y, y′|) in
HomR((Y ⊗

Z
R)× (Y ⊗

Z
R),R) ∼= (SΦH)∨R . (See [38, Lem. 1.1.4.6].)
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Definition 1.22 (cf. [38, beginning of §6.1.1]). (1) A subset of (SΦH)∨R is
called a cone if it is invariant under the natural multiplication action of
R×>0 on the R-vector space (SΦH)∨R.

(2) A cone in (SΦH)∨R is nondegenerate if its closure does not contain any
nonzero R-vector subspace of (SΦH)∨R.

(3) A rational polyhedral cone in (SΦH)∨R is a cone in (SΦH)∨R of the form
σ = R>0v1 + . . .+ R>0vn with v1, . . . , vn ∈ (SΦH)∨Q = S∨ΦH ⊗Z

Q.

(4) A supporting hyperplane of σ is a hyperplane P in (SΦH)∨R such that σ
does not overlap with both sides of P .

(5) A face of σ is a rational polyhedral cone τ such that τ = σ ∩ P for some
supporting hyperplane P of σ. (Here an overline on a cone means its closure
in the ambient space (SΦH)∨R.)

Let PΦH be the subset of (SΦH)∨R corresponding to positive semidefinite Her-
mitian pairings (| · , · |) : (Y ⊗

Z
R) × (Y ⊗

Z
R) → B⊗

Q
R, with radical (namely the

annihilator of the whole space) admissible in the sense that it is the R-span of some
admissible submodule Y ′ of Y . (We say a submodule Y ′ of Y is admissible if Y ′ ⊂ Y
defines an admissible filtration on Y ; cf. Definition 1.10. In particular, the quotient
Y/Y ′ is also an O-lattice.)

Definition 1.23 ([38, Def. 6.2.4.1 and 5.4.1.6]). The group ΓΦH is the subgroup
of elements γ = (γX , γY ) in GLO(X)×GLO(Y ) satisfying φ = γXφγY , ϕ−2,H =
tγXϕ−2,H, and ϕ0,H = γY ϕ0,H (if we view the latter two as collections of orbits).

The group ΓΦH acts on SΦH , and its induced action preserves the subset PΦH

of (SΦH)∨R . (The group ΓΦH is the automorphism group of the torus argument ΦH.
Such automorphism groups show up naturally because torus arguments are only
determined up to isomorphism.)

Definition 1.24 (cf. [38, Def. 6.1.1.12]). A ΓΦH-admissible rational polyhedral
cone decomposition of PΦH is a collection Σ = {σj}j∈J with some indexing set
J such that:

(1) Every σj is a nondegenerate rational polyhedral cone.
(2) PΦH is the disjoint union of all the σj’s in Σ. For each j ∈ J , the closure

of σj in PΦH is a disjoint union of σk’s with k ∈ J . In other words,
PΦH =

∐
j∈J

σj is a stratification of PΦH . Moreover, each σk appearing in

the closure of σj as above is a face of σj.
(3) Σ is invariant under the action of ΓΦH on (SΦH)∨R, in the sense that ΓΦH

permutes the cones in Σ. Under this action, the set Σ/ΓΦH of ΓΦH-orbits
is finite.

Definition 1.25 (cf. [38, Def. 6.1.1.13]). A rational polyhedral cone σ in (SΦH)∨R
is smooth with respect to the integral structure given by S∨ΦH if we have σ =
R>0v1 + . . .+ R>0vn with v1, . . . , vn part of a Z-basis of S∨ΦH .

Definition 1.26 (cf. [38, Def. 6.1.1.14]). A ΓΦH-admissible smooth rational
polyhedral cone decomposition of PΦH is a ΓΦH-admissible rational polyhedral
cone decomposition {σj}j∈J of PΦH in which every σj is smooth.

Definition 1.27 (cf. [38, Def. 7.3.1.1]). Let ΣΦH = {σj}j∈J be any ΓΦH-admissible
rational polyhedral cone decomposition of PΦH . An (invariant) polarization
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function on PΦH for the cone decomposition ΣΦH is a ΓΦH-invariant continuous
piecewise linear function polΦH : PΦH → R≥0 such that:

(1) polΦH is linear (i.e., coincides with a linear function) on each cone σj
in ΣΦH . (In particular, polΦH(tx) = tpolΦH(x) for any x ∈ PΦH and
t ∈ R≥0.)

(2) polΦH((PΦH ∩ S∨ΦH) − {0}) ⊂ Z>0. (In particular, polΦH(x) > 0 for any
nonzero x in PΦH .)

(3) polΦH is linear (in the above sense) on a rational polyhedral cone σ in PΦH

if and only if σ is contained in some cone σj in ΣΦH .
(4) For any x, y ∈ PΦH , we have polΦH(x+ y) ≥ polΦH(x) + polΦH(y). This is

called the convexity of polΦH .

If such a polarization function exists, then we say that the ΓΦH-admissible rational
polyhedral cone decomposition ΣΦH is projective.

Definition 1.28. An admissible boundary component of PΦH is the im-
age of PΦ′H

under the embedding (SΦ′H
)∨R ↪→ (SΦH)∨R defined by some surjection

(ΦH, δH) � (Φ′H, δ
′
H). (See Definition 1.19.)

We shall always assume that the following technical condition is satisfied:

Condition 1.29 (cf. [16, Ch. IV, Rem. 5.8(a)]; see also [38, Cond. 6.2.5.25 in the
revision]). The cone decomposition ΣΦH = {σj}j∈J of PΦH is chosen such that,
for any j ∈ J , if γσj ∩ σj 6= {0} for some γ ∈ ΓΦH , then a power of γ acts as the
identity on the smallest admissible boundary component of PΦH containing γσj∩σj.

This condition is used to ensure that there are no self-intersections of toroidal
boundary strata when the level H is neat.

To describe the toroidal boundary of MH, we will need not only cusp labels but
also the cones:

Definition 1.30 (cf. [38, Def. 6.2.6.1]). Let (ΦH, δH) and (Φ′H, δ
′
H) be two repre-

sentatives of cusp labels at level H, let σ ⊂ (SΦH)∨R, and let σ′ ⊂ (SΦ′H
)∨R. We say

that the two triples (ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) are equivalent if there exists a

pair of isomorphisms γ = (γX : X ′
∼→ X, γY : Y

∼→ Y ′) (of O-lattices) such that:

(1) The two representatives (ΦH, δH) and (Φ′H, δ
′
H) are equivalent under γ (as

in [38, Def. 5.4.2.4], the general level analogue of Definition 1.15).

(2) The isomorphism (SΦ′H
)∨R
∼→ (SΦH)∨R induced by γ sends σ′ to σ.

In this case, we say that the two triples (ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) are equivalent
under the pair of isomorphisms γ = (γX , γY ).

Definition 1.31 (cf. [38, Def. 6.2.6.2]). Let (ΦH, δH) and (Φ′H, δ
′
H) be two repre-

sentatives of cusp labels at level H, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible

(resp. ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH (resp.

PΦ′H
). We say that the two triples (ΦH, δH,ΣΦH) and (Φ′H, δ

′
H,ΣΦ′H

) are equiv-

alent if (ΦH, δH) and (Φ′H, δ
′
H) are equivalent under some pair of isomorphisms

γ = (γX : X ′
∼→ X, γY : Y

∼→ Y ′), and if under one (and hence every) such γ the
cone decomposition ΣΦH of PΦH is identified with the cone decomposition ΣΦ′H

of

PΦ′H
. In this case we say that the two triples (ΦH, δH,ΣΦH) and (Φ′H, δ

′
H,ΣΦ′H

)

are equivalent under the pair of isomorphisms γ = (γX , γY ).

The compatibility among cone decompositions over different cusp labels is de-
scribed as follows:
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Definition 1.32 (cf. [38, Def. 6.2.6.4]). Let (ΦH, δH) and (Φ′H, δ
′
H) be two repre-

sentatives of cusp labels at level H, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible

(resp. ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH (resp.

PΦ′H
). A surjection (ΦH, δH,ΣΦH) � (Φ′H, δ

′
H,ΣΦ′H

) is given by a surjection

s = (sX : X � X ′, sY : Y � Y ′) : (ΦH, δH) � (Φ′H, δ
′
H) (see Definition 1.19) that

induces an embedding PΦ′H
↪→ PΦH such that the restriction ΣΦH |PΦ′H

of the cone

decomposition ΣΦH of PΦH to PΦ′H
is the cone decomposition ΣΦ′H

of PΦ′H
.

This allows us to define:

Definition 1.33 (cf. [38, Cond. 6.3.3.1 and Def. 6.3.3.2]). A compatible choice
of admissible smooth rational polyhedral cone decomposition data for MH
is a complete set Σ = {ΣΦH} of compatible choices of ΣΦH (satisfying Condition
1.29) such that, for every surjection (ΦH, δH) � (Φ′H, δ

′
H) of representatives of cusp

labels, the cone decompositions ΣΦH and ΣΦ′H
define a surjection (ΦH, δH,ΣΦH) �

(Φ′H, δ
′
H,ΣΦ′H

) as in Definition 1.32.

Definition 1.34 ([38, Def. 7.3.1.3]). We say that a compatible choice Σ = {ΣΦH} of
admissible smooth rational polyhedral cone decomposition data for MH (see Defini-
tion 1.33) is projective if it satisfies the following condition: There is a collection
pol = {polΦH : PΦH → R≥0} of polarization functions labeled by representatives
(ΦH, δH) of cusp labels, each polΦH being a polarization function of the cone de-
composition ΣΦH in Σ (see Definition 1.27), which are compatible in the following
sense: For any surjection (ΦH, δH) � (Φ′H, δ

′
H) of representatives of cusp labels (see

Definition 1.19) inducing an embedding PΦ′H
↪→ PΦH , we have polΦH |PΦ′H

= polΦ′H .

The most important relations among cone decompositions and among compatible
choices of them are the so-called refinements:

Definition 1.35 (cf. [38, Def. 6.2.6.3]). Let (ΦH, δH) and (Φ′H, δ
′
H) be two repre-

sentatives of cusp labels at level H, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible

(resp. ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH

(resp. PΦ′H
). We say that the triple (ΦH, δH,ΣΦH) is a refinement of the

triple (Φ′H, δ
′
H,ΣΦ′H

) if (ΦH, δH) and (Φ′H, δ
′
H) are equivalent under some pair

of isomorphisms γ = (γX , γY ), and if under one (and hence every) such γ the
cone decomposition ΣΦH of PΦH is identified with a refinement of the cone
decomposition ΣΦ′H

of PΦ′H
. In this case we say that the triple (ΦH, δH,ΣΦH)

is a refinement of the triple (Φ′H, δ
′
H,ΣΦ′H

) under the pair of isomorphisms

γ = (γX , γY ).

Definition 1.36 (cf. [38, Def. 6.4.2.2]). Let Σ = {ΣΦH} and Σ′ = {Σ′ΦH} be two
compatible choices of admissible smooth rational polyhedral cone decomposition data
for MH. We say that Σ refines Σ′ if the triple (ΦH, δH,ΣΦH) is a refinement of
the triple (ΦH, δH,Σ

′
ΦH

), as in Definition 1.35, for (ΦH, δH) running through all
representatives of cusp labels.

Finally, we would like to describe the relations among the equivalence classes
[(ΦH, δH, σ)], which will describe the “incidence relations” among (closures of) the
toroidal boundary strata.

Definition 1.37 (cf. [38, Def. 6.3.2.14]). Let (ΦH, δH) be a representative of a cusp
label at level H, and let σ ⊂ P+

ΦH
be a nondegenerate smooth rational polyhedral

cone. We say that a triple (Φ′H, δ
′
H, σ

′) is a face of (ΦH, δH, σ) if:



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 15

(1) (Φ′H, δ
′
H) is the representative of some cusp label at level H, such that there

exists a surjection s = (sX , sY ) : (ΦH, δH) � (Φ′H, δ
′
H) as in Definition

1.19.
(2) σ′ ⊂ P+

Φ′H
is a nondegenerate smooth rational polyhedral cone, such that

for one (and hence every) surjection s = (sX , sY ) as above, the image of σ′

under the induced embedding PΦ′H
↪→ PΦH is contained in the ΓΦH-orbit

of a face of σ.

Note that this definition is insensitive to the choices of representatives in the
classes [(ΦH, δH, σ)] and [(Φ′H, δ

′
H, σ

′)]. This justifies the following:

Definition 1.38 (cf. [38, Def. 6.3.2.15]). We say that the equivalence class
[(Φ′H, δ

′
H, σ

′)] of (Φ′H, δ
′
H, σ

′) is a face of the equivalence class [(ΦH, δH, σ)]
of (ΦH, δH, σ) if some triple equivalent to (Φ′H, δ

′
H, σ

′) is a face of some triple
equivalent to (ΦH, δH, σ).

1E. Arithmetic toroidal compactifications.

Definition 1.39 (cf. [38, Def. 5.3.2.1]). Let S be a normal locally noetherian alge-
braic stack. A tuple (G,λ, i, αH) over S is called a degenerating family of type
MH, or simply a degenerating family when the context is clear, if there exists a
dense subalgebraic stack S1 of S, such that S1 is defined over Spec(OF0,(2)), and
such that:

(1) By viewing group schemes as relative schemes (cf. [23]), G is a semiabelian
scheme over S whose restriction GS1 to S1 is an abelian scheme. In this
case, the dual semiabelian scheme G∨ exists (up to unique isomorphism),
whose restriction G∨S1

to S1 is the dual abelian scheme of GS1
.

(2) λ : G→ G∨ is a group homomorphism that induces by restriction a prime-
to-2 polarization λS1

of GS1
.

(3) i : O → EndS(G) is a homomorphism that defines by restriction an
O-structure iS1 : O → EndS1(GS1) of (GS1 , λS1).

(4) (GS1
, λS1

, iS1
, αH) → S1 defines a tuple parameterized by the moduli prob-

lem MH.

We will only talk about (semiabelian) degenerations (of abelian varieties with
PEL structures) of this form.

Definition 1.40 (cf. [38, Def. 6.3.1]). Let (G,λ, i, αH) be a degenerating family of
type MH over S (as in Definition 1.39) over S0 = Spec(OF0,(2)). Let Lie∨G/S :=

e∗GΩ1
G/S be the dual of LieG/S, and let Lie∨G∨/S := e∗GΩ1

G∨/S be the dual of LieG∨/S.

Note that λ : G→ G∨ induces an O-equivariant morphism λ∗ : Lie∨G∨/S → Lie∨G/S.

(Here the O-action on Lie∨G/S is a left action after twisting by the involution ?.)
Then we define the sheaf KS = KS(G,λ)/S = KS(G,λ,i,αH)/S by setting

KS := (Lie∨G/S ⊗
OS

Lie∨G∨/S)/

(
λ∗(y)⊗ z − λ∗(z)⊗ y
(b?x)⊗ y − x⊗(by)

)
x∈Lie∨G/S

y,z∈Lie∨
G∨/S

b∈O

.

Analogues of the sheaf KS appear naturally in the deformation theory of abelian
varieties with PEL structures (without degenerations). The point of Definition
1.40 is that it extends the conventional definition (for abelian schemes with PEL
structures) to the context of (semiabelian) degenerating families (see Definition
1.39).
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Theorem 1.41 (cf. [38, Thm. 6.4.1.1 and 7.3.3.4]). To each compatible choice
Σ = {ΣΦH} of admissible smooth rational polyhedral cone decomposition data as in
Definition 1.33, there is associated a proper smooth algebraic stack Mtor

H,Σ over S0 =

Spec(OF0,(2)), which is an algebraic space when H is neat (as in Definition 1.2),
containing MH as an open dense subalgebraic stack, together with a degenerating
family (G,λ, i, αH) over Mtor

H (as in Definition 1.39) such that:

(1) The restriction (GMH , λMH , iMH , αH) of the degenerating family
(G,λ, i, αH) to MH is the tautological (i.e., universal) tuple over MH.

(2) Mtor
H has a stratification by locally closed subalgebraic stacks

Mtor
H,Σ =

∐
[(ΦH,δH,σ)]

Z[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equivalence classes of
(ΦH, δH, σ) (as in Definition 1.30) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ. (Here

ZH is suppressed in the notation by our convention.)
In this stratification, the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ

′)] lies in the

closure of the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and only if [(ΦH, δH, σ)]
is a face of [(Φ′H, δ

′
H, σ

′)] as in Definition 1.38.
The [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is smooth and isomorphic to the

support of the formal algebraic stack XΦH,δH,σ/ΓΦH,σ for any representa-
tive (ΦH, δH, σ) of [(ΦH, δH, σ)], where the formal algebraic stack XΦH,δH,σ

(before quotient by ΓΦH,σ, the subgroup of ΓΦH formed by elements map-
ping σ to itself) admits a canonical structure as the completion of an affine
toroidal embedding ΞΦH,δH(σ) (along its σ-stratum ΞΦH,δH,σ) of a torus tor-
sor ΞΦH,δH over an abelian scheme torsor CΦH,δH over a finite étale cover

MΦH
H of the smooth algebraic stack MZH

H in Definition 1.17. (Note that ZH
and the isomorphism class of MZH

H depend only on the class [(ΦH, δH, σ)],
but not on the choice of the representative (ΦH, δH, σ).)

In particular, MH is an open dense stratum in this stratification.
(3) The complement of MH in Mtor

H,Σ (with its reduced structure) is a relative
Cartier divisor D∞,H with normal crossings, such that each connected com-
ponent of a stratum of Mtor

H −MH is open dense in an intersection of irre-
ducible components of D∞,H (including possible self-intersections). When
H is neat, the irreducible components of D∞,H have no self-intersections
(cf. Condition 1.29, [38, Rem. 6.2.5.26 in the revision], and [16, Ch. IV,
Rem. 5.8(a)]).

(4) The extended Kodaira–Spencer morphism [38, Def. 4.6.3.32] for G → Mtor
H

induces an isomorphism

KSG/Mtor
H /S0

: KSG/Mtor
H

∼→ Ω1
Mtor
H /S0

[d log∞]

(see Definition 1.40). Here the sheaf Ω1
Mtor
H /S0

[d log∞] is the sheaf of mod-

ules of log 1-differentials on Mtor
H over S0, with respect to the relative Cartier

divisor D∞,H with normal crossings.
(5) The formal completion

(Mtor
H )∧Z[(ΦH,δH,σ)]

of Mtor
H along the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is canonically isomor-

phic to the formal algebraic stack XΦH,δH,σ/ΓΦH,σ for any representative
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(ΦH, δH, σ) of [(ΦH, δH, σ)]. (To form the formal completion along a given
locally closed stratum, we first remove the other strata appearing in the
closure of this stratum from the total space, and then form the formal com-
pletion of the remaining space along this stratum.)

This isomorphism respects stratifications in the sense that, given
any étale (i.e., formally étale and of finite type; see [21, I, 10.13.3])
morphism Spf(R, I) → XΦH,δH,σ/ΓΦH,σ inducing a morphism
Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, the stratification of Spec(R) (inherited
from ΞΦH,δH(σ)/ΓΦH,σ; see [38, Prop. 6.3.1.6 and Def. 6.3.2.16 in the
revision]) makes the induced morphism Spec(R)→ Mtor

H a strata-preserving
morphism.

The pullback to (Mtor
H )∧Z[(ΦH,δH,σ)]

of the degenerating family (G,λ, i, αH)

over Mtor
H is the Mumford family

(♥G, ♥λ, ♥i, ♥αH)

over XΦH,δH,σ/ΓΦH,σ (see [38, §6.2.5]) after we identify the bases using the
isomorphism. (Here both the pullback of (G,λ, i, αH) and the Mumford fam-
ily (♥G, ♥λ, ♥i, ♥αH) are considered as relative schemes with additional
structures; cf. [23].)

(6) Let S be an irreducible noetherian normal scheme over S0. Suppose we have

a degenerating family (G†, λ†, i†, α†H) of type MH over S as in Definition

1.39. Then (G†, λ†, i†, α†H) → S is the pullback of (G,λ, i, αH) → Mtor
H

via a (necessarily unique) morphism S → Mtor
H (over S0) if and only if the

following condition is satisfied:
Consider any dominant morphism Spec(V )→ S centered at a geometric

point s̄ of S, where V is a complete discrete valuation ring with quotient
field K, algebraically closed residue field k, and discrete valuation υ. Let

(G‡, λ‡, i‡, α‡H)→ Spec(V )

be the pullback of (G†, λ†, i†, α†H) → S. This pullback family defines an
object of DEGPEL,MH over Spec(V ), which corresponds to a tuple

(A‡, λ‡A, i
‡
A, X

‡, Y ‡, φ‡, c‡, (c∨)‡, τ ‡, [(α\H)‡])

in DDPEL,MH under [38, Thm. 5.3.1.17]. Then we have a fully symplectic-

liftable admissible filtration Z
‡
H determined by [(α\H)‡]. Moreover, the étale

sheaves X‡ and Y ‡ are necessarily constant, because the base ring V is strict
local. Hence it makes sense to say we also have a uniquely determined torus

argument Φ‡H at level H for Z
‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and B(G‡) (see

[38, Constr. 6.3.1.1]), which define objects Φ‡H, SΦ‡H
and in particular B‡ :

SΦ‡H
→ Inv(V ) over the special fiber. Then υ ◦ B‡ : SΦ‡H

→ Z defines an

element of S∨
Φ‡H

, where υ : Inv(V ) → Z is the homomorphism induced by

the discrete valuation of V .
Then the condition is that, for any Spec(V )→ S as above, and for any

choice of δ‡H (which is immaterial, because this choice will not be used), there
is a cone σ‡ in the cone decomposition ΣΦ‡H

of PΦ‡H
(given by the choice of
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Σ; cf. Definition 1.33) such that σ‡ contains all the υ ◦B‡ obtained in this
way.

(7) If H is neat and Σ is projective (see Definition 1.34), then Mtor
H,Σ is projec-

tive (and hence a scheme) over S0.

Statement (1) means the tautological tuple over MH extends to a degenerating
family (G,λ, i, αH) over Mtor

H . (Since Mtor
H is normal, this extension is unique by a

result of Raynaud; see [49, IX, 1.4] or [16, Ch. I, Prop. 2.7].) Statements (2), (3),
(4), (5), and (7) are self-explanatory. Statement (6) can be interpreted as a “uni-
versal property” for the degenerating family (G,λ, i, αH) → Mtor

H among degener-
ating families over normal locally noetherian bases, as in Definition 1.39, satisfying
moreover some conditions describing the “degenerating patterns” over pullbacks to
complete discrete valuation rings with algebraically closed residue fields. This “uni-
versal property” will be crucial in the main construction of this article (in Section
3A below).

2. Kuga families and their compactifications

Let O, ?, (L, 〈 · , · 〉), h, and 2 be as in the previous section. Then we have a

moduli problem MH over S0 = Spec(OF0,(2)) for each open compact H of G(Ẑ2),
with a toroidal compactification Mtor

H,Σ for each choice of Σ.
For simplicity, let us maintain the following:

Convention 2.1. All morphisms between schemes or algebraic stacks over S0 =
Spec(OF0,(2)) will be defined over S0, unless otherwise specified.

2A. PEL-type Kuga families. Let Q be any O-lattice. Consider the abelian
scheme GMH over MH in (1) of Theorem 1.41. By [38, Prop. 5.2.3.8], the group
functor HomO(Q,GMH) over MH is representable by a proper smooth group scheme
which is an extension of a finite étale group scheme, whose rank has no prime factors
other than those of Disc, by an abelian scheme HomO(Q,GMH)◦, which we call the
fiberwise geometric identity component of HomO(Q,GMH).

Example 2.2. If Q ∼= O⊕s for some integer s ≥ 0, then HomO(Q,GMH)◦ =
HomO(Q,GMH) ∼= G×sMH

is the s-fold fiber product of GMH over MH.

Example 2.3. If O ∼= Mk(OF ) and Q is of finite index in O⊕kF for some integer
k ≥ 1, then the relative dimension of HomO(Q,GMH)◦ over MH is 1/k of the
relative dimension of GMH over MH.

Definition 2.4. A PEL-type Kuga family over MH is an abelian scheme N→
MH that is Z×(2)-isogenous to HomO(Q,GMH)◦ for some O-lattice Q.

Consider Diff−1 = Diff−1
O/Z, the inverse different of O over Z [38, Def. 1.1.1.11]

with its canonical leftO-module structure. Since the trace pairing Diff−1×O → Z :
(y, x) 7→ TrO/Z(yx) is perfect by definition, for each O-lattice Q, we may identify

Q∨ := HomZ(Q,Z) with HomO(Q,Diff−1). By composition with the involution
? : O ∼→ Oop, the natural right action of O on Diff−1 induced a left action of O on
Diff−1, which commutes with the natural left action of O on Diff−1. Accordingly,
the Z-module Q∨ is torsion-free and has a canonical left O-structure induced by
the right action of Oop on Diff−1 (and ? : O ∼→ Oop). In other words, Q∨ is an
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O-lattice. Then the trace pairing induces a perfect pairing

〈 · , · 〉Q : Q∨×Q→ Z : (f, x) 7→ TrO/Z(f(x)).

For any b ∈ O, f ∈ Q∨, and x ∈ Q, we have

〈bf, x〉Q = TrO/Z(f(x)b?) = TrO/Z(b?f(x)) = TrO/Z(f(b?x)) = 〈f, b?x〉.

Lemma 2.5. There exists an embedding jQ : Q∨ ↪→ Q of O-lattices inducing an

isomorphism jQ : Q∨⊗
Z
Z(2)

∼→ Q⊗
Z
Z(2) of O⊗

Z
Z(2)-modules such that the pairing

〈j−1
Q ( · ), · 〉Q : (Q⊗

Z
R)×(Q⊗

Z
R)→ R

is positive definite.

Proof. By the explicit classification [38, (1.2.1.10), Prop. 1.2.1.13, and Lem.

1.2.1.23], there exists an isomorphism jQ,0 : Q∨⊗
Z
R ∼→ Q⊗

Z
R of O⊗

Z
R-modules

such that the induced pairing 〈j−1
Q,0( · ), · 〉Q : (Q⊗

Z
R)×(Q⊗

Z
R)→ R is positive def-

inite. If 2 is the set of all rational prime numbers, then necessarily O = Z, and the
lemma is clear. Otherwise, we know that IsomO⊗

Z
Z(2)

(Q∨⊗
Z
Z(2), Q⊗

Z
Z(2)) is dense

in IsomO⊗
Z
R(Q∨⊗

Z
R, Q⊗

Z
R) (with the topology induced by R). Hence there exists

an element jQ,1 : Q∨⊗
Z
Z(2)

∼→ Q⊗
Z
Z(2) close to jQ,0 in IsomO⊗

Z
R(Q∨⊗

Z
R, Q⊗

Z
R)

such that the induced pairing 〈j−1
Q,1( · ), · 〉Q : (Q⊗

Z
R)×(Q⊗

Z
R)→ R is still positive

definite. By multiplying jQ,1 by a positive element in Z×(2), we may assume that it

maps Q∨ to a submodule of Q. Then the induced morphism jQ : Q∨ → Q satisfies
the requirement of the lemma. �

Lemma 2.6. The abelian scheme HomZ(Q∨, G∨MH) is isomorphic to the dual
abelian scheme of HomZ(Q,GMH).

Proof. Let s be the common rank of Q and Q∨ as free Z-modules. Let {e1, . . . , es}
be a Z-basis of Q, and let {e∨1 , . . . , e∨s } be the dual Z-basis of Q∨, such that e∨i (ej) =
δij for any 1 ≤ i, j ≤ s. Then the choices of bases define canonical isomorphisms

(2.7) HomZ(Q,GMH) ∼= G×sMH

and

(2.8) HomZ(Q∨, G∨MH) ∼= (G∨MH)×s.

As a result, HomZ(Q∨, G∨MH) ∼= G×sMH
is isomorphic to the dual abelian scheme of

HomZ(Q,GMH) ∼= (G∨MH)×s. �

Lemma 2.9. Let jQ : Q∨ ↪→ Q be as in Lemma 2.5. Then the isogeny

λMH,jQ,Z : HomZ(Q,GMH)→ HomZ(Q∨, G∨MH)

induced canonically by jQ and λMH : GMH → G∨MH , which is of degree prime to 2

because both [Q : jQ(Q∨)] and deg(λMH) are prime to 2, is a polarization.

Proof. We need to show that the invertible sheaf

(IdHomZ(Q,GMH ), λMH,jQ,Z)∗PHomZ(Q,GMH )

is relative ample over MH. Using the choice of basis {e1, . . . , es} (resp. {e∨1 , . . . , e∨s })
of Q (resp. Q∨) as in the proof of Lemma 2.6, the morphism jQ can be represented
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by e∨i 7→
∑

1≤j≤s
aijej for some integers aij , for each 1 ≤ i ≤ s. These integers form

a positive definite matrix a = (aij), because the induced pairing 〈j−1
Q ( · ), · 〉Q :

(Q⊗
Z
R)×(Q⊗

Z
R)→ R is positive definite. By completion of squares for quadratic

forms, we know that there exist an integer m ≥ 1 such that ma = ud tu for some
matrices d and u with integral coefficients, where d = diag(d1, . . . , ds) is diagonal
with positive entries. As a result, the morphism mλMH,jQ,Z factors as a composition

mλMH,jQ,Z = [ tu]∗ ◦ λMH,d,Z ◦ [u]∗

of morphisms

[u]∗ : HomZ(Q,GMH)→ HomZ(Q,GMH),

λMH,d,Z : HomZ(Q,GMH)→ HomZ(Q∨, G∨MH),

[ tu]∗ : HomZ(Q∨, G∨MH)→ HomZ(Q∨, G∨MH).

If we identify HomZ(Q,GMH) and HomZ(Q∨, G∨MH) as dual abelian schemes
of each other using the canonical isomorphisms (2.7) and (2.8) defined by
the dual bases {e1, . . . , es} and {e∨1 , . . . , e∨s }, then [ tu]∗ = ([u]∗)

∨
, and

λMH,d,Z = (d1λMH)×(d2λMH)× . . .×(dsλMH) : G×sMH
→ (G∨MH)×s is a polarization.

Since [u]∗ is finite, this implies that λMH,jQ,Z is also a polarization, as desired. �

Proposition 2.10. The abelian scheme HomO(Q∨, G∨MH)◦ is Z×(2)-isogenous to the

dual abelian scheme of HomO(Q,GMH)◦.

Proof. Since λMH,jQ,Z is a polarization by Lemma 2.9, the induced morphism

(2.11) λMH,jQ : HomO(Q,GMH)◦ ↪→ HomZ(Q,GMH)

λMH,jQ,Z→ HomZ(Q∨, G∨MH) � (HomO(Q,GMH)◦)
∨

is also a polarization. (Since the condition of being a polarization can be checked
fiber by fiber [14, 1.2, 1.3, 1.4], it suffices to note that the restriction of an am-
ple invertible sheaf to a closed subscheme is again ample.) Since λMH,jQ,Z maps
HomO(Q,GMH)◦ onto the subscheme HomO(Q∨, G∨MH)◦ of HomZ(Q∨, G∨MH), we
obtain an isogeny

HomO(Q∨, G∨MH)◦ → (HomO(Q,GMH)◦)
∨
.

The degree of this isogeny is prime to 2 because λMH,jQ,Z is. �

Corollary 2.12 (of the proof of Proposition 2.10). Let jQ : Q∨ ↪→ Q be as in
Lemma 2.5. Then the canonical morphism

λMH,jQ : HomO(Q,GMH)◦ → (HomO(Q,GMH)◦)
∨

induced by jQ and λMH : GMH → G∨MH (as in (2.11)) is a polarization of degree
prime to 2.

Corollary 2.13. If a Kuga family N→ MH is Z×(2)-isogenous to HomO(Q,GMH)◦

for some O-lattice Q, then we have canonical isomorphisms over MH:

LieN/MH
∼= HomO(Q,LieGMH/MH

), LieN∨/MH
∼= HomO(Q∨,LieG∨MH/MH

),

Lie∨N/MH
∼= HomO(Q∨,Lie∨GMH/MH

), Lie∨N∨/MH
∼= HomO(Q,Lie∨G∨MH/MH

).
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Remark 2.14. We do not need to choose a polarization N→ N∨ in the isomorphisms
in Corollary 2.13. The sheaves on the right-hand sides of the isomorphisms are
locally free because the order O is maximal at any good prime (see Definition 1.5
and [38, Prop. 1.1.1.17]), and because lattices over maximal orders are projective
modules (see [38, Prop. 1.1.1.20]).

2B. Main theorem. (Convention 2.1 will persist until the end of this article.)

Theorem 2.15. Let Q be any O-lattice. Suppose that H is neat (as in Definition
1.2), so that the moduli problem MH it defines is representable by a quasiprojective
scheme, and so that Mtor

H = Mtor
H,Σ is a proper smooth algebraic space over S0. Then

there is a set KQ,H,Σ, equipped with a reflexive and transitive binary relation �,
parameterizing the following data:

(1) For each κ ∈ KQ,H,Σ, there is a Z×(2)-isogeny κisog : HomO(Q,GMH)◦ → Nκ
over MH, together with an open immersion κtor : Nκ ↪→ Ntor

κ of schemes
over S0, such that the scheme Ntor

κ is projective and smooth over S0, and
that the complement of Nκ in Ntor

κ (with its reduced structure) is a relative
Cartier divisor E∞,κ with simple normal crossings.

For each relation κ′ � κ in KQ,H,Σ, there is a proper log étale morphism
f tor
κ′,κ : Ntor

κ′ → Ntor
κ extending the canonical Z×(2)-isogeny

fκ′,κ := κisog ◦ ((κ′)isog)−1 : Nκ′ → Nκ

such that Ri(f tor
κ′,κ)∗ONtor

κ′
= 0 for i > 0.

(2) For each κ ∈ KQ,H,Σ, the structural morphism fκ : Nκ → MH extends
(necessarily uniquely) to a morphism f tor

κ : Ntor
κ → Mtor

H , which is proper
and log smooth (as in [33, 3.3] and [32, 1.6]) if we equip Ntor

κ and Mtor
H with

the canonical (fine) log structures given respectively by the relative Cartier
divisors with (simple) normal crossings E∞,κ and D∞,H (see (1) above and
(3) of Theorem 1.41). Then we have the following commutative diagram:

Nκ

fκ
proper
smooth

��

� � +NCD
// Ntor
κ

ftor
κ

proper
log smooth

��

projective
smooth

&&
MH
� �

+NCD
// Mtor
H proper

smooth

// S0

If κ′ � κ, then we have the compatibility f tor
κ′ = f tor

κ ◦ f tor
κ′,κ.

(3) Let us fix a choice of κ ∈ KQ,H,Σ and suppress the subscript κ from the
notation. (All canonical isomorphisms will be required to be compatible with
the canonical isomorphisms defined by pullback under f tor

κ′,κ for each relation

κ′ � κ.) Then the following are true:
(a) Let Ω1

Ntor/S0
[d log∞] and Ω1

Mtor
H /S0

[d log∞] denote the sheaves of mod-

ules of log 1-differentials over S0 given by the (respective) canonical log
structures defined in (2). Let

Ω
1

Ntor/Mtor
H

:= (Ω1
Ntor/S0

[d log∞])/((f tor)∗(Ω1
Mtor
H /S0

[d log∞])).

Then there is a canonical isomorphism

(2.16) (f tor)∗(HomO(Q∨,Lie∨G/Mtor
H

)) ∼= Ω
1

Ntor/Mtor
H
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between locally free sheaves over Ntor, extending the composition of
canonical isomorphisms

(2.17) f∗(HomO(Q∨,Lie∨GMH/MH
)) ∼= f∗Lie∨N/MH

∼= Ω1
N/MH

over N.
(b) For any integer b ≥ 0, there exists a canonical isomorphism

(2.18) Rbf tor
∗ (Ω

a

Ntor/Mtor
H

)

∼= (∧b(HomO(Q∨,LieG∨/Mtor
H

))) ⊗
OMtor
H

(∧a(HomO(Q∨,Lie∨G/Mtor
H

))).

of locally free sheaves over Mtor
H , compatible with cup products and ex-

terior products, extending the canonical isomorphism over MH induced
by the composition of canonical isomorphisms

(2.19) Rbf∗(ON) ∼= ∧bLieN∨/MH
∼= ∧b(HomO(Q∨,LieG∨MH/MH

)).

(c) Let Ω
•
Ntor/Mtor

H
:= ∧•Ω1

Ntor/Mtor
H

be the log de Rham complex associated

with f tor : Ntor → Mtor
H (with differentials inherited from Ω•N/MH). Let

the (relative) log de Rham cohomology be defined by

Hi
log-dR(Ntor/Mtor

H ) := Rif tor
∗ (Ω

•
Ntor/Mtor

H
).

Then the (relative) Hodge spectral sequence

(2.20) Ea,b1 := Rbf tor
∗ (Ω

a

Ntor/Mtor
H

)⇒ Ha+b
log-dR(Ntor/Mtor

H )

degenerates at E1 terms, and defines a Hodge filtration
on Hi

log-dR(Ntor/Mtor
H ) with locally free graded pieces given by

Rbf tor
∗ (Ω

a

Ntor/Mtor
H

) for integers a + b = i, extending the canonical

Hodge filtration on Hi
dR(N/MH).

As a result, for any integer i ≥ 0, there is a canonical isomorphism

∧iH1
log-dR(Ntor/Mtor

H )
∼→ Hi

log-dR(Ntor/Mtor
H ),

compatible with the Hodge filtrations defined by (2.20), extending the

canonical isomorphism ∧iH1
dR(N/MH)

∼→ Hi
dR(N/MH) over MH (de-

fined by cup product).
(d) For any jQ : Q∨ ↪→ Q as in Lemma 2.5, the Z×(2)-polarization

λMH,jQ : HomO(Q,GMH)◦ → (HomO(Q,GMH)◦)
∨

in Corollary 2.12
defines canonically (as in [14, 1.5]) a perfect pairing

〈 · , · 〉λMH,jQ
: H1

dR(N/MH)×H1
dR(N/MH)→ OMH(1).

Then H1
log-dR(Ntor/Mtor

H ) is the unique subsheaf of

(MH ↪→ Mtor
H )∗(H

1
dR(N/MH))

satisfying the following conditions:
(i) H1

log-dR(Ntor/Mtor
H ) is locally free of finite rank over OMtor

H
.

(ii) The sheaf f tor
∗ (Ω

1

Ntor/Mtor
H

) can be identified as the subsheaf of

(MH ↪→ Mtor
H )∗(f∗(Ω

1
N/MH

))
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formed (locally) by sections that are also sections of
H1

log-dR(Ntor/Mtor
H ). (Here we view all sheaves canonically as

subsheaves of (MH ↪→ Mtor
H )∗(H

1
dR(N/MH)).)

(iii) H1
log-dR(Ntor/Mtor

H ) is self-dual under the push-forward

(MH ↪→ Mtor
H )∗〈 · , · 〉λMH,jQ

.

(e) The Gauss–Manin connection

(2.21) ∇ : H•dR(N/MH)→ H•dR(N/MH) ⊗
OMH

Ω1
MH/S0

extends to an integrable connection

(2.22) ∇ : H•log-dR(Ntor/Mtor
H )→ H•log-dR(Ntor/Mtor

H ) ⊗
OMtor
H

Ω
1

Mtor
H /S0

with log poles along D∞,H, called the extended Gauss–Manin con-
nection, satisfying the usual Griffiths transversality with the Hodge
filtration defined by (2.20).

(4) (Hecke actions.) Suppose we have an element gh ∈ G(A∞,2), and suppose

we have a (neat) open compact subgroup H′ of G(Ẑ2) such that g−1
h H′gh ⊂

H. Suppose Σ′ = {Σ′Φ′H′} is a compatible choice of admissible smooth ra-

tional polyhedral cone decomposition data for MH′ , which gh-refines Σ as
in [38, Def. 6.4.3.3]. (The notion was called “dominance” in the original
version, but changed to the more common “refinement” in the revision.)
Then there is also a set KQ,H′,Σ′ , equipped with a reflexive and transi-
tive binary relation � as KQ,H,Σ is, parameterizing (for κ′ ∈ KQ,H′,Σ′)
Z×(2)-isogenies HomO(Q,GMH′ )

◦ → N′κ′ over MH′ , together with open im-

mersions N′κ′ ↪→ (N′κ′)
tor

of schemes over S0, satisfying analogues of prop-
erties (1), (2), and (3) above. The constructions of KQ,H,Σ and KQ,H′,Σ′

(and the objects they parameterize) satisfy the compatibility with gh in the
sense that, for each κ ∈ KQ,H,Σ, there is an element κ′ ∈ KQ,H′,Σ′ such
that the following are true:
(a) There exists a (necessarily unique) finite étale morphism

[gh]κ′,κ : N′κ′ → Nκ covering the morphism [gh] : MH′ → MH given by
[38, Prop. 6.4.3.4], inducing a prime-to-2 isogeny N′κ′ → Nκ ×

MH
MH′ ,

which agrees with the Z×(2)-isogeny induced by (κ′)isog, κisog, and the

Z×(2)-isogeny GMH′ → GMH ×
MH

MH′ realizing GMH ×
MH

MH′ as a Hecke

twist of GMH′ by gh. (Here all the base changes from MH to MH′ use
the morphism [gh].)

(b) There exists a (necessarily unique) proper log étale morphism

(2.23) [gh]
tor
κ′,κ : (N′κ′)

tor → Ntor
κ

extending the morphism [gh]κ′,κ and covering the morphism [gh]
tor

:
Mtor
H′,Σ′ → Mtor

H,Σ given by [38, Prop. 6.4.3.4], such that

(2.24) Ri([gh]
tor
κ′,κ)∗O(N′

κ′ )
tor = 0

for any i > 0.
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(c) There is a canonical isomorphism

([gh]
tor

)∗Ha+b
log-dR(Ntor

κ /Mtor
H,Σ)

∼→ Ha+b
log-dR((N′κ′)

tor
/Mtor
H′,Σ′)

respecting the Hodge filtrations and compatible with the canonical iso-
morphisms

([gh]
tor
κ′,κ)∗Ω

1

Ntor
κ /Mtor

H,Σ

∼→ Ω
1

(N′
κ′ )

tor/Mtor
H′,Σ′

,

([gh]
tor

)∗LieG∨/Mtor
H,Σ

∼→ LieG∨/Mtor
H′,Σ′

,

([gh]
tor

)∗Lie∨G/Mtor
H,Σ

∼→ Lie∨G/Mtor
H′,Σ′

,

and the canonical isomorphisms in (3) for Ntor
κ and (N′κ′)

tor
.

(5) (Z×(2)-isogenies.) Let gl be an element of GLO⊗
Z
A∞,2(Q⊗

Z
A∞,2). Then the

submodule gl(Q⊗
Z
Ẑ2) in Q⊗

Z
A∞,2 determines a unique O-lattice Q′ (up

to isomorphism), together with a unique choice of an isomorphism [gl]Q :

Q⊗
Z
Z(2)

∼→ Q′⊗
Z
Z(2), inducing an isomorphism Q⊗

Z
A∞,2 ∼→ Q′⊗

Z
A∞,2

matching gl(Q⊗
Z
Ẑ2) with Q′⊗

Z
Ẑ2, and inducing a canonical Z×(2)-isogeny

[gl]
∗
Q : HomO(Q′, GMH)◦ → HomO(Q,GMH)◦

defined by [gl]Q. For HomO(Q′, GMH)◦, there is also a set KQ′,H,Σ,
equipped with a reflexive and transitive binary relation � as KQ,H,Σ is,
parameterizing (for κ′ ∈ KQ′,H,Σ) Z×(2)-isogenies

HomO(Q′, GMH)◦ → N′κ′

over MH, together with open immersions N′κ′ ↪→ (N′κ′)
tor

of schemes over
S0, satisfying analogues of properties (1), (2), and (3) above. The construc-
tions of KQ,H,Σ and KQ′,H,Σ (and the objects they parameterize) satisfy the
compatibility with gl in the sense that, for each κ ∈ KQ,H,Σ, there is an
element κ′ ∈ KQ′,H,Σ such that the following are true:
(a) The Z×(2)-isogeny [gl]

∗
κ′,κ := κisog ◦ [gl]

∗
Q ◦ ((κ′)isog)−1 : N′κ′ → Nκ is

an isogeny (not just a quasiisogeny), and hence defines a finite étale
morphism.

(b) There exists a (necessarily unique) proper log étale morphism

(2.25) ([gl]
∗
κ′,κ)

tor
: (N′κ′)

tor → Ntor
κ

extending the morphism [gl]
∗
κ′,κ over MH, such that

(2.26) Ri([gl]
∗
κ′,κ)

tor

∗ O(N′
κ′ )

tor = 0

for any i > 0.
(c) For any integer i ≥ 0, there is a canonical isomorphism

(([gl]
∗
κ′,κ)

tor
)∗ : Hi

log-dR(Ntor
κ /Mtor

H,Σ)
∼→ Hi

log-dR((N′κ′)
tor
/Mtor
H,Σ)

extending the canonical isomorphism

([gl]
∗
κ′,κ)∗ : Hi

dR(Nκ/MH)
∼→ Hi

dR(N′κ′/MH)
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induced by [gl]Q, respecting the Hodge filtrations and inducing canon-
ical isomorphisms

(([gl]
∗
κ′,κ)

tor
)∗ : Rbf tor

∗ (Ω
a

Ntor
κ /Mtor

H
)
∼→ Rbf tor

∗ (Ω
a

(N′
κ′ )

tor/Mtor
H

)

(for integers a+ b = i) compatible (under the canonical isomorphisms

in (3) for Ntor
κ and (N′κ′)

tor
) with the canonical isomorphisms

([gl]
∗
Q)∗ : HomO(Q∨,LieG∨/Mtor

H
)
∼→ HomO((Q′)

∨
,LieG∨/Mtor

H
)

and

([gl]
∗
Q)∗ : HomO(Q∨,Lie∨G/Mtor

H
)
∼→ HomO((Q′)

∨
,Lie∨G/Mtor

H
).

2C. Outline of the proof. The proof of Theorem 2.15 consists of the following
steps:

(1) Find a PEL-type O-lattice (L̃, 〈 · , · 〉̃ , h̃), a fully symplectic admissible fil-

tration Z̃ on L̃⊗
Z
Ẑ2, a torus argument Φ̃, and a splitting δ̃ for Z̃, such that,

for some choices of H̃, Σ̃, and σ̃, the [(Φ̃H̃, δ̃H̃, σ̃)]-stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)] of

the toroidal compactification M̃tor
H̃

= M̃tor
H̃,Σ̃

has a canonical structure of an

abelian scheme over MH, and such that there exists a canonical Z×(2)-isogeny

κisog : HomO(Q,GMH)◦ → Z̃[(Φ̃H̃,δ̃H̃,σ̃)].

Then we take Nκ to be this Z̃[(Φ̃H̃,δ̃H̃,σ̃)].

Take Kpre
Q,H,Σ to be the set of all such triples κ = (H̃, Σ̃, σ̃), with the

binary relation

κ′ = (H̃′, Σ̃′, σ̃′) � κ = (H̃, Σ̃, σ̃)

defined when H̃′ ⊂ H̃ and Σ̃′ refines Σ̃ as in [38, Def. 6.4.2.8], and when

the [(Φ̃H̃′ , δ̃H̃′ , σ̃
′)]-stratum of M̃tor

H̃′,Σ̃′
is mapped (surjectively) to the

[(Φ̃H̃, δ̃H̃, σ̃)]-stratum of M̃tor
H̃

= M̃tor
H̃,Σ̃

under the canonical morphism

M̃tor
H̃′,Σ̃′

→ M̃tor
H̃,Σ̃

given by [38, Prop. 6.4.2.9].

For κ = (H̃, Σ̃, σ̃), take Ntor
κ to be the closure of the [(Φ̃H̃, δ̃H̃, σ̃)]-stratum

in M̃tor
H̃,Σ̃

. For κ′ = (H̃′, Σ̃′, σ̃′) � κ = (H̃, Σ̃, σ̃), the morphism f tor
κ′,κ :

Ntor
κ′ → Ntor

κ is just the morphism induced by the canonical proper morphism

M̃tor
H̃′,Σ̃′

→ M̃tor
H̃,Σ̃

given by [38, Prop. 6.4.2.9].

(2) Show that Ntor
κ is projective and smooth over S0 for κ ∈ Kpre

Q,H,Σ.

(3) Find a condition on κ that guarantees the existence of a morphism f tor
κ :

Ntor
κ → Mtor

H extending the structural morphism fκ : Nκ → MH.
(4) Take KQ,H,Σ to be the subset of Kpre

Q,H,Σ consisting of elements κ satisfying
the condition we have found. Show that this subset is nonempty and has
an induced binary relation �; note that the conditions we need can always
be achieved after suitable refinements of cone decompositions. This verifies
(1) and (2) of Theorem 2.15.

(5) For each κ ∈ KQ,H,Σ, verify that the morphism f tor
κ : Ntor

κ → Mtor
H extend-

ing Nκ → MH is log smooth, and verify (3a) of Theorem 2.15.
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(6) Assuming (3b) and (3c), verify (4) and (5) of Theorem 2.15 using the Hecke

actions on the double tower {M̃H̃,Σ̃}H̃,Σ̃.

(7) Verify (3b), (3c), and (3d) of Theorem 2.15 using explicit descriptions of
the formal fibers of f tor

κ along (locally closed) strata of Mtor
H . (A crucial step

for (3b) requires the notion of log extensions of polarizations we mentioned
in the introduction.)

We will carry out these steps in Sections 3–5. We will make frequent references to
results cited in Section 1, and also to the original statements in [38].

2D. System of notation. Although the underlying ideas are simple, the notation
can be quite heavy. (This seems unavoidable in general works on compactifications.)
We decided to keep the notation informative (and hence complicated), because we
believe it is more difficult to keep track of three sets of cusp labels and cone decom-
positions with simplified notation. We understand that the heaviness of notation
will inevitably be an enormous burden on the readers, and hence we would like to
provide some guidance by explaining the key features in the system of notation, as
follows:

• The superscript tor stands for toroidal compactifications (or objects related
to them). For morphisms this typically means extensions to morphisms
between toroidal compactifications.
• Depending on the context, the overlines can have different meanings:

– For geometric objects they almost always mean closures.
– For sheaves of differentials (or related objects) they mean the log ver-

sions.
– Notable exceptions (to the above two) are in Sections 3B–3C be-

low, where overlines can also stand for quotients of group schemes
or sheaves.

• Objects for the “given” moduli problem MH and its compactifications are
denoted as in Section 1.
• Objects for the “larger” moduli problem M̃H̃ (mentioned in step 1 above)

will be denoted with either ˜ (tilde) or ˘ (breve) on top of the symbols in
Section 1. The difference is the following:

– Symbols with ˜will be used for defining M̃H̃ and its compactifications

M̃tor
H̃,Σ̃

, and for realizing the Kuga families we would like to compactify

as boundary strata Z̃[(Φ̃H̃,δ̃H̃,σ̃)] of M̃tor
H̃,Σ̃

.

– Symbols with ˘ will be used for the boundary strata of M̃tor
H̃,Σ̃

appearing

in the closure of the realizations Z̃[(Φ̃H̃,δ̃H̃,σ̃)]. (These strata are param-

eterized by faces [(Φ̆H̃, δ̆H̃, τ̆)] of [(Φ̃H̃, δ̃H̃, σ̃)].) In other words, they
parameterize the boundary strata of the toroidal compactification of
the Kuga families we consider.

• In the local descriptions of toroidal boundary structures, we will encounter
notations of the forms ( · )(σ) and ( · )σ.

– When the object ( · ) being modified is a scheme with action by some
torus, ( · )(σ) will stand for the affine toroidal embedding adding the
σ-stratum (which then also adds all the strata for nontrivial faces of σ),



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 27

while ( · )σ will stand for the closed σ-stratum (without the nontrivial
face strata).

– The formal version of ( · )σ (often denoted in Fraktur) will mean the
formal completion of ( · )(σ) along ( · )σ.

The notation will be most heavy in Sections 4–5, where the calculation of relative
cohomology is carried out in detail. For readers only interested in applications to
cohomology of Shimura varieties, the statements of Theorem 2.15, the two propo-
sitions in Section 3D, and the applications in Section 6 are all they need.

3. Constructions of compactifications and morphisms

3A. Kuga families as toroidal boundary strata. The goal of this subsection
is to carry out steps (1) and (2) of Section 2C.

Let Q be an O-lattice as in Theorem 2.15. Identify Q∨ with HomO(Q,Diff−1)
and give it an O-lattice structure as in Section 2A. The (surjective) trace map
TrO/Z : Diff−1 → Z induces a perfect pairing

〈 · , · 〉Q : Q∨×Q→ Z : (f, x) 7→ TrO/Z(f(x)).

By extension of scalars, the pairing 〈 · , · 〉Q induces a perfect pairing between
Q∨⊗

Z
Q and Q⊗

Z
Q. By Condition 1.9, the action of O on L extends to an action of

some maximal order O′ in B containing O. Let us fix the choice of such a maximal
order O′. By [38, Prop. 1.1.1.17], O⊗

Z
Z(p) 6= O′⊗

Z
Z(p) for a prime number p > 0

only when p|Disc. Let Q0 := O′ ·Q ⊂ Q⊗
Z
Q and Q−2 := HomO(Q,Diff−1

O′/Z)(1) ⊂
Q∨⊗

Z
Q(1). Then the induced pairing

〈 · , · 〉Q : Q−2×Q0 → Q(1)

has values in Z(1). The localizations of this pairing at primes of Z are perfect
except at those dividing Disc.

Let (L̃, 〈 · , · 〉̃ , h̃) be the symplectic O-lattice given by the following data:

(1) An O-lattice L̃ := Q−2⊕L⊕Q0, where Q−2 and Q0 are defined as above.

(Note that L̃ satisfies Condition 1.9 by construction.)

(2) A symplectic O-pairing 〈 · , · 〉̃ : L̃× L̃ → Z(1) defined (symbolically) by
the matrix

〈x, y〉̃ := t

x−2

x−1

x0

 〈 · , · 〉Q
〈 · , · 〉

− t〈 · , · 〉Q

y−2

y−1

y0

 ,

namely by

〈x, y〉̃ := 〈x−2, y0〉Q + 〈x−1, y−1〉 − 〈y−2, x0〉Q,

where x =

x−2

x−1

x0

 and y =

y−2

y−1

y0

 are elements of L̃ = Q−2⊕L⊕Q0

expressed (vertically) in terms of components in the direct summands.

Let jQ : Q∨ ↪→ Q be an embedding of O-lattices given by Lemma 2.5, so that

the pairing 〈j−1
Q ( · ), · 〉Q : (Q⊗

Z
R)×(Q⊗

Z
R)→ R is positive definite. Consider the
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R-algebra homomorphism h̃ : C→ EndO⊗
Z
R(L̃⊗

Z
R) defined by

z = z1 +
√
−1 z2

7→ h̃(z) :=

 z1 IdQ−2⊗
Z
R −z2((2π

√
−1) ◦ j−1

Q )

h(z)
z2(jQ ◦ (2π

√
−1)−1) z1 IdQ0⊗

Z
R

 ,

where 2π
√
−1 : Z ∼→ Z(1) and (2π

√
−1)−1 : Z(1)

∼→ Z stand for the isomorphisms
defined by the choice of

√
−1 in C, and where the matrix acts (symbolically) on

elements x =

x−2

x−1

x0

 of L̃⊗
Z
R by left multiplication. In other words,

h̃(z)

x−2

x−1

x0

 =

 z1x−2 − z2((2π
√
−1) ◦ j−1

Q )(x0)

h(z)x−1

z2(jQ ◦ (2π
√
−1)−1)(x−2) + z1x0

 .

Then h̃ is a polarization of (L̃, 〈 · , · 〉̃ ) making (L̃, 〈 · , · 〉̃ , h̃) a PEL-type O-lattice.

Note that the reflex field of (L̃⊗
Z
R, 〈 · , · 〉̃ , h̃) is also F0.

By construction of (L̃, 〈 · , · 〉̃ ), there is a fully symplectic admissible filtration

on L̃⊗
Z
Ẑ2 induced by

0 ⊂ Q−2 ⊂ Q−2⊕L ⊂ Q−2⊕L⊕Q0 = L̃.

More precisely, we have

Z̃−3 := 0,

Z̃−2 := Q−2⊗
Z
Ẑ2,

Z̃−1 := (Q−2⊗
Z
Ẑ2)⊕(L⊗

Z
Ẑ2),

Z̃0 := (Q−2⊗
Z
Ẑ2)⊕(L⊗

Z
Ẑ2)⊕(Q0⊗

Z
Ẑ2) = L̃⊗

Z
Ẑ2,

so that there are canonical isomorphisms

GrZ̃−2
∼= Q−2⊗

Z
Ẑ2, GrZ̃−1

∼= L⊗
Z
Ẑ2, GrZ̃0

∼= Q0⊗
Z
Ẑ2

matching the pairings GrZ̃−2×GrZ̃0 → Ẑ2(1) and GrZ̃−1×GrZ̃−1 → Ẑ2(1) induced by
〈 · , · 〉̃ with 〈 · , · 〉Q and 〈 · , · 〉, respectively.

Let X̃ := HomO(Q−2,Diff−1(1)) and Ỹ := Q0. The pairing

〈 · , · 〉Q : Q−2×Q0 → Z(1) induces a canonical embedding φ̃ : Ỹ ↪→ X̃

and there are canonical isomorphisms ϕ̃−2 : GrZ̃−2
∼→ HomẐ2(X̃ ⊗

Z
Ẑ2, Ẑ2(1))

and ϕ̃0 : GrZ̃0
∼→ Ỹ ⊗

Z
Ẑ2 (of Ẑ2-modules). These data define a torus argument

Φ̃ := (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0) for Z̃ as in Definition 1.13.

Let δ̃ be the obvious splitting of Z̃ induced by the equality Q−2⊕L⊕Q0 = L̃.

Let G̃ be the group functor defined by (L̃, 〈 · , · 〉̃ ) as in Definition 1.1. For any

Ẑ2-algebra R, let P̃Z̃(R) denote the subgroup of G̃(R) consisting of elements g such
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that g(Z̃−2 ⊗
Ẑ2

R) = Z̃−2 ⊗
Ẑ2

R and g(Z̃−1 ⊗
Ẑ2

R) = Z̃−1 ⊗
Ẑ2

R. Any element g in P̃Z̃(R)

defines an isomorphism

GrZ̃−1(g) : GrZ̃−1 ⊗
Ẑ2

R
∼→ GrZ̃−1 ⊗

Ẑ2

R,

which corresponds under the canonical isomorphism GrZ̃−1 ⊗
Ẑ2

R ∼= L⊗
Z
R above to

an element of G(R). This defines in particular a homomorphism

GrZ̃−1 : P̃Z̃(Ẑ
2)→ G(Ẑ2).

Let us also define P̃′
Z̃
(Ẑ2) to be the kernel of GrZ̃−2×GrZ̃0, where GrZ̃−2 and GrZ̃0 are

defined analogously.

Let H̃ be any neat open compact subgroup of G̃(Ẑ2) satisfying the following
conditions:

(1) GrZ̃−1(H̃ ∩ P̃′
Z̃
(Ẑ2)) = GrZ̃−1(H̃ ∩ P̃Z̃(Ẑ2)) = H. (Both equalities are condi-

tions. Then H is a direct factor of GrZ̃(H̃ ∩ P̃Z̃(Ẑ2)).)

(2) The splitting δ̃ defines a (group-theoretic) splitting of the surjection

H̃ ∩ P̃′
Z̃
(Ẑ2) � H induced by GrZ̃−1.

(Such an H̃ exists because the pairing 〈 · , · 〉̃ is the direct sum of the pairings on

Q−2⊕Q0 and on L.) The data of O, (L̃, 〈 · , · 〉̃ , h̃), 2, and H̃ ⊂ G̃(Ẑ2) define a

moduli problem M̃H̃ as in Definition 1.6.

Take any compatible choice Σ̃ of admissible smooth rational polyhedral cone

decomposition data for M̃H̃ that is projective (see Definitions 1.33 and 1.34). Since

H̃ is neat, any such Σ̃ defines a toroidal compactification M̃tor
H̃

= M̃tor
H̃,Σ̃

which is

projective and smooth over S0 by (7) of Theorem 1.41.

Let (Z̃, Φ̃, δ̃) be as above, and let (Z̃H̃, Φ̃H̃ = (X̃, Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃) be the

induced triple at level H̃, inducing a cusp label [(Z̃H̃, Φ̃H̃, δ̃H̃)] at level H̃.

Let σ̃ ⊂ P+

Φ̃H̃
be any top-dimensional nondegenerate rational polyhedral cone

in the cone decomposition Σ̃Φ̃H̃
in Σ̃. Then, by (2) of Theorem 1.41, we have a

stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)] of M̃tor
H̃

.

Since σ̃ is a top-dimensional cone in Σ̃Φ̃H̃
, the locally closed stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)]

(not its closure) is a zero-dimensional torus bundle over the abelian scheme C̃Φ̃H̃,δ̃H̃

over MH. (We have canonical isomorphisms M̃
Φ̃H̃
H̃
∼= M̃

Z̃H̃
H̃
∼= MH because of the first

condition above on the choice of H̃. The abelian scheme torsor C̃Φ̃H̃,δ̃H̃
→ M̃

Φ̃H̃
H̃

is

an abelian scheme because of the second condition above on the choice of H̃.) In

other words, Z̃[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to C̃Φ̃H̃,δ̃H̃
. By the construction

of C̃Φ̃H̃,δ̃H̃
in [38, §§6.2.3–6.2.4], it is canonically Z×(2)-isogenous to the abelian

scheme HomO(Q,GMH)◦. Let us define Nκ to be this stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)], and

denote the canonical morphism Nκ → MH by fκ. This gives the Z×(2)-isogeny κisog :
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HomO(Q,GMH)◦ → Nκ. Note that Nκ = Z̃[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to

C̃Φ̃H̃,δ̃H̃
for every Σ̃ and every top-dimensional cone σ̃ in Σ̃Φ̃H̃

.

As planned in step (1) of Section 2C, let us take Kpre
Q,H,Σ to be the set of all

possible such triples κ = (H̃, Σ̃, σ̃), with the binary relation κ′ = (H̃′, Σ̃′, σ̃′) �
κ = (H̃, Σ̃, σ̃) defined when H̃′ ⊂ H̃, when Σ̃′ refines Σ̃ as in [38, Def. 6.4.2.8],

and when (Φ̃H̃′ , δ̃H̃′ , σ̃
′) refines (Φ̃H̃, δ̃H̃, σ̃) as in [38, Def. 6.4.2.6]. In this case, the

[(Φ̃H̃′ , δ̃H̃′ , σ̃
′)]-stratum of M̃tor

H̃′,Σ̃′
is mapped to the [(Φ̃H̃, δ̃H̃, σ̃)]-stratum of M̃tor

H̃,Σ̃

by the canonical morphism M̃tor
H̃′,Σ̃′

→ M̃tor
H̃,Σ̃

given by [38, Prop. 6.4.2.9]. Note that

the induced morphism fκ′,κ : Nκ′ → Nκ, which is κisog ◦ ((κ′)isog)−1 by definition,

can be identified with the canonical Z×(2)-isogeny C̃Φ̃H̃′ ,δ̃H̃′
→ C̃Φ̃H̃,δ̃H̃

. In particular,

it is surjective and is an isogeny of degree prime to 2.

For κ = (H̃, Σ̃, σ̃), take Ntor
κ to be the closure of Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor

H̃,Σ̃
. Then we

obtain the canonical immersion κtor : Nκ ↪→ Ntor
κ .

When κ′ = (H̃′, Σ̃′, σ̃′) � κ = (H̃, Σ̃, σ̃), the morphism f tor
κ′,κ : Ntor

κ′ → Ntor
κ is

simply the morphism induced by the canonical proper morphisms M̃tor
H̃′,Σ̃′

→ M̃tor
H̃,Σ̃

given by [38, Prop. 6.4.2.9]. Note that the latter morphism is étale locally given by
equivariant morphisms between toric schemes, and the same is true for the induced

morphism f tor
κ′,κ : Ntor

κ′ → Ntor
κ . Therefore, both the morphism M̃tor

H̃′,Σ̃′
→ M̃tor

H̃,Σ̃
and

the induced morphism f tor
κ′,κ : Ntor

κ′ → Ntor
κ are log étale essentially by definition (see

[33, Thm. 3.5]). Moreover, as in [16, Ch. V, Rem. 1.2(b)] and in the proof of [38,
Lem. 7.1.1.3], we have Ri(f tor

κ′,κ)∗ONtor
κ′

= 0 for i > 0 by [36, Ch. I, §3].

Lemma 3.1. Under the assumption that H̃ is neat, the closure of every stratum

in M̃tor
H̃,Σ̃

has no self-intersection.

Proof. According to Definitions 1.33 and 1.34, the collection Σ̃ of cone decompo-

sitions for M̃H̃ satisfies Condition 1.29. Hence [38, Lem. 6.2.5.27 in the revision]
implies that the closure of any stratum does not intersect itself. (See also [16, Ch.
IV, Rem. 5.8(a)].) �

Corollary 3.2. For any κ = (H̃, Σ̃, σ̃) ∈ Kpre
Q,H,Σ, the closure Ntor

κ of Nκ =

Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor
H̃,Σ̃

is projective and smooth over S0, and the complement of Nκ

in Ntor
κ (with its reduced structure) is a relative Cartier divisor with simple nor-

mal crossings. Thus the collection of open embeddings κtor : Nκ ↪→ Ntor
κ , with

κ ∈ Kpre
Q,H,Σ, satisfies (1) of Theorem 2.15.

Proof. Combine Lemma 3.1 with (3) and (7) of Theorem 1.41. �

From now on, let us fix a choice of κ = (H̃, Σ̃, σ̃) ∈ Kpre
Q,H,Σ, and suppress κ and

Σ̃ from the notation. The compatibility of various objects under compositions with
or pullbacks by f tor

κ′,κ : Ntor
κ′ → Ntor

κ (for κ′ � κ in Kpre
Q,H,Σ) will be obvious from the

constructions.

3B. Extendability of structural morphisms. The goal of this subsection is to
carry out steps (3) and (4) of Section 2C.
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Let (G̃, λ̃, ĩ, α̃H̃) be the degenerating family of type M̃H̃ over M̃tor
H̃

. By construc-

tion of N as a boundary stratum of M̃tor
H̃

, the restriction G̃N of G̃ to N is an extension

of the pullback of the abelian scheme GMH over MH to N by f : N → MH, by the

split torus T̃N over N with character group X̃. The data of λ̃, ĩ, and α̃H̃ induce
respectively a polarization, an O-endomorphism structure, and a level H-structure

on the abelian part of G̃N, which agree with the pullbacks of the data λ, i, and αH
over MH to N by f : N→ MH. By normality of (the closure) Ntor (of N in M̃tor

H̃
), and

by a result of Raynaud (see [49, IX, 2.4] or [16, Ch. I, Prop. 2.9]), the embedding

T̃N ↪→ G̃N of group schemes extends (uniquely) to an embedding T̃Ntor ↪→ G̃Ntor of
group schemes, and the quotient

G := G̃Ntor/T̃Ntor

is a semiabelian scheme whose restriction to N can be identified with the pullback

of G from MH to N. Similarly, we obtain G
∨

:= G̃∨Ntor/T̃∨Ntor . By another result

of Raynaud (see [49, IX, 1.4] or [16, Ch. I, Prop. 2.7]), the semiabelian G carries

(unique) additional structures λ : G → G
∨

, i, and αH such that the restriction of
(G,λ, i, αH) to N is the pullback of the tautological tuple over MH by f : N→ MH,
and so that (G,λ, i, αH) defines a degenerating family of type MH over Ntor.

Now the question is whether the structural morphism f : N → MH extends
(necessarily uniquely) to a (proper) morphism f tor : Ntor → Mtor

H between the
compactifications. By (6) of Theorem 1.41, this extendability can be verified af-
ter pullback to complete discrete valuation rings (with algebraically closed residue
fields).

The stratification of M̃tor
H̃

induces a stratification of Ntor. By (2) of Theorem

1.41, the strata of Ntor are parameterized by equivalence classes [(Φ̆H̃, δ̆H̃, τ̆)] having

[(Φ̃H̃, δ̃H̃, σ̃)] as a face (as in Definition 1.38). Concretely, they are H̃-orbits of data
of the following form:

(1) A fully symplectic admissible filtration Z̆ = {Z̆−i} on L̃⊗
Z
Ẑ2 satisfying

(3.3) Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1.

Any such filtration Z̆ induces a fully symplectic admissible filtration Z =
{Z−i} on L⊗

Z
Ẑ2 by Z−2 := Z̆−2/Z̃−2 and Z−1 := Z̆−1/Z̃−2, so that there is

a canonical isomorphism

(3.4) Z0/Z−1
∼= Z̃−1/Z̆−1.

Conversely, any fully symplectic admissible filtration Z on L⊗
Z
Ẑ2 induces a

fully symplectic admissible filtration Z̆ on L̃⊗
Z
Ẑ2 satisfying (3.3) and (3.4).

(2) A torus argument Φ̆ = (X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0) for Z̆ (as in Definition 1.13), to-

gether with admissible surjections sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ satisfying

sX̆ φ̆ = φ̃sY̆ and other natural compatibilities with ϕ̆−2, ϕ̆0, ϕ̃−2, and ϕ̃0.
(See Definitions 1.18, 1.19, and 1.20.)

Any Φ̆, sX̆ , and sY̆ determine a torus argument Φ = (X,Y, φ, ϕ−2, ϕ0)

for Z by X := ker(sX̆), Y := ker(sY̆ ), and φ := φ̆|Y , so that there is a
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commutative diagram

(3.5) 0 // Y //

φ

��

Y̆
sY̆ //

φ̆
��

Ỹ //

φ̃
��

0

0 // X // X̆
sX̆
// X̃ // 0

whose horizontal rows are exact sequences.

(3) The existence of some splitting of Z̆, inducing some liftable splitting δ̆H̃
defining the cusp label (Z̆H̃, Φ̆H̃, δ̆H̃) at level H̃.

Given the liftable splitting δ̃H̃, the existence of the liftable splitting δ̆H̃
is equivalent to the existence of some liftable splitting δH of ZH. Then we
see that there is a canonical bijection between cusp labels [(ZH,ΦH, δH)] at

level H and cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] at level H̃ admitting a surjection to

[(Z̃H̃, Φ̃H̃, δ̃H̃)].

(4) Let ΦH (resp. Φ̆H̃) be the torus argument for ZH (resp. Z̃H̃) at level H
(resp. H̃) induced by Φ (resp. Φ̆). Then (3.5) induces morphisms

(3.6) SΦH ↪→ SΦ̆H̃
� SΦ̃H̃

,

where the first morphism is canonical, and where the second morphism is
defined by sX̆ and sY̆ , whose composition is zero. (In general, the mor-
phisms in (3.6) do not form an exact sequence.)

The dual of (3.6) defines morphisms

(3.7) P+

Φ̃H̃
↪→ PΦ̆H̃

� PΦH ,

where the first morphism is defined by sX̆ and sY̆ , and where the second
morphism is canonical, whose composition is zero.

Then τ̆ ⊂ P+

Φ̆H̃
is a cone in the cone decomposition Σ̃Φ̆H̃

having a face

σ̆ that is a ΓΦ̆H̃
-translation (see Definition 1.23) of the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (3.7).

By (5) of Theorem 1.41, the formal completion

(M̃tor
H̃ )∧

Z̃[(Φ̆H̃,δ̆H̃,τ̆)]

is isomorphic to the formal scheme X̃Φ̆H̃,δ̆H̃,τ̆
= X̃Φ̆H̃,δ̆H̃,τ̆

/ΓΦ̆H̃,τ̆
for any representa-

tive (Φ̆H̃, δ̆H̃, τ̆) of [(Φ̆H̃, δ̆H̃, τ̆)]. Here ΓΦ̆H̃,τ̆
is trivial by [38, Lem. 6.2.5.27 in the

revision], and X̃Φ̆H̃,δ̆H̃,τ̆
is the formal completion of Ξ̃Φ̆H̃,δ̆H̃

(τ̆) along its τ̆ -stratum

(Ξ̃Φ̆H̃,δ̆H̃
)τ̆ .

Let us describe the structure of the scheme Ξ̃Φ̆H̃,δ̆H̃
(τ̆) in more detail:

(1) By construction, Ξ̃Φ̆H̃,δ̆H̃
(τ̆) is a scheme over M̃

Z̆H̃
H̃

, the latter of which is

isomorphic to MZH
H because of (3.3) and (3.4). By the two conditions satis-

fied by H̃ above, we have M̃
Φ̆H̃
H̃
∼= MΦH

H as finite étale covers of M̃
Z̆H̃
H̃
∼= MZH

H .

(Note that M̃
Z̆H̃
H̃
∼= MZH

H is a scheme by [38, Cor. 7.2.3.10].)
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By abuse of notation, we shall simply denote the push-forward

(Ξ̃Φ̆H̃,δ̆H̃
(τ̆) � C̃Φ̆H̃,δ̆H̃

)∗OΞ̃Φ̆H̃,δ̆H̃
(τ̆)

by OΞ̃Φ̆H̃,δ̆H̃
(τ̆), and view OΞ̃Φ̆H̃,δ̆H̃

(τ̆) as an OC̃Φ̆H̃,δ̆H̃

-algebra when there is no

confusion. We shall adopt a similar convention for other affine morphisms.

(2) Let (A, λA, iA, ϕ−1,H) be the tautological object over MZH
H . Then C̃Φ̆H̃,δ̆H̃

is the abelian scheme torsor over the finite étale cover M̃
Φ̆H̃
H̃
∼= MΦH

H of

M̃
Z̆H̃
H̃
∼= MZH

H parameterizing liftings (to level H̃) of data of the form (c̆ :

X̆ → A∨, c̆∨ : Y̆ → A), compatible with φ̆ : Y̆ ↪→ X̆ and satisfying certain
liftability and pairing conditions (coming from the so-called symplectic-

liftability on the level structures). By construction, C̃Φ̆H̃,δ̆H̃
→ MΦH

H is a

torsor under an abelian scheme Z×(2)-isogenous to HomO(Y̆ , A)◦.

(3) The scheme Ξ̃Φ̆H̃,δ̆H̃
is a torsor over C̃Φ̆H̃,δ̆H̃

under (the pullback of) the

split torus EΦ̆H̃
= Hom(SΦ̆H̃

,Gm), which can be identified with the relative

spectrum

Spec
OC̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈SΦ̆H̃

Ψ̃Φ̆H̃,δ̆H̃
(˘̀)
)
,

where Ψ̃Φ̆H̃,δ̆H̃
(˘̀) is the subsheaf of OΞ̃Φ̆H̃,δ̆H̃

(considered as an

OC̃Φ̆H̃,δ̆H̃

-algebra by our convention) on which EΦ̆H̃
acts by the character ˘̀.

In the case when ˘̀= [y̆⊗ χ̆], where y̆ ∈ Y̆ and χ̆ ∈ X̆, there is a canonical

identification between Ψ̃Φ̆H̃,δ̆H̃
(˘̀) and the pullback of (c̆∨(y̆), c̆(χ̆))∗PA

over C̃Φ̆H̃,δ̆H̃
. (See [38, Conv. 6.2.3.26 and end of §6.2.4].)

(4) Consider the subsemigroups of SΦ̆H̃
(see [38, Def. 6.1.1.9 and 6.1.2.5]):

τ̆∨ = {˘̀∈ SΦ̆H̃
: 〈˘̀, y〉 ≥ 0,∀y ∈ τ̆},

τ̆∨0 = {˘̀∈ SΦ̆H̃
: 〈˘̀, y〉 > 0,∀y ∈ τ̆},

τ̆⊥ = {˘̀∈ SΦ̆H̃
: 〈˘̀, y〉 = 0,∀y ∈ τ̆} ∼= τ̆∨/τ̆∨0 .

The scheme Ξ̃Φ̆H̃,δ̆H̃
(τ̆) is constructed as an affine toroidal embedding

Ξ̃Φ̆H̃,δ̆H̃
↪→ Ξ̃Φ̆H̃,δ̆H̃

(τ̆)

along τ̆ over the abelian scheme C̃Φ̆H̃,δ̆H̃
, which can be identified with the

relative spectrum

Spec
OC̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)
.

(5) Finally, the sheaf of ideals

Ĩτ̆ = ⊕
˘̀∈τ̆∨0

Ψ̃Φ̆H̃,δ̆H̃
(˘̀)
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(see [38, Lem. 6.1.2.6]) defines the τ̆ -stratum (Ξ̃Φ̆H̃,δ̆H̃
)τ̆ , which can be iden-

tified with the relative spectrum

Spec
OC̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆⊥
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)
.

Here Ĩτ̆ is an OΞ̃Φ̆H̃,δ̆H̃
(τ̆)-ideal represented as an OC̃Φ̆H̃,δ̆H̃

-submodule of

OΞ̃Φ̆H̃,δ̆H̃
(τ̆) (the latter being viewed as an OC̃Φ̆H̃,δ̆H̃

-algebra by our conven-

tion).

Suppose σ̆ is the face of τ̆ that is a ΓΦ̆H̃
-translation of the image of σ̃ ⊂ P+

Φ̃H̃

under the first morphism in (3.7). Similar to the definition of τ̆∨, τ̆∨0 , and τ̆⊥ above,
consider the following subsemigroups of SΦ̆H̃

:

σ̆∨ = {˘̀∈ SΦ̆H̃
: 〈˘̀, y〉 ≥ 0,∀y ∈ σ̆},

σ̆∨0 = {˘̀∈ SΦ̆H̃
: 〈˘̀, y〉 > 0,∀y ∈ σ̆},

σ̆⊥ = {˘̀∈ SΦ̆H̃
: 〈˘̀, y〉 = 0,∀y ∈ σ̆} ∼= σ̆∨/σ̆∨0 .

Note that τ̆∨ ⊂ σ̆∨ and τ̆⊥ ⊂ σ̆⊥, but τ̆∨0 6⊂ σ̆∨0 in general. The closure (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆)

of the σ̆-stratum on Ξ̃Φ̆H̃,δ̆H̃
(τ̆) ∼= Spec

OC̃
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)

is defined by the

sheaf of ideals ⊕
˘̀∈σ̆∨0 ∩ τ̆∨

Ψ̃Φ̆H̃,δ̆H̃
(˘̀). Then we have a canonical isomorphism

(Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆) ∼= Spec

OC̃
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ τ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)
,

with the τ̆ -stratum

(Ξ̃Φ̆H̃,δ̆H̃
)τ̆ ∼= Spec

OC̃
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆⊥
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)

(as a closed subscheme of (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆)) defined by the sheaf of ideals

Ĩσ̆,τ̆ := ⊕
˘̀∈σ̆⊥ ∩ τ̆∨0

Ψ̃Φ̆H̃,δ̆H̃
(˘̀).

Let X̃Φ̆H̃,δ̆H̃,σ̆,τ̆
denote the formal completion of (Ξ̃Φ̆H̃,δ̆H̃

)σ̆(τ̆) along (Ξ̃Φ̆H̃,δ̆H̃
)τ̆ ,

which can be canonically identified as a closed formal subscheme of X̃Φ̆H̃,δ̆H̃,τ̆
, induc-

ing the closures of the [(Φ̃H̃, δ̃H̃, σ̃)]-strata on any good formal (Φ̆H̃, δ̆H̃, τ̆)-model.
(See [38, Def. 6.3.1.11] for the definition of good formal models, and see [38, Def.
6.3.2.16 in the revision] for the labeling of the strata by equivalence classes of triples

of the form [(Φ̃H̃, δ̃H̃, σ̃)].) By (5) of Theorem 1.41, the strata-preserving canonical

isomorphism (M̃tor
H̃,Σ̃

)∧
Z̃[(Φ̆H̃,δ̆H̃,τ̆)]

∼= X̃Φ̆H̃,δ̆H̃,τ̆
then induces a canonical isomorphism

(Ntor)∧
Z̃[(Φ̆H̃,δ̆H̃,τ̆)]

∼= X̃Φ̆H̃,δ̆H̃,σ̆,τ̆
.

(Alternatively, one may refer directly to the gluing construction of M̃tor
H̃

in [38,

§6.3.3], based on the crucial [38, Prop. 6.3.2.13].)
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By the theory of two-step constructions (see [16, Ch. III, Thm. 10.2] and [38,
§4.5.6 in the revision]), the degeneration data of the pullback of (G,λ, i, αH) to

affine open formal subschemes of X̃Φ̆H̃,δ̆H̃,σ̆,τ̆
can be obtained from the degeneration

data of pullback of (G̃, λ̃, ĩ, α̃H̃) to affine open formal subschemes of X̃Φ̆H̃,δ̆H̃,τ̆
by

restricting objects defined on X̆ and Y̆ to the subgroups X and Y . Therefore, in
order to verify (6) of Theorem 1.41, it suffices to verify the following:

Condition 3.8 (cf. [16, Ch. VI, Def. 1.3]). For each (Φ̆H̃, δ̆H̃, τ̆) as above, the
image of τ̆ in PΦH under the (canonical) second morphism in (3.7) is contained in
some cone τ ⊂ P+

ΦH
in the cone decomposition ΣΦH .

If Condition 3.8 is satisfied (for κ = (H̃, Σ̃, σ̃)), then the structural morphism
f : N → MH extends to a (unique) morphism f tor : Ntor → Mtor

H , which is étale
locally given by morphisms between toric schemes equivariant under (surjective)
morphisms between tori. By construction, we have a commutative diagram

(3.9) Ntor

ftor

��

X̃Φ̆H̃,δ̆H̃,σ̆,τ̆
oo

��

// C̃Φ̆H̃,δ̆H̃

��

Mtor
H XΦH,δH,τ
oo // CΦH,δH

of canonical morphisms whenever the image of τ̆ under the (canonical) second
morphism in (3.7) is contained in τ .

Remark 3.10. Condition 3.8 is analogous to the condition in [48, 6.25(b)], used in
for example [26, Lem. 1.6.5] and related works based on [4]. Unfortunately, we must
point out that, apart from some pleasant (and often suggestive) analogies, there is
no logical implication between the analytic theory in [4] and [48], and the algebraic
theory in [16] and [38]. (One cannot even use G(Q) in the algebraic theory.) The
applicability of Condition 3.8 in our work cannot be proved using [48, 6.25(b)].

As planned in step (4) of Section 2C, let us take KQ,H,Σ to be the subset of
Kpre
Q,H,Σ consisting of elements κ satisfying Condition 3.8. Since Condition 3.8 can

be achieved by replacing any given Σ̃ with a refinement, we see that KQ,H,Σ is
nonempty and has an induced binary relation which we still denote by �.

From now on, assume that our fixed choice κ = (H̃, Σ̃, σ̃) lies in KQ,H,Σ.

3C. Logarithmic smoothness of f tor. The aim of this subsection is to carry out
step (5) of Section 2C.

We need to show that the morphism f tor is log smooth (as in [33, 3.3] and
[32, 1.6]) if we equip Ntor and Mtor

H with the canonical fine log structures given
respectively by the relative Cartier divisors with simple normal crossings given by
the complements Ntor−N and Mtor

H −MH with their reduced structures. According
to [33, 3.12], we have the following:

Lemma 3.11. To show that the morphism f tor is log smooth, it suffices to show
that the first morphism in the canonical exact sequence

(3.12) (f tor)∗(Ω1
Mtor
H /S0

[d log∞])→ Ω1
Ntor/S0

[d log∞]→ Ω
1

Ntor/Mtor
H
→ 0

is injective, and that Ω
1

Ntor/Mtor
H

is locally free of finite rank.
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By (4) of Theorem 1.41, the extended Kodaira–Spencer morphism [38, Def.
4.6.3.32] for G→ Mtor

H induces an isomorphism

KSG/Mtor
H /S0

: KSG/Mtor
H

∼→ Ω1
Mtor
H /S0

[d log∞]

over Mtor
H , while the extended Kodaira–Spencer morphism for G̃ → M̃tor

H̃
induces

an isomorphism

KSG̃/M̃tor

H̃
/S0

: KSG̃/M̃tor

H̃

∼→ Ω1
M̃tor

H̃
/S0

[d log∞]

over M̃tor
H̃

. Over Ntor, we have canonical extensions 0 → T̃Ntor → G̃Ntor → G → 0

and 0→ T̃∨Ntor → G̃∨Ntor → G
∨ → 0 of group schemes, inducing exact sequences

0→ Lie∨
G/Ntor → Lie∨

G̃Ntor/Ntor → Lie∨
T̃Ntor/Ntor → 0

and

0→ Lie∨
G
∨
/Ntor → Lie∨

G̃∨
Ntor/N

tor → Lie∨
T̃∨
Ntor/N

tor → 0.

Therefore, there is a canonical surjection

(3.13) KSG̃Ntor/Ntor � KST̃Ntor/Ntor ,

where KST̃Ntor/Ntor is the pullback of the sheaf

KST̃S0
/S0

:= (Lie∨
T̃S0

/S0
⊗

OS0

Lie∨
T̃∨S0

/S0
)/

(
λ∗
T̃S0

(y)⊗ z − λ∗
T̃S0

(z)⊗ y
(b?x)⊗ y − x⊗(by)

)
x∈Lie∨

T̃S0
/S0

y,z∈Lie∨
T̃∨
S0
/S0

b∈O

defined (as for degenerating families in Definition 1.40) by the split tori T̃ and T̃∨

over S0 with respective character groups X̃ and Ỹ . The kernel

K := ker(KSG̃Ntor/Ntor � KST̃Ntor/Ntor)

contains KSG/Ntor as a natural subsheaf, and the quotient of K by KSG/Ntor is

isomorphic to

(Lie∨
G/Ntor ⊗

ONtor

Lie∨
T̃∨
Ntor/N

tor)/ ((b?x)⊗ y − x⊗(by)) x∈Lie∨
G/Ntor

y∈Lie∨
T̃∨
Ntor/N

tor

b∈O
∼= HomO⊗

Z
ONtor

(LieT̃∨
Ntor/N

tor ,Lie∨
G/Ntor)

∼= HomO⊗
Z

ONtor
(HomZ(Ỹ ,ONtor),Lie∨

G/Ntor)

∼= HomO(Ỹ ∨,Lie∨
G/Ntor)

∼= HomO(Q∨,Lie∨
G/Ntor)

Since the pullback of (G,λ, i, αH) under Ntor → Mtor
H is isomorphic to (G,λ, i, αH),

we have canonical isomorphisms

(f tor)∗KSG/Mtor
H
∼= KSG/Ntor

and

(f tor)∗(HomO(Q∨,Lie∨G/Mtor
H

)) ∼= HomO(Q∨,Lie∨
G/Ntor).
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Since the étale local structure of M̃tor
H̃

along the [(Φ̆H̃, δ̆H̃, τ̆)]-stratum is the same

as Ξ̃Φ̆H̃,δ̆H̃
(τ̆), the calculation in the proof of [38, Prop. 6.2.5.14] shows that

the isomorphism KSG̃/M̃tor

H̃
/S0

induces by restriction (to the closure Ntor of the

[(Φ̃H̃, δ̃H̃, σ̃)]-stratum) an isomorphism

(3.14) K
∼→ Ω1

Ntor/S0
[d log∞]

making the diagram

(f tor)∗KSG/Mtor
H

oKSG/Mtor
H /S0

��

� � // K

o (3.14)

��

(f tor)∗(Ω1
Mtor
H /S0

[d log∞]) // Ω1
Ntor/S0

[d log∞]

commutative. In particular, the bottom arrow (which is the first morphism in
(3.12)) is injective, and the isomorphism (3.14) induces a canonical isomorphism

(3.15) (f tor)∗(HomO(Q∨,Lie∨G/Mtor
H

))
∼→ Ω

1

Ntor/Mtor
H

of coherent sheaves over Ntor. (The restriction of (3.15) to N is compatible with the
composition of isomorphisms (2.17) because of the same calculation in the proof of
[38, Prop. 6.2.5.14].)

Thus the desired isomorphism (2.16) is a consequence of (3.15). Moreover, since
HomO(Q∨,Lie∨G/Mtor

H
) (see Remark 2.14) is locally free of finite rank over Mtor

H , the

isomorphism (3.15) shows that the sheaf Ω
1

Ntor/Mtor
H

is also locally free of finite rank

over Ntor. By Lemma 3.11, this shows that f tor is log smooth, and completes the
proof of (2) and (3a) of Theorem 2.15.

3D. Equidimensionality of f tor. Let us take a closer look at the diagram (3.9).
By construction of f tor, given any stratum Z[(ΦH,δH,τ)] of Mtor

H , the preimage

Z̃[(ΦH,δH,τ)] := (f tor)−1(Z[(ΦH,δH,τ)])

has a stratification formed by Z̃[(Φ̆H̃,δ̆H̃,τ̆)], where τ̆ runs through cones in Σ̃Φ̆H̃
satisfying the following conditions:

(1) τ̆ ⊂ P+

Φ̆H̃
.

(2) τ̆ has a face σ̆ that is a ΓΦ̆H̃
-translation of the image of σ̃ ⊂ P+

Φ̃H̃
under

the first morphism in (3.7).
(3) The image of τ̆ under the (canonical) second morphism in (3.7) is contained

in τ ⊂ P+
ΦH

.

The formal completion (Ntor)∧
Z̃[(ΦH,δH,τ)]

admits a canonical morphism

(Ntor)∧
Z̃[(ΦH,δH,τ)]

→ CΦH,δH ,

whose precomposition with the canonical morphism

(Ntor)∧
Z̃[(Φ̆H̃,δ̆H̃,τ̆)]

→ (Ntor)∧
Z̃[(ΦH,δH,τ)]

,

for any stratum Z̃[(Φ̆H̃,δ̆H̃,τ̆)] of Z̃[(ΦH,δH,τ)], coincides with the composition of canon-

ical morphisms X̃Φ̆H̃,δ̆H̃,σ̆,τ̆
→ C̃Φ̆H̃,δ̆H̃

→ CΦH,δH by its very construction.
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Since f tor is étale locally given by morphisms between toric schemes equivariant
under (surjective) morphisms between tori, to determine if f tor is equidimensional
(cf. [16, Ch. VI, Def. 1.3 and Rem. 1.4]), it suffices to determine if the relative

dimension of each of the induced (smooth) morphism Z̃[(Φ̆H̃,δ̆H̃,τ̆)] → Z[(ΦH,δH,τ)]

between strata is at most dimMH(N), the relative dimension of f : N→ MH.
By abuse of language, we define the R-dimension of a cone to be the R-dimension

of its R-span. Then the codimension of N = Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor
H̃

is dimR(σ̃) =

dimR((SΦ̃H̃
)∨R) because σ̃ is top-dimensional. The codimension of

Z̃[(Φ̆H̃,δ̆H̃,τ̆)]
∼= (Ξ̃Φ̆H̃,δ̆H̃

)τ̆

in M̃tor
H̃

is equal to dimR(τ̆). Therefore, the codimension of Z̃[(Φ̆H̃,δ̆H̃,τ̆)] in Ntor is

equal to dimR(τ̆) − dimR(σ̃) = dimR(τ̆) − dimR((SΦ̃H̃
)∨R). On the other hand, the

codimension of Z[(ΦH,δH,τ)]
∼= (ΞΦH,δH)τ in Mtor

H is dimR(τ). Hence we have

(3.16) dimZ[(ΦH,δH,τ)]
(Z̃[(Φ̆H̃,δ̆H̃,τ̆)])

= dimMH(N)− (dimR(τ̆)− dimR((SΦ̃H̃
)∨R)) + dimR(τ).

Let τ ′ denote the image of τ̆ in (SΦH)∨R . By assumption on τ̆ , we have τ ′ ⊂ τ .
If τ ′ = τ , then

dimR(τ) = dimR(τ ′) ≤ dimR(τ̆)− dimR((SΦ̃H̃
)∨R),

and hence (3.16) implies

dimZ[(ΦH,δH,τ)]
(Z̃[(Φ̆H̃,δ̆H̃,τ̆)]) ≤ dimMH(N).

(If this is true for all Z̃[(Φ̆H̃,δ̆H̃,τ̆)], then f tor is equidimensional.) On the other

hand, suppose τ ′ ( τ . Then there exists a face of τ ′′ of τ ′ such that τ ′′ ⊂ τ
and dimR(τ ′′) < dimR(τ). Note that τ ′′ is the image of at least one face of τ̆
satisfying the three conditions in the first paragraph of this section. By dropping
redundant basis vectors, we may assume moreover that this face τ̆ ′′ of τ̆ satisfies
dimR(τ ′′) = dimR(τ̆ ′′)− dimR((SΦ̃H̃

)∨R). Then we have

dimR(τ) > dimR(τ ′′) = dimR(τ̆ ′′)− dimR((SΦ̃H̃
)∨R),

and hence (3.16) implies

dimZ[(ΦH,δH,τ)]
(Z̃[(Φ̆H̃,δ̆H̃,τ̆

′′)]) > dimMH(N),

which means f tor cannot be equidimensional.
This motivates the following strengthening of Condition 3.8:

Condition 3.17 (cf. [16, Ch. VI, Def. 1.3]). For each (Φ̆H̃, δ̆H̃, τ̆) such that

Z[(Φ̆H̃,δ̆H̃,τ̆)] is (a stratum) in Ntor, the image of τ̆ ⊂ P+
ΦH

under the (canonical)

second morphism in (3.7) is exactly some cone τ ⊂ P+
ΦH

in the cone
decomposition ΣΦH .

Proposition 3.18. The morphism f tor : Ntor → Mtor
H is equidimensional (with

relative dimension equal to the one of f : N → MH), and hence flat, if and only if
Condition 3.17 is satisfied, if and only if f tor is log integral (see [33, Def. 4.3]).
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Proof. The equivalence between Condition 3.17 and equidimensionality has been
explained above. Since both Ntor and Mtor

H are regular (because they are smooth
over S0 = Spec(OF0,(2))), the equidimensionality and flatness of f tor are equivalent
by [21, IV-3, 15.4.2 b)⇔e’)]. By [33, Prop. 4.1(2)], the log integrality of f tor

is equivalent to the flatness of each of the canonical morphisms Z[τ∨] ↪→ Z[τ̆∨]
(defined when Z[(Φ̆H̃,δ̆H̃,τ̆)] is mapped to Z[(ΦH,δH,τ)]), which is equivalent to the

equidimensionality of any such morphism (by the smoothness of Z[τ∨] and Z[τ̆∨]
over Z, and by [21, IV-3, 15.4.2 b)⇔e’)] again), which is equivalent to Condition
3.17 by the same (dimension comparison) argument. �

Proposition 3.19 (cf. [16, Ch. VI, Rem. 1.4]). Condition 3.17 can be achieved by

replacing both the cone decompositions Σ̃ and Σ with some refinements.

Proof. Instead of taking refinements of Σ̃ and Σ separately, we consider the mor-

phism PΦ̆H̃
� PΦH in (3.7) and consider the graph of Σ̃. More precisely, us-

ing the canonical morphisms X ↪→ X̆ and Y ↪→ Y̆ compatible with φ and φ̆,
we obtain canonical morphisms X ′ := X̆ ⊕X → X̆ and Y ′ := Y̆ ⊕Y → Y̆

compatible with φ′ := φ̆⊕φ and φ̆, inducing morphisms SΦ̆H̃
⊕SΦH � SΦ̆H̃

and PΦ̆H̃
↪→ PΦ̆H̃

⊕PΦH . The image of this latter morphism is the graph of

PΦ̆H̃
� PΦH . Let us define

...
S
′

by X ′, Y ′, and φ′ as in (1.21), and let S′ be its

free quotient. Define P′ accordingly as the subset of (S′)∨R consisting of positive
semidefinite pairings with admissible radicals, containing the graph of PΦ̆H̃

� PΦH

canonically as an admissible boundary component (cf. Definition 1.28). The cone

decomposition Σ̃Φ̆H̃
defines a cone decomposition on this graph, which might fail

to be projective or smooth with respect to the structure of the ambient space. But
we can find a projective smooth cone decomposition of P′, admissible with respect
to the actions of all elements in GLO(X ′)×GLO(Y ′) respecting φ′, such that its

restriction to the graph refine the cone decomposition defined by Σ̃Φ̆H̃
. Thus we

obtain a simultaneous smooth projective refinement of Σ̃Φ̆H̃
and ΣΦH , such that

image of cones in Σ̃Φ̆H̃
under PΦ̆H̃

� PΦH are cones in ΣΦH . Since this construc-

tion is compatible with surjections between different choices of Φ̆H̃ and ΦH, we can
conclude by induction on magnitude of cusp labels (ΦH, δH) as in the proofs of [38,
Prop. 6.3.3.3 and 7.3.1.5]. �

Remark 3.20. We will not need Propositions 3.18 and 3.19 in what follows. We
supply them here because knowing flatness or log integrality of f tor is useful in
many applications.

3E. Hecke actions. The aim of this subsection is to explain the proof of state-
ments (4) and (5) of Theorem 2.15, with (4c) and (5c) conditional on (3b) and
(3c) of Theorem 2.15. These statements might seem elaborate, but they are self-
explanatory and based on the following simple idea: Since N and Ntor are con-

structed using the toroidal compactifications of M̃H̃, we can use the Hecke actions

on M̃H̃ and their (compatible) extensions to toroidal compactifications provided by
[38, Prop. 6.4.3.4 in the revision].

Let gh, H′, Σ′, gl, and Q′ be as in (4) and (5) of Theorem 2.15. (For proving (4)
and (5) of Theorem 2.15, we may assume in what follows either gh = 1 or gl = 1,
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although the theory works in a more general context.) Using the splitting δ̃ of Z̃,

we obtain an element g̃ in P̃Z̃(A∞,2) such that GrZ̃−1(g̃) = gh, and such that GrZ̃0(g̃)

is identified with g−1
l under ϕ̃0 : GrZ̃0

∼→ Q0⊗
Z
Ẑ2 ∼= Q⊗

Z
Ẑ2. (See Section 3A.) Let

H̃′ be a (necessarily neat) subgroup of G̃(Ẑ2) such that g̃−1H̃′g̃ ⊂ H̃, and such

that H′ = GrZ̃−1(H̃′ ∩PZ̃(Ẑ2)). By [38, Prop. 6.4.3.4 in the revision], there exist

some choices of Σ̃′ such that the canonical morphism [g̃] : M̃H̃′ → M̃H̃ extends

canonically to [g̃]
tor

: M̃tor
H̃′,Σ̃′

→ M̃tor
H̃,Σ̃

. By replacing Σ̃′ with a refinement such

that it satisfies Condition 3.8 (with Σ′ and) with some choice of σ̃′, and such that

the morphism [g̃]
tor

sends the stratum Z̃[(Φ̆H̃′ ,δ̆H̃′ ,σ̃
′)] to Z̃[(Φ̆H̃,δ̆H̃,σ̃)], we see that the

induced morphism from the closure of Z̃[(Φ̆H̃′ ,δ̆H̃′ ,σ̃
′)] to the closure of Z̃[(Φ̆H̃,δ̆H̃,σ̃)]

gives the existences of the morphisms [gh]κ′,κ, [gh]
tor
κ′,κ, [gl]

∗
κ′,κ, and ([gl]

∗
κ′,κ)

tor
as in

(4a), (4b), (5a), and (5b) of Theorem 2.15, where κ′ = (H̃′, Σ̃′, σ̃′) lies in KQ′,H′,Σ′ ,
except that (2.24) and (2.26) still have to be explained.

As in the case of showing Ri(f tor
κ′,κ)∗ONtor

κ′
= 0 for i > 0 in Section 3A, since the

morphisms [gh]
tor
κ′,κ and ([gl]

∗
κ′,κ)

tor
are étale locally given by equivariant morphisms

between toric schemes, we have (by [36, Ch. I, §3]) Ri([gh]
tor
κ′,κ)∗(O(N′

κ′ )
tor) = 0 and

Ri([gl]
∗
κ′,κ)

tor

∗ (O(N′
κ′ )

tor) = 0 for i > 0, which are (2.24) and (2.26) of Theorem 2.15.

The remaining statements in (4c) and (5c) of Theorem 2.15 now follow if we
assume statements (3b) and (3c) of Theorem 2.15. (See the end of Section 5 below.)

4. Calculation of formal cohomology

Throughout this section, unless otherwise specified, we fix the choice of an
arbitrary (locally closed) stratum Z[(ΦH,δH,τ)] of Mtor

H . The aim of this section
is to calculate the relative cohomology of the pullback of the structural mor-
phism f tor to the formal completion (Mtor

H )∧Z[(ΦH,δH,τ)]
. (See (5) of Theorem 1.41

for a description of this formal completion. See also the first paragraph of Sec-
tion 3D for a description of the formal completion (Ntor)∧

Z̃[(ΦH,δH,τ)]
of Ntor along

Z̃[(ΦH,δH,τ)] = (f tor)−1(Z[(ΦH,δH,τ)]).)

4A. Formal fibers of f tor. Let ΓΦ̆H̃,τ
be the subgroup of elements in ΓΦ̆H̃

sta-

bilizing (both) X and Y and inducing an element in ΓΦH,τ (the subgroup of ΓΦH

formed by elements mapping τ to itself). Since we have tacitly assumed that ΓΦH,τ

is trivial by Conditions 1.29 and [38, Lem. 6.2.5.27 in the revision], ΓΦ̆H̃,τ
is also the

subgroup of elements in ΓΦ̆H̃
fixing (both) X and Y . Let ΓΦ̃H̃,ΦH

be the subgroup

of ΓΦ̆H̃,τ
inducing trivial actions on X̃ and Ỹ under the two surjections

sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ ,

which can be identified as a subgroup of HomO(X̃,X), with index prime to 2,

sending φ̃(Ỹ ) to φ(Y ). (Note that ΓΦ̃H̃,ΦH
depends not just on Φ̃H̃ and ΦH but

also on Φ̆H̃.)
Since ΓΦ̃H̃,ΦH

does not modify sX̆ and sY̆ , it does not modify the first morphism

in (3.7). Therefore, if we denote the image of σ̃ in PΦ̆H̃
by σ̆, then ΓΦ̃H̃,ΦH

maps σ̆



TOROIDAL COMPACTIFICATIONS OF KUGA FAMILIES 41

to itself. On the other hand, by Condition 1.29 (and Lemma 3.1), if a cone τ̆ ⊂ P+

Φ̆H̃
in ΣΦ̆H̃

has a face that is a ΓΦ̆H̃,τ
-translation of σ̆, then it cannot have a different

face that is also a ΓΦ̆H̃,τ
-translation of σ̆. Let us denote by ΣΦ̆H̃,σ̆,τ

the subset of

ΣΦ̆H̃
consisting of cones τ̆ satisfying the following conditions (cf. similar conditions

in the first paragraph of Section 3D):

(1) τ̆ ⊂ P+

Φ̆H̃
.

(2) τ̆ has σ̆ as a face.
(3) The image of τ̆ under the (canonical) second morphism in (3.7) is contained

in τ ⊂ P+
ΦH

.

Then, to obtain a complete list of representatives of the equivalence classes

[(Φ̆H̃, δ̆H̃, τ̆)] parameterizing the strata of Z̃[(ΦH,δH,τ)], it suffices to take
representatives of ΣΦ̆H̃,σ̆,τ

modulo the action of ΓΦ̃H̃,ΦH
. (That is, we do not have

to consider ΓΦ̃H̃,ΦH
-translations of σ̆.)

Let Ξ̃Φ̆H̃,δ̆H̃
(τ) denote the toroidal embedding of Ξ̃Φ̆H̃,δ̆H̃

formed by gluing the

affine toroidal embeddings Ξ̃Φ̆H̃,δ̆H̃
(τ̆) over C̃Φ̆H̃,δ̆H̃

, where τ̆ runs through cones in

ΣΦ̆H̃,σ̆,τ
. To minimize confusion, we shall distinguish Ξ̃Φ̆H̃,δ̆H̃

(τ̆1) and Ξ̃Φ̆H̃,δ̆H̃
(τ̆2)

even when [(Φ̆H̃, δ̆H̃, τ̆1)] = [(Φ̆H̃, δ̆H̃, τ̆2)]. For each τ̆ as above (having σ̆ as a

face), recall that we have denoted the closure of the σ̆-stratum of Ξ̃Φ̆H̃,δ̆H̃
(τ̆) by

(Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆). Let (Ξ̃Φ̆H̃,δ̆H̃

)σ̆(τ) denote the union of all such (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆), let

(Ξ̃Φ̆H̃,δ̆H̃
)τ denote the union of all such (Ξ̃Φ̆H̃,δ̆H̃

)τ̆ , and let X̃Φ̆H̃,δ̆H̃,σ̆,τ
denote the

formal completion of (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ) along (Ξ̃Φ̆H̃,δ̆H̃

)τ .

For each τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, consider the open subscheme Uτ̆ of (Ξ̃Φ̆H̃,δ̆H̃

)τ formed

by the union of all (locally closed) strata of (Ξ̃Φ̆H̃,δ̆H̃
)τ that contains the stratum

(Ξ̃Φ̆H̃,δ̆H̃
)τ̆ in its closure, and consider the open formal subscheme Uτ̆ of X̃Φ̆H̃,δ̆H̃,σ̆,τ

supported on Uτ̆ . The subscheme Uτ̆ of (Ξ̃Φ̆H̃,δ̆H̃
)τ is the closed subscheme of

Ξ̃Φ̆H̃,δ̆H̃
(τ̆) given by the intersection of Ξ̃Φ̆H̃,δ̆H̃

(τ̆) and (Ξ̃Φ̆H̃,δ̆H̃
)τ in Ξ̃Φ̆H̃,δ̆H̃

(τ), and

the formal subscheme Uτ̆ of X̃Φ̆H̃,δ̆H̃,σ̆,τ
is the formal completion of (Ξ̃Φ̆H̃,δ̆H̃

)σ̆(τ̆)

along Uτ̆ . The collection {Uτ̆}τ̆∈ΣΦ̆H̃,σ̆,τ
forms an open covering of (Ξ̃Φ̆H̃,δ̆H̃

)τ . We

can interpret X̃Φ̆H̃,δ̆H̃,σ̆,τ
as constructed by gluing the collection {Uτ̆}τ̆∈ΣΦ̆H̃,σ̆,τ

of

formal schemes along their intersections (of supports).
Explicitly, let us denote by τ̆∨σ̆ the intersection of (τ̆ ′)∨0 for τ̆ ′ running through

faces of τ̆ in ΣΦ̆H̃,σ̆,τ
(including τ̆ itself). Then we have the canonical isomorphism

Uτ̆ ∼= Spec
OC̃

Φ̆H̃,δ̆H̃

((
⊕

˘̀∈τ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)
/
(
⊕

˘̀∈τ̆∨σ̆
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
))

of schemes affine over C̃Φ̆H̃,δ̆H̃
. As OC̃Φ̆H̃,δ̆H̃

-modules, we have a canonical isomor-

phism (
⊕

˘̀∈τ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)
/
(
⊕

˘̀∈τ̆∨σ̆
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
) ∼= ⊕

˘̀∈τ̆∨−τ̆∨σ̆
Ψ̃Φ̆H̃,δ̆H̃

(˘̀).
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If we equip τ̆∨ − τ̆∨σ̆ with the semigroup structure induced by the canonical

bijection (τ̆∨ − τ̆∨σ̆ ) → τ̆∨/τ̆∨σ̆ , then we may interpret ⊕
˘̀∈τ̆∨−τ̆∨σ̆

Ψ̃Φ̆H̃,δ̆H̃
(˘̀) as an

OC̃Φ̆H̃,δ̆H̃

-algebra, with algebra structure given by canonical isomorphisms

Ψ̃Φ̆H̃,δ̆H̃
(˘̀) ⊗

OC̃
Φ̆H̃,δ̆H̃

Ψ̃Φ̆H̃,δ̆H̃
(˘̀′)

∼→ Ψ̃Φ̆H̃,δ̆H̃
(˘̀+ ˘̀′)

(inherited from those of OΞ̃Φ̆H̃,δ̆H̃

∼= ⊕
˘̀∈SΦ̆H̃

Ψ̃Φ̆H̃,δ̆H̃
(˘̀)) if ˘̀+ ˘̀′ ∈ τ̆∨ − τ̆∨σ̆ and by

Ψ̃Φ̆H̃,δ̆H̃
(˘̀) ⊗

OC̃
Φ̆H̃,δ̆H̃

Ψ̃Φ̆H̃,δ̆H̃
(˘̀′)→ 0

otherwise. Then we have a canonical isomorphism

Uτ̆ ∼= Spec
OC̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆∨−τ̆∨σ̆
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)
.

By definition, we have

τ̆∨ − τ̆∨σ̆ =
(

∪
τ̆ ′ face of τ̆
in ΣΦ̆H̃,σ̆,τ

(
(τ̆ ′)⊥ ∩ τ̆∨

))
⊂ σ̆⊥ ∩ τ̆∨.

The formal scheme Uτ̆ , being the formal completion of

(Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆) ∼= Spec

OC̃
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ τ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)
)

along Uτ̆ , can be canonically identified with the relative formal spectrum of

the OC̃Φ̆H̃,δ̆H̃

-algebra ⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

Ψ̃Φ̆H̃,δ̆H̃
(˘̀) over C̃Φ̆H̃,δ̆H̃

, where ⊕̂ denotes the

completion of the sum with respect to the OC̃Φ̆H̃,δ̆H̃

-ideal ⊕
˘̀∈σ̆⊥ ∩ τ̆∨σ̆

Ψ̃Φ̆H̃,δ̆H̃
(˘̀). Note

that all the above canonical isomorphisms correspond to canonical morphisms

of OC̃Φ̆H̃,δ̆H̃

-algebras formed by sums of sheaves of the form Ψ̃Φ̆H̃,δ̆H̃
(˘̀) (with

OC̃Φ̆H̃,δ̆H̃

-algebra structures inherited from that of OΞ̃Φ̆H̃,δ̆H̃

).

The above descriptions imply the following simple but important facts:

Lemma 4.1. Suppose τ̆ and τ̆ ′ are two cones in ΣΦ̆H̃,σ̆,τ
such that τ̆ ′ is a face of

τ̆ . Then:

(1) We have a canonical open immersion Uτ̆ ′ ↪→ Uτ̆ (resp. Uτ̆ ′ ↪→ Uτ̆ ) of formal

subschemes of X̃Φ̆H̃,δ̆H̃,σ̆,τ
.

(2) The canonical restriction morphism from Uτ̆ to Uτ̆ ′ corresponds to the
canonical morphism

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

Ψ̃Φ̆H̃,δ̆H̃
(˘̀)→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)

of OC̃Φ̆H̃,δ̆H̃

-algebras, where the two instances of ⊕̂ denote completions

of the sums with respect to the sheaves of ideals ⊕
˘̀∈σ̆⊥ ∩ τ̆∨σ̆

Ψ̃Φ̆H̃,δ̆H̃
(˘̀) and

⊕
˘̀∈σ̆⊥ ∩(τ̆ ′)∨σ̆

Ψ̃Φ̆H̃,δ̆H̃
(˘̀), respectively.
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(3) The canonical restriction morphism from Uτ̆ to Uτ̆ ′ corresponds to the
canonical morphism

⊕
˘̀∈τ̆∨−τ̆∨σ̆

Ψ̃Φ̆H̃,δ̆H̃
(˘̀)→ ⊕

˘̀∈(τ̆ ′)∨−(τ̆ ′)∨σ̆

Ψ̃Φ̆H̃,δ̆H̃
(˘̀)

of OC̃Φ̆H̃,δ̆H̃

-algebras, which maps Ψ̃Φ̆H̃,δ̆H̃
(˘̀) to Ψ̃Φ̆H̃,δ̆H̃

(˘̀) when

˘̀∈ (τ̆∨ − (τ̆ ′)∨σ̆ ) = (τ̆∨ − τ̆∨σ̆ )∩((τ̆ ′)∨ − (τ̆ ′)∨σ̆ ),

and to zero otherwise.
(4) The correspondences in (2) and (3) above are canonically compatible with

each other.

By Condition 1.29 (and Lemma 3.1), the action of ΓΦ̃H̃,ΦH
induces only the

trivial action on each stratum it stabilizes. Therefore, the quotient morphism

(4.2) X̃Φ̆H̃,δ̆H̃,σ̆,τ
→ X̃Φ̆H̃,δ̆H̃,σ̆,τ

/ΓΦ̃H̃,ΦH

of formal schemes over S0 is a local isomorphism. The morphism (4.2) is not defined

over C̃Φ̆H̃,δ̆H̃
when the action of ΓΦ̃H̃,ΦH

on C̃Φ̆H̃,δ̆H̃
is nontrivial. Nevertheless, since

ΓΦ̃H̃,ΦH
acts trivially on ΦH, it acts trivially on CΦH,δH , and hence (4.2) is defined

over CΦH,δH .

Proposition 4.3. There is a canonical isomorphism

(4.4) (Ntor)∧
Z̃[(ΦH,δH,τ)]

∼= X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

of formal schemes over CΦH,δH , characterized by the identifications

(Ntor)∧
Z̃[(Φ̆H̃,δ̆H̃,τ̆)]

∼= X̃Φ̆H̃,δ̆H̃,σ̆,τ̆

of formal schemes over C̃Φ̆H̃,δ̆H̃
(compatible with the canonical morphisms

(Ntor)∧
Z̃[(Φ̆H̃,δ̆H̃,τ̆)]

→ (Ntor)∧
Z̃[(ΦH,δH,τ)]

and C̃Φ̆H̃,δ̆H̃
→ CΦH,δH). (The formation of the formal completion here is similar

to the one in (5) of Theorem 1.41.)

Proof. Let τ̆ ∈ ΣΦ̆H̃,σ̆,τ
. Let Ũτ̆ denote the completion of Ξ̃Φ̆H̃,δ̆H̃

(τ̆) along Uτ̆ ,

which contains Uτ̆ as a closed formal subscheme (with the same support Uτ̆ ).

Since Uτ̆ is the union of (Ξ̃Φ̆H̃,δ̆H̃
)τ̆ ′ with τ̆ ′ running through faces of τ̆ in ΣΦ̆H̃,σ̆,τ

,

which are cones in P+

Φ̆H̃
, the tautological degeneration data over Ũτ̆ satisfies the

positivity condition (with respect to the ideal defining Uτ̆ ), and we obtain by Mum-

ford’s construction a degenerating family (♥G̃, ♥λ̃, ♥ĩ, ♥α̃H̃)→ Ũτ̆ as in [38, §6.2.5;
especially the paragraph preceding Def. 6.2.5.17], called a Mumford family. Note
that a Mumford family is defined in the sense of relative schemes, namely as a

functorial assignment to each affine open formal subscheme Spf(R) of Ũτ̆ a degen-
erating family over Spec(R). Therefore (6) of Theorem 1.41 applies, and implies

the existence of a canonical (strata-preserving) morphism Ũτ̆ → M̃tor
H̃

under which

(♥G̃, ♥λ̃, ♥ĩ, ♥α̃H̃) → Ũτ̆ is the pullback of (G̃, λ̃, ĩ, α̃H̃) → M̃tor
H̃

. Moreover, if
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τ̆ ′ ∈ ΣΦ̆H̃,σ̆,τ
, then the morphisms from Ũτ̆ and from Ũτ̆ ′ to M̃tor

H̃
agree over the

intersection Ũτ̆ ∩ Ũτ̆ ′ .
By taking the closures of the [(Φ̃H̃, δ̃H̃, σ̃)]-strata (not as closed subschemes of

the supports, but as closed formal subschemes, as in the second last paragraph
preceding Condition 3.8), we obtain canonical morphisms Uτ̆ → Ntor for all τ̆ in
ΣΦ̆H̃,σ̆,τ

, which patch together, cover all strata above [(ΦH, δH, τ)], and define (4.4)

as desired. �

By (5) of Theorem 1.41, we have a canonical isomorphism

(4.5) (Mtor
H )∧Z[(ΦH,δH,τ)]

∼= XΦH,δH,τ .

By the very constructions, we may and we shall identify the pullback of f tor to

(Mtor
H )∧Z[(ΦH,δH,τ)]

with the canonical morphism X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

→ XΦH,δH,τ .

By abuse of notation, we shall also denote this pullback by

f tor : X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

→ XΦH,δH,τ .

For each τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, let U[τ̆ ] denote the image of Uτ̆ under (4.2), which is

isomorphic to Uτ̆ as a formal scheme over CΦH,δH . By admissibility of ΣΦ̆H̃
, we know

that the set ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

is finite. Then X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

can be constructed

by gluing the finite collection {U[τ̆ ]}[τ̆ ]∈ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

of formal schemes over their

intersections. Let us denote by

f tor
[τ̆ ] : U[τ̆ ] → XΦH,δH,τ

the restriction of f tor to U[τ̆ ]. If we choose a representative τ̆ of [τ̆ ], then we can
identify f tor

[τ̆ ] : U[τ̆ ] → XΦH,δH,τ with the canonical morphism f tor
τ̆ : Uτ̆ → XΦH,δH,τ

induced by the canonical morphism X̃Φ̆H̃,δ̆H̃,σ̆,τ
→ XΦH,δH,τ . Let us denote by

gτ̆ : Uτ̆ → XΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃
,

h : C̃Φ̆H̃,δ̆H̃
→ CΦH,ZH ,

and
hτ : XΦH,δH,τ ×

CΦH,δH

C̃Φ̆H̃,δ̆H̃
→ XΦH,δH,τ

the canonical morphisms. Then we have a canonical identification f tor
τ̆ = hτ ◦ gτ̆ .

(Note that gτ̆ is a morphism between affine formal schemes over C̃Φ̆H̃,δ̆H̃
, and that

hτ is the pullback of h to the affine formal scheme XΦH,δH,τ over CΦH,δH .)
For simplicity, let us view OXΦH,δH,τ

and OZ[(ΦH,δH,τ)]
as sheaves over CΦH,δH ,

and suppress (XΦH,δH,τ → CΦH,δH)∗ and (Z[(ΦH,δH,τ)] → CΦH,δH)∗ from the no-
tation. For push-forwards (to CΦH,δH) of sheaves over XΦH,δH,τ , we shall use the
notation ⊕̂ to denote the completion with respect to (the push-forward of) the ideal
of definition of OXΦH,δH,τ

.
Based on Lemma 4.1, we have the following important facts:

Lemma 4.6. (1) For any τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, and any integer d ≥ 0, we have the

canonical isomorphisms

(4.7) Rd(f tor
τ̆ )∗(OUτ̆ ) ∼= ⊕̂

˘̀∈σ̆⊥ ∩ τ̆∨
Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃

(˘̀))
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and

(4.8) Rd(f tor
τ̆ )∗(OUτ̆ ) ∼= ⊕

˘̀∈τ̆∨−τ̆∨σ̆
Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃

(˘̀))

over XΦH,δH,τ .
(2) For any γ ∈ ΓΦ̃H̃,ΦH

, we have a commutative diagram

Uτ̆
γ

//

gτ̆

��

Uγτ̆

gγτ̆

��

XΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

γ
//

hτ

��

XΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

hτ

��

XΦH,δH,τ XΦH,δH,τ

of formal schemes, (naturally) compatible with the commutative diagram

Uτ̆
γ

//

gτ̆

��

Uγτ̆

gγτ̆

��

(ΞΦH,δH)τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

γ
//

hτ

��

(ΞΦH,δH)τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

hτ

��

(ΞΦH,δH)τ (ΞΦH,δH)τ

of their supports. Then (4.7) and (4.8) are compatible with the canoni-
cal isomorphisms γ∗OUγτ̆ → OUτ̆ induced by the canonical isomorphisms

γ∗Ψ̃Φ̆H̃,δ̆H̃
(γ ˘̀)

∼→ Ψ̃Φ̆H̃,δ̆H̃
(˘̀) over C̃Φ̆H̃,δ̆H̃

.

(3) For any integer d ≥ 0, if τ̆ ′ is a face of τ̆ , then the canonical morphism
Rd(f tor

τ̆ )∗OUτ̆ → Rd(f tor
τ̆ ′ )∗OUτ̆′ induced by restriction from Uτ̆ to Uτ̆ ′ cor-

responds to the morphism

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀))→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨
Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃

(˘̀))

over XΦH,δH,τ , and the canonical morphism Rd(f tor
τ̆ )∗OUτ̆ →

Rd(f tor
τ̆ ′ )∗OUτ̆′ induced by restriction from Uτ̆ to Uτ̆ ′ corresponds to the

morphism

⊕
˘̀∈τ̆∨−τ̆∨σ̆

Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀))→ ⊕

˘̀∈(τ̆ ′)∨−(τ̆ ′)∨σ̆

Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀))

over XΦH,δH,τ . Both of these morphisms send Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀)) (iden-

tically) to Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀)) when it is defined on both sides, and to zero

otherwise.
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4B. Relative cohomology of structural sheaves. By (4.5), we shall identify
(Mtor
H )∧Z[(ΦH,δH,τ)]

with XΦH,δH,τ , and identify Z[(ΦH,δH,τ)] with (ΞΦH,δH)τ . For sim-

plicity of notation, we shall use XΦH,δH,τ and Z[(ΦH,δH,τ)] more often than their
counterparts.

Recall that CΦH,δH is an abelian scheme torsor over the finite étale cover MΦH
H

of MZH
H (see Lemma 1.17). Let (A, λA, iA, αHh) be the tautological tuple over MZH

H .
Let T (resp. T∨) be the split torus with character group X (resp. Y ). For simplicity
of notation, we shall denote the pullbacks of A, A∨, T , and T∨, respectively, by the
same symbols. The pullback of G (resp. G∨) to XΦH,ZH,τ is an extension of A (resp.
A∨) by T (resp. T∨), and this extension is a pullback of the tautological extension
G\ (resp. G∨,\) over CΦH,δH . For simplicity, we shall also denote the pullbacks of
G\ and G∨,\, respectively, by the same symbols.

Lemma 4.9. The morphism h : C̃Φ̆H̃,δ̆H̃
→ CΦH,δH is proper and smooth, and

is a torsor under the pullback to CΦH,δH of an abelian scheme Z×(2)-isogenous to

HomO(X̃, A)◦ → MΦH
H .

Proof. By forming equivariant quotients, we may (and we shall) replace H̃ and

H with principal level subgroups of some level n, so that C̃Φ̆H̃,δ̆H̃
= C̃Φ̆n,δ̆n

and

CΦH,δH = CΦn,δn are abelian schemes over MΦH
H = MZn

n . For simplicity, let us

denote the kernel of C̃Φ̆n,δ̆n
→ CΦn,δn by C, viewed as a scheme over MZn

n .

While the abelian scheme torsor C̃Φ̆n,δ̆n
→ MZn

n parameterizes liftings (to level

n) of pairs of the form (c̆ : X̆ → A∨, c̆∨ : Y̆ → A) satisfying the compatibility

c̆φ̆ = λAc̆
∨ and the liftability and pairing conditions, and while the abelian scheme

torsor CΦn,δn → MZn
n parameterizes liftings (to level n) of pairs of the form (c :

X → A∨, c∨ : Y → A) satisfying the compatibility cφ = λAc
∨ and the liftability

and pairing conditions, the scheme C → MZn
n parameterizes liftings of pairs of

the form (c̃ : X̃ → A∨, c̃∨ : Ỹ → A) satisfying the compatibility c̃φ̃ = λAc̃
∨

and the liftability and pairing conditions induced by the ones of the pairs over

C̃Φ̆n,δ̆n
→ MZn

n . Therefore, the same (component annihilating) argument in [38,

§§6.2.3–6.2.4] shows that the kernel C of h is an abelian scheme Z×(2)-isogenous to

HomO(X̃, A)◦.
Consequently, all geometric fibers of h are smooth and have the same dimen-

sion (as the relative dimension of C → MZn
n ). Since both C̃Φ̆n,δ̆n

and CΦn,δn are

smooth over S0, the morphism h is smooth by [21, IV-3, 15.4.2 e’)⇒b), and IV-4,
17.5.1 b)⇒a)]. By [7, §2.2, Prop. 14], smooth morphisms between schemes have sec-
tions étale locally. This shows that h is a torsor under the pullback of C to CΦn,δn .
(Regardless of this argument, the morphism h is proper because the morphism

C̃Φ̆n,δ̆n
→ MZn

n is.) �

Consider the union Ñσ̆,τ of the cones τ̆ in ΣΦ̆H̃,σ̆,τ
, which has a closed covering

by the closures τ̆ cl (in Ñσ̆,τ ) of the cones τ̆ in ΣΦ̆H̃,σ̆,τ
(with natural incidence

relations among their closures inherited from their realizations as locally closed
subsets of (SΦ̆H̃

)∨R). By definition, the nerve of the open covering {Uτ̆}τ̆∈ΣΦ̆H̃,σ̆,τ
of

X̃Φ̆H̃,δ̆H̃,σ̆,τ
, or equivalently the open covering {Uτ̆}τ̆∈ΣΦ̆H̃,σ̆,τ

of (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ) (by
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the supports of the formal schemes {Uτ̆}τ̆∈ΣΦ̆H̃,σ̆,τ
), is naturally identified with the

nerve of the (locally finite) closed covering {τ̆ cl}τ̆∈ΣΦ̆H̃,σ̆,τ
of Ñσ̆,τ . Then the nerve

of the open covering

{U[τ̆ ]}[τ̆ ]∈ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

of (Ntor)∧
Z̃[(ΦH,δH,τ)]

∼= X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

,

or equivalently the open covering

{Uτ̆}[τ̆ ]∈ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

of Z̃[(ΦH,δH,τ)]
∼= (Ξ̃Φ̆H̃,δ̆H̃

)τ/ΓΦ̃H̃,ΦH

of the supports of formal schemes, is naturally identified with the nerve of the
(finite) closed covering

{[τ̆ ]
cl}[τ̆ ]∈ΣΦ̆H̃,σ̆,τ

/ΓΦ̃H̃,ΦH
of Nσ̆,τ := Ñσ̆,τ/ΓΦ̃H̃,ΦH

,

where [τ̆ ]
cl

denotes the closure of [τ̆ ] in Nσ̆,τ .

For any sheaf M on (Ξ̃Φ̆H̃,δ̆H̃
)τ/ΓΦ̃H̃,ΦH

(such as O(Ntor)∧
Z̃[(ΦH,δH,τ)]

∼=

OX̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

), let us define for any integer d ≥ 0 the constructible sheaf

H d(M ) on Nσ̆,τ which associates with each [τ̆ ] in ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

locally

constant coefficients in

H d(M )([τ̆ ]
cl

) := Hd(U[τ̆ ],M |U[τ̆]
).

Then, by [18, II, 5.4.1], there is a spectral sequence

(4.10) Ec,d2 := Hc(Nσ̆,τ ,H
d(M ))⇒ Hc+d((Ξ̃Φ̆H̃,δ̆H̃

)τ/ΓΦ̃H̃,ΦH
,M ).

The construction of Nσ̆,τ depends only on the cone decomposition ΣΦ̆H̃,σ̆,τ
, while

the constructions of both H d(M ) and the spectral sequence (4.10) are compatible
with restrictions to affine open subschemes of Z[(ΦH,δH,τ)]. Therefore, we can define

the sheaves H d(M ) (of constructible sheaves on Nσ̆,τ ) over Z[(ΦH,δH,τ)], and obtain
a spectral sequence

(4.11) Ec,d2 := Hc(Nσ̆,τ ,H
d(M ))⇒ Rc+df tor

∗ (M ).

Here Hc(Nσ̆,τ ,H
d(M )) is interpreted as a sheaf on Z[(ΦH,δH,τ)], and the formation

of (4.11) is compatible with morphisms in M . In particular, we have compatible
spectral sequences

(4.12) Ec,d2 := Hc(Nσ̆,τ ,H
d(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))⇒ Rc+df tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)

and

(4.13) Ec,d2 := Hc(Nσ̆,τ ,H
d(OZ̃[(ΦH,δH,τ)]

))⇒ Rc+df tor
∗ (OZ̃[(ΦH,δH,τ)]

).

To calculate the left-hand sides of (4.12) and (4.13), we define the sheaves

H d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ
) and H d(O(Ξ̃Φ̆H̃,δ̆H̃

)τ
) (of constructible sheaves) on Ñσ̆,τ (in the

obvious way), which, by Lemma 4.6, carry canonical equivariant actions of the group

ΓΦ̃H̃,ΦH
, and descend to the sheaves H d(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

) and H d(OZ̃[(ΦH,δH,τ)]
)
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on Nσ̆,τ , respectively. Hence we obtain compatible spectral sequences

(4.14) Ec−e,e2 := Hc−e(ΓΦ̃H̃,ΦH
, He(Ñσ̆,τ ,H

d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ
)))

⇒ Hc(Nσ̆,τ ,H
d(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))

and

(4.15) Ec−e,e2 := Hc−e(ΓΦ̃H̃,ΦH
, He(Ñσ̆,τ ,H

d(O(Ξ̃Φ̆H̃,δ̆H̃
)τ

)))

⇒ Hc(Nσ̆,τ ,H
d(OZ̃[(ΦH,δH,τ)]

)).

Lemma 4.16. For any d ≥ 0, the canonical morphisms

(4.17) Rd(hτ )∗(OXΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

)→ H0(Ñσ̆,τ ,H
d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ

))

and

(4.18) Rd(hτ )∗(OZ[(ΦH,δH,τ)] ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

)→ H0(Ñσ̆,τ ,H
d(O(Ξ̃Φ̆H̃,δ̆H̃

)τ
))

are isomorphisms compatible with each other. Moreover, for any integer e > 0, we
have

(4.19) He(Ñσ̆,τ ,H
d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ

)) = 0

and

(4.20) He(Ñσ̆,τ ,H
d(O(Ξ̃Φ̆H̃,δ̆H̃

)τ
)) = 0.

Proof. By (4.7), we have

H d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ
)(τ̆ cl) ∼= Rd(f tor

τ̆ )∗(OUτ̆ ) ∼= ⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀)),

and for any face τ̆ ′ of τ̆ , the canonical morphism

H d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ
)(τ̆ cl)→H d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ

)((τ̆ ′)
cl

)

sends the subsheaf Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃
(˘̀)) either (identically) to Rd(hτ )∗(Ψ̃Φ̆H̃,δ̆H̃

(˘̀))

when ˘̀∈ σ̆⊥ ∩(τ̆ ′)∨, or to zero otherwise. Since ∪
˘̀6∈τ̆∨

τ̆ cl = ∪
˘̀6∈τ̆∨

τ̆ is a contractible

or empty subset of Ñσ̆,τ for any given ˘̀ ∈ σ̆⊥ (because it is a deformation re-
tract, defined compatibly over the polyhedral cones overlapping with the bound-

ary, of the convex subset of Ñσ̆,τ over which ˘̀ is negative), this shows (4.19) for
e > 0 as usual (by the argument in [36, Ch. I, §3]). On the other hand, since
∩

τ̆∈ΣΦ̆H̃,σ̆,τ

(σ̆⊥ ∩ τ̆∨) = τ∨, we see that (4.17) is an isomorphism. The proofs for

(4.20) and (4.18) are similar. (Since the nerves involve infinitely many cones, let
us briefly explain why we can work weight-by-weight as in [36, Ch. I, §3]. This
is because, up to replacing the cone decompositions with locally finite refinements
not necessarily carrying ΓΦ̆H̃

-actions, which is harmless for proving this lemma, we

can compute the cohomology as a limit using unions of finite cone decompositions
on expanding convex polyhedral subcones, by proving inductively that the coho-
mology of one degree lower has the desired properties, using [52, Thm. 3.5.8]; then
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we can consider the associated graded pieces defined by the completions, and work
weight-by-weight, because taking cohomology commutes with taking infinite direct
sums for Čech complexes defined by finite coverings, as desired.) �

Lemma 4.21. The topological space Nσ̆,τ is homotopic to the real torus

TΦ̃H̃,ΦH
:= (ΓΦ̃H̃,ΦH

)∨R/ΓΦ̃H̃,ΦH
,

whose cohomology groups (by contractibility of (ΓΦ̃H̃,ΦH
)∨R) are

Hj(TΦ̃H̃,ΦH
,Z) ∼= Hj(ΓΦ̃H̃,ΦH

,Z) ∼= ∧j(HomZ(ΓΦ̃H̃,ΦH
,Z))

for any j ≥ 0. Over CΦH,δH , we have a canonical isomorphism

(4.22) Hj(ΓΦ̃H̃,ΦH
,Z)⊗

Z
OCΦH,δH

∼= ∧j(HomO(Q∨,LieT∨/CΦH,δH
)).

Proof. Since σ̃ is a top-dimensional cone in P+

Φ̃H̃
, any τ̆ ∈ ΣΦ̆H̃,σ̆,τ

(which has σ̆

as a face) is generated by σ̆ and some rational basis vectors not contained in the
image of the first morphism in (3.7). Moreover, the image of τ̆ under the second
morphism in (3.7) is contained in τ ⊂ P+

ΦH
. By choosing some (noncanonical) split-

ting of sX̆ ⊗Z
Q : X̆ ⊗

Z
Q � X̃ ⊗

Z
Q, we can decompose the real vector space (SΦ̆H̃

)∨R

(noncanonically) as a direct sum (SΦ̃H̃
)∨R ⊕(ΓΦ̃H̃,ΦH

)∨R ⊕(SΦH)∨R , on which the ac-

tion of ΓΦ̃H̃,ΦH
is realized by its canonical translation action on the second factor.

Along the directions of (SΦ̃H̃
)∨R and (SΦH)∨R , we can contract Ñσ̆,τ (say, towards

some arbitrarily chosen points in the convex sets σ̃ and τ) in a way compatible with

the actions of ΓΦ̃H̃,ΦH
. Therefore, Nσ̆,τ = Ñσ̆,τ/ΓΦ̃H̃,ΦH

is homotopic to the real

torus TΦ̃H̃,ΦH
= (ΓΦ̃H̃,ΦH

)∨R/ΓΦ̃H̃,ΦH
.

The canonical isomorphism (4.22) then follows from the composition of the fol-
lowing canonical isomorphisms:

Hj(ΓΦ̃H̃,ΦH
,Z)⊗

Z
OCΦH,δH

∼= (∧j(HomZ(ΓΦ̃H̃,ΦH
,Z)))⊗

Z
OCΦH,δH

∼= (∧j(HomZ(HomO(X̃,X),Z(2)))) ⊗
Z(2)

OCΦH,δH

∼= ∧j(HomO(Q∨,HomZ(Y,OCΦH,δH
)))

∼= ∧j(HomO(Q∨,LieT∨/CΦH,δH
))). �

Lemma 4.23. There are compatible canonical isomorphisms

Rd(hτ )∗(OXΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

) ∼= ∧d(HomO(Q∨,LieA∨/XΦH,δH,τ
)

and

Rd(hτ )∗(OZ[(ΦH,δH,τ)] ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

) ∼= ∧d(HomO(Q∨,LieA∨/Z[(ΦH,δH,τ)]
))

for any integer d ≥ 0.

Proof. By Lemma 4.9, the morphism h : C̃Φ̆H̃,δ̆H̃
→ CΦH,δH is a torsor under

an abelian scheme Z×(2)-isogenous to HomO(Q,A)◦ (and hence has a section étale

locally). Since the cohomology of abelian schemes (with coefficients in the structural
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sheaves) are free and are compatible with arbitrary base changes (see [5, Prop. 2.5.2]
and [43, §5]), we obtain compatible canonical isomorphisms

Rd(hτ )∗(OXΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

) ∼= ∧d(Lie(HomO(Q,A)◦)∨/XΦH,δH,τ
)

∼= ∧d(HomO(Q∨,LieA∨/XΦH,δH,τ
))

and

Rd(hτ )∗(OZ[(ΦH,δH,τ)] ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃

) ∼= ∧d(Lie(HomO(Q,A)◦)∨/Z[(ΦH,δH,τ)]
)

∼= ∧d(HomO(Q∨,LieA∨/Z[(ΦH,δH,τ)]
))

for any integer d ≥ 0. �

Proposition 4.24. There are compatible canonical isomorphisms

(4.25) Hc(Nσ̆,τ ,H
d(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))

∼= (∧c(HomO(Q∨,LieT∨/XΦH,δH,τ
)))

⊗
OXΦH,δH,τ

(∧d(HomO(Q∨,LieA∨/XΦH,δH,τ
)))

and

(4.26) Hc(Nσ̆,τ ,H
d(OZ̃[(ΦH,δH,τ)]

))

∼= (∧c(HomO(Q∨,LieT∨/Z[(ΦH,δH,τ)]
)))

⊗
OZ[(ΦH,δH,τ)]

(∧d(HomO(Q∨,LieA∨/Z[(ΦH,δH,τ)]
)))

for any integers c, d ≥ 0.

Proof. By Lemma 4.16, the spectral sequences (4.14) and (4.15) degenerate and
show that for any integers c and d we have compatible canonical isomorphisms

(4.27) Hc(Nσ̆,τ ,H
d(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))

∼= Hc(ΓΦ̃H̃,ΦH
, H0(Ñσ̆,τ ,H

d(OX̃Φ̆H̃,δ̆H̃,σ̆,τ
)))

∼= Hc(ΓΦ̃H̃,ΦH
,Z)⊗

Z
Rd(hτ )∗(OXΦH,δH,τ ×

CΦH,δH

C̃Φ̆H̃,δ̆H̃

)

and

(4.28) Hc(Nσ̆,τ ,H
d(OZ̃[(ΦH,δH,τ)]

))

∼= Hc(ΓΦ̃H̃,ΦH
, H0(Ñσ̆,τ ,H

d(O(Ξ̃Φ̆H̃,δ̆H̃
)τ

)))

∼= Hc(ΓΦ̃H̃,ΦH
,Z)⊗

Z
Rd(hτ )∗(OZ[(ΦH,δH,τ)] ×

CΦH,δH

C̃Φ̆H̃,δ̆H̃

).

Now combine (4.27) and (4.28) with Lemmas 4.21 and 4.23. �
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Lemma 4.29. The spectral sequence (4.12) degenerates at E2 terms. Consequently,
since the choice of the stratum Z[(ΦH,δH,τ)] is arbitrary, by Grothendieck’s funda-
mental theorem [21, III-1, 4.1.5] (and by fpqc descent for the property of local free-
ness [20, VIII, 1.11]), the sheaf Rbf tor

∗ (ONtor) is locally free of the same rank as
∧b(HomO(Q∨,LieG∨/Mtor

H
)) over Mtor

H .

If, for every maximal point s of Z[(ΦH,δH,τ)] (see [22, 0, 2.1.2]), we have

(4.30) dimk(s)((R
bf tor
∗ (OZ̃[(ΦH,δH,τ)]

)) ⊗
OZ[(ΦH,δH,τ)]

k(s))

≥ dimk(s)((R
bf tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) ⊗
OXΦH,δH,τ

k(s)),

then the spectral sequence (4.13) degenerates at E2 terms as well, and there is a
canonical isomorphism

(4.31) Rbf tor
∗ (ONtor) ⊗

OMtor
H

OZ[(ΦH,δH,τ)]

∼→ Rbf tor
∗ (OZ̃[(ΦH,δH,τ)]

).

Proof. Let Spf(R, I) be any connected affine open formal subscheme of XΦH,δH,τ ,
with the ideal of definition I satisfying rad(I) = I for simplicity. Since Mtor

H is
smooth and of finite type over S0 = Spec(OF0,(2)), the ring R is a noetherian
domain. (See [39, 33.I and 34.A].) Since Z[(ΦH,δH,τ)] is a smooth subscheme of
Mtor
H , the quotient R/I is also a noetherian domain. Let K := Frac(R) and k :=

Frac(R/I) be the fraction fields. By abuse of notation, we shall denote pullbacks
of schemes to Spec(K) (resp. Spec(k)) by the subscript K (resp. k).

Since we have an exact sequence

0→ LieT∨/XΦH,δH,τ
→ LieG∨,\/XΦH,δH,τ

→ LieA∨/XΦH,δH,τ
→ 0

of locally free sheaves, we have an equality

(4.32)
∑
c+d=b

dimK(∧c(HomO(Q∨,LieA∨K )))⊗
K

(∧d(HomO(Q∨,LieT∨K )))

= dimK(∧b(HomO(Q∨,LieG∨,\K
)))

= dimK(∧b(HomO(Q∨,LieG∨K ))),

and an analogous equality with K replaced with k.
By construction of the spectral sequences (4.12) and (4.13), by the canonical

isomorphisms (4.25) and (4.26), and by the equality (4.32), we have

(4.33)
∑
c+d=b

dimK(Hc(Nσ̆,τ ,H
d(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) ⊗
OXΦH,δH,τ

K)

= dimK(∧b(HomO(Q∨,LieG∨K )))

≥ dimK((Rbf tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) ⊗
OXΦH,δH,τ

K)
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and

(4.34)
∑
c+d=b

dimk(Hc(Nσ̆,τ ,H
d(OZ̃[(ΦH,δH,τ)]

)) ⊗
OZ[(ΦH,δH,τ)]

k)

= dimk(∧b(HomO(Q∨,LieG∨k )))

≥ dimk(Rbf tor
∗ (OZ̃[(ΦH,δH,τ)]

) ⊗
OZ[(ΦH,δH,τ)]

k).

Since the pullback of f tor to the open dense subscheme MH of Mtor
H is simply the

abelian scheme f : N→ MH, we have

(Rbf tor
∗ (ONtor)) ⊗

OMtor
H

OMH
∼= Rbf∗(ON)

∼= ∧bLieN∨/MH
∼= ∧b(HomO(Q∨,LieG∨MH/MH

)).

Since the canonical morphism Spec(K) → Mtor
H factors through some maximal

point of MH, this implies that the inequality in (4.33) is an equality, and hence
that the spectral sequence (4.12) degenerates at E2 terms after pullback to K.
Since all E2 terms of this spectral sequence are locally free sheaves, this shows
that (4.12) degenerates at E2 terms after pullback to R. Since the choice of R is
arbitrary, this shows that (4.12) degenerates over the whole XΦH,δH,τ , and hence
Rbf tor

∗ (ONtor) is locally free of the same rank as ∧b(HomO(Q∨,LieG∨/Mtor
H

)) over

Mtor
H . (Nevertheless, since f tor is not necessarily flat, this does not imply that the

formation of Rbf tor
∗ (ONtor) is compatible with arbitrary base change.)

Since the canonical morphism Spec(k)→ Z[(ΦH,δH,τ)] factors through some max-
imal point of Z[(ΦH,δH,τ)], the inequality (4.30) implies that

dimk(Rbf tor
∗ (OZ̃[(ΦH,δH,τ)]

) ⊗
OZ[(ΦH,δH,τ)]

k)

≥ dimk((Rbf tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) ⊗
OXΦH,δH,τ

k)

= dimK((Rbf tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) ⊗
OXΦH,δH,τ

K),

and hence the equality in (4.33) implies the equality in (4.34), because

dimk(∧b(HomO(Q∨,LieG∨k ))) = dimK(∧b(HomO(Q∨,LieG∨K ))).

Therefore, by the same reasoning as in the case of (4.12) above, the spectral se-
quence (4.13) also degenerates at E2 terms. Since the spectral sequences (4.12) and
(4.13) are compatible with each other (by their very construction), their degeneracy
implies that the canonical morphism

Rbf tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

) ⊗
OXΦH,δH,τ

OZ[(ΦH,δH,τ)]
→ Rbf tor

∗ (OZ̃[(ΦH,δH,τ)]
)

is an isomorphism (by comparing graded pieces) and induces (4.31). �

Remark 4.35. By upper semicontinuity for proper flat morphisms (see [43, §5, Cor.
(a)]), the assumption (4.30) is satisfied when f tor is flat, or equivalently when
Condition 3.17 is satisfied (by Proposition 3.18), which can be achieved by refining

both Σ̃ and Σ (by Proposition 3.19).
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Corollary 4.36. For any integer b ≥ 0, the canonical (cup product) morphism
∧b(R1f tor

∗ (ONtor))→ Rbf tor
∗ (ONtor) is an isomorphism.

Proof. As in Lemma 4.29, by properness of f tor, this is true if and only if it is
true over the formal completion along each stratum Z[(ΦH,δH,τ)], which is the case
because the canonical morphism induces isomorphisms on all graded pieces defined
by spectral sequences such as (4.12), which are compatible with cup products by
the very construction (see [18, II, §§5–6]). �

4C. Degeneracy of the (relative) Hodge spectral sequence. As in (3c) of

Theorem 2.15, let Hi
log-dR(Ntor/Mtor

H ) := Rif tor
∗ Ω

•
Ntor/Mtor

H
be the (relative) log de

Rham cohomology. By the definition of Hi
log-dR(Ntor/Mtor

H ) as the “relative hyper-

cohomology”, the natural (Hodge) filtration on the complex Ω
•
Ntor/Mtor

H
defines the

(relative) Hodge spectral sequence (2.20):

Ea,b1 := Rbf tor
∗ (Ω

a

Ntor/Mtor
H

)⇒ Ha+b
log-dR(Ntor/Mtor

H ).

By (3a) of Theorem 2.15 (which we have proved in Section 3C), there is a canonical
isomorphism

Ω
a

Ntor/Mtor
H
∼= ∧a

[
(f tor)∗(HomO(Q∨,Lie∨G/Mtor

H
))
]

∼= (f tor)∗
[
∧a (HomO(Q∨,Lie∨G/Mtor

H
))
]

of locally free sheaves over Ntor. Then (by the projection formula [21, 0I, 5.4.10.1])
we have canonical isomorphisms

(4.37) Rbf tor
∗ (Ω

a

Ntor/Mtor
H

) ∼= (Rbf tor
∗ (ONtor)) ⊗

OMtor
H

(∧a(HomO(Q∨,Lie∨G/Mtor
H

))).

Lemma 4.38. If Rbf tor
∗ (ONtor) is locally free for every integer b ≥ 0, then the

spectral sequence (2.20) degenerates at the E1 terms.

Proof. By (4.37), if Rbf tor
∗ (ONtor) is locally free for every integer b ≥ 0, then all

the E1 terms Rbf tor
∗ (Ω

a

Ntor/Mtor
H

) of the spectral sequence (2.20) are locally free.

Therefore, to show that (2.20) degenerates at E1 terms, it suffices to show that it
degenerates at E1 terms over the open dense subscheme MH of Mtor

H , which is true
because f tor|N = f : N → MH is an abelian scheme. (See for example [5, Prop.
2.5.2].) �

This proves (3c) of Theorem 2.15, because the local freeness of Rbf tor
∗ (ONtor) has

been established in Section 4B for every integer b ≥ 0.

4D. Gauss–Manin connections with log poles. In Section 3C, we proved the
log smoothness of f tor : Ntor → Mtor

H by verifying Lemma 3.11. For simplicity, let
us set

Ω
1

Mtor
H /S0

:= Ω1
Mtor
H /S0

[d log∞] and Ω
1

Ntor/S0
:= Ω1

Ntor/S0
[d log∞].

Then (3.12) can be rewritten as the exact sequence

(4.39) 0→ (f tor)∗(Ω
1

Mtor
H /S0

)→ Ω
1

Ntor/S0
→ Ω

1

Ntor/Mtor
H
→ 0,

which induces the Koszul filtration [35, 1.2, 1.3]

Ka(Ω
•
Ntor/S0

) := image(Ω
•−a
Ntor/S0

⊗
ONtor

(f tor)∗(Ω
a

Mtor
H /S0

)→ Ω
•
Ntor/S0

)
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on Ω
•
Ntor/S0

, with graded pieces GraK(Ω
•
Ntor/S0

) ∼= Ω
•−a
Ntor/Mtor

H
⊗

ONtor

(f tor)∗(Ω
a

Mtor
H /S0

).

On the other hand, we have the Hodge filtration

Fa(Ω
•
Ntor/S0

) := Ω
•≥a
Ntor/S0

on Ω
•
Ntor/S0

, giving the Hodge filtration

Fa(Hi
log-dR(Ntor/Mtor

H )) := image(Rif tor
∗ (Fa(Ω

•
Ntor/S0

))→ Rif tor
∗ (Ω

•
Ntor/S0

))

on Hi
log-dR(Ntor/Mtor

H ). By applying R•f tor
∗ to the short exact sequence

(4.40) 0→ Ω
•−1

Ntor/Mtor
H
⊗

ONtor

(f tor)∗(Ω
1

Mtor
H /S0

)→ K2/K0 → Ω
•
Ntor/S0

→ 0,

we obtain in the long exact sequence the connecting homomorphisms

(4.41) Hi
log-dR(Ntor/Mtor

H ) = Rif tor
∗ (Ω

•
Ntor/Mtor

H
)

∇→ Ri+1f tor
∗ (Ω

•−1

Ntor/Mtor
H
⊗

ONtor

Ω
1

Mtor
H /S0

) ∼= Hi
log-dR(Ntor/Mtor

H ) ⊗
OMtor
H

Ω
1

Mtor
H /S0

.

As explained in [35, 1.4], the pullback of ∇ in (4.41) to MH is nothing but the usual
Gauss–Manin connection on Hi

dR(N/MH). Since the sheaves involved in (4.41) are
all locally free,

∇ : Hi
log-dR(Ntor/Mtor

H )→ Hi
log-dR(Ntor/Mtor

H ) ⊗
OMtor
H

Ω
1

Mtor
H /S0

satisfies the necessary conditions for being an integrable connection with log poles
(because its restriction to the dense subscheme MH does). If we take the F-filtration
on (4.40), we obtain

0→ (Fa−1(Ω
•
Ntor/Mtor

H
) ⊗

ONtor

(f tor)∗(Ω
1

Mtor
H /S0

))[−1]→ Fa(K2/K0)→ Fa(Ω
•
Ntor/S0

)→ 0

and hence the Griffiths transversality

∇(Fa(Hi
log-dR(Ntor/Mtor

H ))) ⊂ Fa−1(Hi
log-dR(Ntor/Mtor

H )) ⊗
OMtor
H

Ω
1

Mtor
H /S0

(as in [35, Prop. 1.4.1.6]). This proves (3e) of Theorem 2.15.

Remark 4.42. By (3c) of Theorem 2.15, the (relative) Hodge spectral sequence

Ea,i−a1 := Ri−af tor
∗ (Ω

a

Ntor/Mtor
H

)⇒ Hi
log-dR(Ntor/Mtor

H )

degenerates. Then we have GraF(Hi
log-dR(Ntor/Mtor

H )) ∼= Ri−af tor
∗ (Ω

a

Ntor/Mtor
H

),

and we can conclude (as in [35, Prop. 1.4.1.7]) that the induced morphism

∇ : GraF H
i
log-dR(Ntor/Mtor

H ) → Gra−1
F Hi

log-dR(Ntor/Mtor
H ) ⊗

OMtor
H

Ω
1

Mtor
H /S0

agrees with

the morphism

Ri−af tor
∗ (Ω

a

Ntor/Mtor
H

)→ Ri−a+1f tor
∗ (Ω

a−1

Ntor/Mtor
H

) ⊗
OMtor
H

Ω
1

Mtor
H /S0

defined by cup product with the Kodaira–Spencer class defined by the extension
class of (4.39). We will revisit a special case of this in Section 6B.
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5. Polarizations

The aim of this section is to prove (3b) and (3d) of Theorem 2.15, by studying
the log extension of polarizations on the relative de Rham cohomology.

5A. Identification of Rbf tor
∗ (ONtor). By Corollary 2.12, any morphism jQ : Q∨ ↪→

Q in Lemma 2.5 (together with the tautological polarization λMH : GMH → G∨MH
over MH) induces canonically a polarization

λMH,jQ : HomO(Q,GMH)◦ → (HomO(Q,GMH)◦)
∨

of degree prime to 2, and hence an isomorphism

dλMH,jQ : HomO(Q,LieGMH/MH
)
∼→ HomO(Q∨,LieG∨MH/MH

).

Therefore, it induces canonically a Z×(2)-polarization λMH,jQ : N → N∨, and hence

an isomorphism dλMH,jQ : LieN/MH → LieN∨/MH . Over Mtor
H , the morphisms

jQ : Q∨ ↪→ Q and dλ : LieG/Mtor
H
→ LieG∨/Mtor

H
induce canonically an isomor-

phism dλjQ : HomO(Q,LieG/Mtor
H

)
∼→ HomO(Q∨,LieG∨/Mtor

H
) extending dλMH,jQ :

HomO(Q,LieGMH/MH
)
∼→ HomO(Q∨,LieG∨MH/MH

).

Let us define DerNtor/Mtor
H

:= HomONtor
(Ω

1

Ntor/Mtor
H
,ONtor). Its restriction to MH

can be canonically identified with DerN/MH := HomON
(Ω1

N/MH
,ON).

Let us denote by  : MH → Mtor
H the canonical open immersion. Then we have

the commutative diagram

(5.1) f tor
∗ (DerNtor/Mtor

H
)

∼
can.� _

res.

��

HomO(Q,LieGMH/MH
)

� _

res.

��

∗(f∗(DerN/MH))
∼

can.

��

∗(HomO(Q,LieGMH/MH
))

∗(dλMH,jQ )

��

∗(R
1f∗(ON))

∼
can.

∗(HomO(Q,LieG∨MH/MH
))

R1f tor
∗ (ONtor)
?�

res.

OO

HomO(Q,LieG∨/Mtor
H

)
?�

res.

OO

dλjQ

��

of sheaves over Mtor
H , with the dotted arrow induced by ∗(dλMH,jQ). By abuse of

notation, let us denote the dotted arrow also by ∗(dλMH,jQ). We have the following
simple observation:

Lemma 5.2. If ∗(dλMH,jQ) maps the image of the canonical injection

f tor
∗ (DerNtor/Mtor

H
) ↪→ ∗(f∗(DerN/MH))

isomorphically to the image of the canonical injection

R1f tor
∗ (ONtor) ↪→ ∗(R

1f∗(ON)),

then (5.1) induces the desired canonical isomorphism

(5.3) R1f tor
∗ (ONtor) ∼= HomO(Q,LieG∨/Mtor

H
)

extending the canonical isomorphism R1f∗(ON) ∼= HomO(Q,LieG∨MH/MH
) over MH.
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Remark 5.4. The question is whether the assumption of Lemma 5.2 can be satisfied.
Since this is a question about morphisms between locally free sheaves over the
normal base scheme Mtor

H , it suffices to verify the statement after localizations at
points of codimension one. Therefore, since the statement is tautologically true
over MH, it suffices to verify it over Mtor

H ⊗Z
Q.

5B. Logarithmic extension of polarizations. By construction (see Section

3A), X̃∨(1) ∼= HomO(X̃,Diff−1
O′/Z(1)) is the submodule Q−2 of Q∨⊗

Z
Z(2)(1), and

Ỹ is the submodule Q0 of Q⊗
Z
Z(2). Therefore, the embedding jQ : Q∨ ↪→ Q

corresponds to an element ˜̀jQ of SΦ̃H̃
⊗
Z
Z(2). The positive definiteness of the

induced pairing 〈j−1
Q ( · ), · 〉Q then translates to the strong positivity condition

that 〈˜̀jQ , y〉 > 0 for any y ∈ PΦ̃H̃
− {0}. By replacing jQ with a multiple by a

positive integer prime to 2, we may and we shall assume that ˜̀jQ ∈ SΦ̃H̃
(without

altering the above strong positivity condition). Then we obtain an invertible sheaf

Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) over the abelian scheme N→ MH. Note that ˜̀jQ ∈ σ̃∨0 .

Lemma 5.5. The invertible sheaf Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) is relatively ample over MH, and

induces twice of a Z×(2)-polarization λΨ̃
Φ̃H̃,δ̃H̃

(˜̀jQ ) : N→ N∨ (namely a Z×(2)-isogeny

whose sufficiently divisible positive multiple is a polarization). Under the canonical
isomorphisms in Corollary 2.13, the induced morphism

dλΨ̃
Φ̃H̃,δ̃H̃

(˜̀jQ ) : LieN/MH → LieN∨/MH

is twice a positive Z×(2)-multiple of

dλMH,jQ : HomO(Q,LieGMH/MH
)
∼→ HomO(Q∨,LieG∨MH/MH

).

In particular, dλΨ̃
Φ̃H̃,δ̃H̃

(˜̀jQ ) is an isomorphism over MH⊗
Z
Q.

Proof. Just note that the morphism λΨ̃
Φ̃H̃,δ̃H̃

(˜̀jQ ) is twice a positive Z×(2)-multiple

of the Z×(2)-polarization λMH,jQ in Corollary 2.12. �

The invertible sheaf Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) over N defines a global section of R1f∗(O

×
N ),

and the morphism
d log : O×N → Ω1

N/MH
: a 7→ a−1da

induces a global section D˜̀
jQ

= d log(Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ)) of R1f∗(Ω

1
N/MH

). Then it

is standard (cf. [38, Prop. 2.1.5.14]) that the cup product with D˜̀
jQ

induces a

composition of morphisms

f∗(DerN/MH)
∪D ˜̀

jQ→ R1f∗(DerN/MH ⊗
ON

Ω1
N/MH

)
can.→ R1f∗(ON),

and that this morphism f∗(DerN/MH)→ R1f∗(ON) can be identified with the mor-
phism dλΨ̃

Φ̃H̃,δ̃H̃
(˜̀jQ ) under the canonical isomorphisms

f∗(DerN/MH) ∼= LieN/MH and R1f∗(ON) ∼= LieN∨/MH .
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The first question is whether we can extend the morphism f∗(DerN/MH) →
R1f∗(ON) to Mtor

H ; and the second question is whether the extended morphism is
an isomorphism, at least in codimension one.

A naive approach is to extend the invertible sheaf Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) to Ntor. Since

Ntor is projective and smooth over S0 = Spec(OF0,(2)), it is locally noetherian and
locally factorial. Then [21, IV-4, 21.6.11] implies that the canonical restriction
morphism Pic(Ntor)→ Pic(N) is surjective.

However, since f tor : Ntor → Mtor
H is not smooth, we have little control on

the canonical restriction morphism R1f tor
∗ (Ω1

Ntor/Mtor
H

)
res.→ ∗(R

1f∗(Ω
1
N/MH

)), and

there is no obvious reason that the image of the class defined by any extension of

Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) should induce an isomorphism extending dλΨ̃

Φ̃H̃,δ̃H̃
(˜̀jQ ) (at least) in

codimension one. (This is mentioned in [16, Ch. VI, end of §2], but with no details.)
An alternative approach is to consider the canonical restriction morphism

(5.6) R1f tor
∗ (Ω

1

Ntor/Mtor
H

)
res.→ ∗(R

1f∗(Ω
1
N/MH

)).

By Lemma 4.29, and by (3a) of Theorem 2.15, R1f tor
∗ (Ω

1

Ntor/Mtor
H

) is locally free over

Mtor
H . Therefore, the morphism (5.6) is injective.

Remark 5.7. The use of R1f tor
∗ (Ω

1

Ntor/Mtor
H

) is inspired by Kato’s idea of (relative) log

Picard groups mentioned in [32, 3.3]. An application of this idea has been carried
out in [46].

So far we have refrained from introducing the log structures (because they had
not been necessary), but they are needed (at least formally) here. We shall adopt
a notation slightly different from those of [33] and [32]. Let ̆ : N→ Ntor denote the
canonical open immersion. Then the canonical (fine) log structure on Ntor (which
we have been using so far) given by Ntor − N (with its reduced structure) can be

defined explicitly as the sheaf of monoids O
×
Ntor := ONtor ∩ ̆∗O×N (sheafification of

the obvious presheaf), with associated sheaf of groups O
×,gp

Ntor . Clearly, the restriction

of O
×,gp

Ntor to N is canonically isomorphic to O×N .

Definition 5.8. A relative log invertible sheaf over f tor : Ntor → Mtor
H is a global

section of R1f tor
∗ (O

×,gp

Ntor ).

Since we do not assume that f tor is flat (or log integral), the appropriate inter-
pretation of relative log invertible sheaves can be quite delicate (and beyond this
article).

Lemma 5.9. To define a global section of R1f tor
∗ (O

×,gp

Ntor ), it suffices to have the
following data:

(1) A collection of schemes Uα over Ntor forming an étale covering. We shall
denote the fiber product Uα ×

Ntor
Uβ (i.e., “intersection” in the étale topology)

by Uαβ, denote Uαβ |N := Uαβ ×
Ntor

N by Uαβ, and use similar notations for

higher fiber products.
(2) A usual invertible sheaf Lα over each Uα.
(3) A comparison isomorphism Lα|Uαβ ∼= Lβ |Uαβ over each Uαβ, satisfying the

usual cocycle condition over triple fiber products Uαβγ .
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Proof. Since the restriction morphism O
×,gp

Ntor (Uαβ)→ O
×,gp

Ntor (Uαβ) ∼= O×N (Uαβ) is a

bijection when the image of Uαβ in Ntor is sufficiently small, the data above define a

section of H1(Ntor,O
×,gp

Ntor ), which then defines a section of H0(Mtor
H , R1f tor

∗ (O
×,gp

Ntor ))
by the Leray spectral sequence in low degrees. (See [18, I, 4.5.1].) �

In the construction of toroidal compactifications in [38, §6.3.3] (following [16, Ch.

IV, §5]), there is a strata-preserving étale covering Ũ → M̃tor
H̃

(serving as an étale

presentation for the algebraic stack M̃tor
H̃

), where Ũ is a finite union of the so-called

good algebraic models of M̃tor
H̃

. (See [38, Def. 6.3.2.5].) By taking the closures of the

[(Φ̃H̃, δ̃H̃, σ̃)]-strata, we obtain a strata-preserving étale covering Ŭ → Ntor, with

strata labeled by triples [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face.

Each connected component Uα of Ŭ is given by the closure of the

[(Φ̃H̃, δ̃H̃, σ̃)]-stratum in a so-called good algebraic (Φ̆H̃, δ̆H̃, τ̆)-model

Ũα = Spec(R̃α)→ M̃tor
H̃

, where (Φ̆H̃, δ̆H̃, τ̆) is a representative of some [(Φ̆H̃, δ̆H̃, τ̆)]

having [(Φ̃H̃, δ̃H̃, σ̃)] as a face (cf. second property in [38, Def. 6.3.2.5]), which we
may assume to satisfy τ̆ ∈ ΣΦ̆H̃,σ̆,τ

. (See Section 4A. There are usually many α

for each [(Φ̆H̃, δ̆H̃, τ̆)].) Then we also have a strata-preserving étale morphism

Uα → (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆), which we shall call a good algebraic (Φ̆H̃, δ̆H̃, τ̆)-model of

Ntor. The (open) [(Φ̃H̃, δ̃H̃, σ̃)]-stratum in Uα is exactly the open subscheme

Uα := Uα ×
Ntor

N of Uα.

Lemma 5.10. Suppose that, for each τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, we have chosen an element ˘̀

jQ,τ̆

in τ̆∨0 that is mapped to ˜̀jQ in σ̃∨0 under the second morphism in (3.6), and that
˘̀
jQ,γτ̆ = γ ˘̀

jQ,τ̆ for any γ ∈ ΓΦ̃H̃,ΦH
. (Note that the choice of ˘̀

jQ,τ̆ is unique only up

to translation by σ̆⊥.) Let Ŭ→ Ntor be any strata-preserving étale covering formed

by a finite union of good algebraic models. Then the choices of {˘̀jQ,τ̆}τ̆∈ΣΦ̆H̃,σ̆,τ

and Ŭ determine a relative log invertible sheaf L over Ntor → Mtor
H extending the

rigidified invertible sheaf Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) over N, in the following sense: For each good

algebraic (Φ̆H̃, δ̆H̃, τ̆)-model Uα of Ntor, with τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, let Lα denote the pullback

of Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ) under the composition Uα → (Ξ̃Φ̆H̃,δ̆H̃

)σ̆(τ̆) → C̃Φ̆H̃,δ̆H̃
. Then

Lα|Uα is canonically isomorphic to the pullback of Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) (from N ∼= C̃Φ̃H̃,δ̃H̃

)

to Uα. Furthermore, the collection {(Uα,Lα)} satisfies the requirements in Lemma
5.9, and defines a log invertible sheaf as in Definition 5.8.

Proof. Let (G̃, λ̃, ĩ, α̃H̃) be the degenerating family of type M̃H̃ over M̃tor
H̃

. Let

B(G̃) : SΦ̃H̃(G̃) → Inv(M̃tor
H̃

) be constructed as in [38, Constr. 6.3.1.1]. If Ũα is

a good algebraic (Φ̆H̃, δ̆H̃, τ̆)-model, then for any ˘̀ ∈ SΦ̆H̃
, the invertible sheaf

B(G̃)(Ũα)(˘̀) over Ũα is canonically isomorphic to the pullback of Ψ̃Φ̆H̃,δ̆H̃
(˘̀) under

the composition Ũα → (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆) → C̃Φ̆H̃,δ̆H̃

(cf. third property in [38, Def.

6.3.2.5]).
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Given that B(G̃) is defined over M̃tor
H̃

and functorial with respect to pullback

morphisms Ũαβ → Ũα, the restriction of the pullback of Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ) to the

[(Φ̃H̃, δ̃H̃, σ̃)]-stratum of Ũα is isomorphic to the pullback of Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) when

(Φ̃H̃, δ̃H̃, σ̃) is a face of [(Φ̆H̃, δ̆H̃, τ̆)]. In other words, Lα|Uα is isomorphic to the

pullback of Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) over each Uα. Since the isomorphisms Lα|Uαβ ∼= Lβ |Uαβ

induced by such identifications satisfy the cocycle condition because Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ)

is defined on N, the claim follows, as desired. �

Remark 5.11. Any (usual) invertible sheaf over Ntor extending Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) satisfies

the requirements in Lemma 5.9 trivially. The point of Lemma 5.10 is that it provides

an explicit extension of Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) (useful for our later argument) over an étale

covering of Ntor. (We do not have such an explicit description of a global invertible
sheaf extension over Ntor.)

Definition 5.12. To any relative log invertible sheaf L over Ntor → Mtor
H defined by

a global section of R1f tor
∗ (O

×,gp

Ntor ), we define d log(L) to be the image of L under the

canonical morphism R1f tor
∗ (O

×,gp

Ntor ) → R1f tor
∗ (Ω

1

Ntor/Mtor
H

) induced by the canonical

morphism d log : O
×,gp

Ntor → Ω
1

Ntor/Mtor
H

.

Corollary 5.13. There exists a (unique) global section Dtor˜̀
jQ

of R1f tor
∗ (Ω

1

Ntor/Mtor
H

)

whose image under the canonical injection (5.6) is ∗(D˜̀
jQ

), which satisfies Dtor˜̀
jQ

=

d log(L) for any L constructed in Lemma 5.10 (with any choices of ˘̀
jQ,τ̆ ’s).

Proof. The existence of Dtor˜̀
jQ

is clear because there is always some (usual) invertible

sheaf over Ntor extending Ψ̃Φ̃H̃,δ̃H̃
(˜̀jQ) (by [21, IV-4, 21.6.11], since Ntor is locally

noetherian and locally factorial, as mentioned above). The uniqueness of Dtor˜̀
jQ

is

clear because (5.6) is injective. Once we know the unique existence of Dtor˜̀
jQ

, it has

to agree with d log(L) for any L constructed in Lemma 5.10. �

Thus we are led to state the following:

Proposition 5.14. Cup product with the global section Dtor˜̀
jQ

of R1f tor
∗ (Ω

1

Ntor/Mtor
H

)

in Corollary 5.13 induces a composition of morphisms

(5.15) f tor
∗ (DerNtor/Mtor

H
)

∪Dtor˜̀
jQ→ R1f tor

∗ (DerNtor/Mtor
H
⊗

ONtor

Ω
1

Ntor/Mtor
H

)

can.→ R1f tor
∗ (ONtor).

This composition is an isomorphism over Mtor
H ⊗Z

Q. (By Lemma 5.2 and Remark

5.4, this implies the existence of the canonical isomorphism (5.3).)

We will carry out the proof of Proposition 5.14 in the next subsection.
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5C. Induced morphisms over formal fibers. We fix the choices of

{˘̀jQ,τ̆}τ̆∈ΣΦ̆H̃,σ̆,τ
and Ŭ, so that L is constructed as in Lemma 5.10, and so that

Dtor˜̀
jQ

= d log(L) as in Corollary 5.13.

Since f tor is proper and the sheaves involved are all coherent, by Grothendieck’s
fundamental theorem [21, III-1, 4.1.5], Proposition 5.14 can be verified by pulling
back to formal completions along strata of Mtor

H . Let us fix the choice of a cusp
label [(ΦH, δH, σ)] of Mtor

H , and consider the canonical morphism

ı : XΦH,δH,τ
∼= (Mtor

H )∧Z[(ΦH,δH,σ)]
→ Mtor

H .

By abuse of notation, we shall also denote by ı∗( · ) the pullbacks of objects un-
der pullbacks of the morphism ı. We would like to show that the morphism
ı∗f tor
∗ (DerNtor/Mtor

H
) → ı∗R1f tor

∗ (ONtor) defined by cup product with ı∗(Dtor˜̀
jQ

) is

an isomorphism over XΦH,δH,τ ⊗Z
Q.

As said in Section 4A, the pullback of f tor to XΦH,δH,τ can be identified with

the canonical morphism X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

→ XΦH,δH,τ , and X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

has a finite open covering by the collection {U[τ̆ ]}[τ̆ ]∈ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

of open formal

subschemes. Let τ̆ ∈ ΣΦ̆H̃,σ̆,τ
be a representative of [τ̆ ] ∈ ΣΦ̆H̃,σ̆,τ

/ΓΦ̃H̃,ΦH
. For each

such τ̆ , recall that the formal scheme Uτ̆ is the completion of (Ξ̃Φ̆H̃,δ̆H̃
)σ̆(τ̆) along

Uτ̆ . By abuse of notation, let us denote the pullback of Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ) over C̃Φ̆H̃,δ̆H̃

to Uτ̆ by the same notation. For any γ ∈ ΓΦ̃H̃,ΦH
, since ˘̀

jQ,γτ̆ = γ ˘̀
jQ,τ̆ (see Lemma

5.10), we have a canonical isomorphism γ∗Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,γτ̆ )

∼→ Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ), where

γ : Uτ̆
∼→ Uγτ̆ is the canonical isomorphism (see Lemma 4.6). Hence Ψ̃Φ̆H̃,δ̆H̃

(˘̀
jQ,τ̆ )

descends to an unambiguous invertible sheaf Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,[τ̆ ]) on U[τ̆ ].

The étale covering Ŭ → Ntor induces (by taking formal completion along the
pullback of Z[(ΦH,δH,σ)]) an étale (i.e., formally étale and of finite type; see [21, I,

10.13.3]) covering of (Ntor)∧Z[(ΦH,δH,σ)]
. If Uα is a good algebraic (Φ̆H̃, δ̆H̃, τ̆)-model

of Ntor, then the formal completion (Uα)∧Z[(ΦH,δH,σ)]
of Uα along the pullback of

Z[(ΦH,δH,σ)] is étale (in the same sense as above) over Uτ̆ .

Lemma 5.16. The pullback of Lα to (Uα)∧Z[(ΦH,δH,σ)]
is isomorphic to the pullback

of Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ) from Uτ̆ .

Proof. The canonical morphisms

(Uα)∧Z[(ΦH,δH,σ)]
→ Uα → Ntor and (Uα)∧Z[(ΦH,δH,σ)]

→ Uτ̆ → Ntor

are induced respectively by morphisms

(Ũα)∧Z[(ΦH,δH,σ)]
→ Ũα → M̃tor

H̃ and (Ũα)∧Z[(ΦH,δH,σ)]
→ Ũτ̆ → M̃tor

H̃

over M̃tor
H̃

. Under both these morphisms, the pullback of (G̃, λ̃, ĩ, α̃H̃) → M̃tor
H̃

is canonically isomorphic to the pullback of the Mumford family (as in the
proof of Proposition 4.3). Since the isomorphism class of the pullback of Lα to

(Uα)∧Z[(ΦH,δH,σ)]
is determined by the pullback of B(G̃) : SΦ̃H̃(G̃) → Inv(M̃tor

H̃
) (as
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in the proof of Lemma 5.10), we can pullback along (Uα)∧Z[(ΦH,δH,σ)]
→ Uτ̆ → Ntor

and conclude that Lα is isomorphic to the pullback of Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ) from Uτ̆ . �

By Lemma 4.29, we have

ı∗f tor
∗ (ONtor) ∼= f tor

∗ (O(Ntor)∧
Z̃[(ΦH,δH,τ)]

) ∼= H0(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)),

and ı∗R1f tor
∗ (ONtor) ∼= R1f tor

∗ (O(Ntor)∧
Z̃[(ΦH,δH,τ)]

) is equipped with a decreasing fil-

tration with (locally free) graded pieces

Gr0(ı∗R1f tor
∗ (ONtor)) ∼= H0(Nσ̆,τ ,H

1(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

))

and

Gr1(ı∗R1f tor
∗ (ONtor)) ∼= H1(Nσ̆,τ ,H

0(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

)).

Thus, to show that (5.15) is an isomorphism over Mtor
H ⊗Z

Q, it suffices (by com-

parison of ranks of locally free sheaves) to show that it induces surjections from
subquotients of ı∗f tor

∗ (DerNtor/Mtor
H

) to these graded pieces over XΦH,δH,τ ⊗Z
Q.

By tensoring the above filtration with ı∗Ω
1

Ntor/Mtor
H

(and by (3.15)), we obtain a

decreasing filtration on ı∗R1f tor
∗ (Ω

1

Ntor/Mtor
H

) with

Gr0(ı∗R1f tor
∗ (Ω

1

Ntor/Mtor
H

)) ∼= H0(Nσ̆,τ ,H
1(ı∗Ω

1

Ntor/Mtor
H

))

and

Gr1(ı∗R1f tor
∗ (Ω

1

Ntor/Mtor
H

)) ∼= H1(Nσ̆,τ ,H
0(ı∗Ω

1

Ntor/Mtor
H

)).

Since DerNtor/Mtor
H
∼= (f tor)∗(HomO(Q,LieGMH/MH

)), we have

ı∗f tor
∗ (DerNtor/Mtor

H
) ∼= H0(Nσ̆,τ ,H

0(ı∗DerNtor/Mtor
H

)),

and the morphism

ı∗f tor
∗ (DerNtor/Mtor

H
)→ H0(Nσ̆,τ ,H

1(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

))

induced by (5.15) can be identified with the morphism

(5.17) H0(Nσ̆,τ ,H
0(ı∗DerNtor/Mtor

H
))→ H0(Nσ̆,τ ,H

1(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

))

given by cup product with the image of ı∗(Dtor˜̀
jQ

) in Gr0(ı∗R1f tor
∗ (Ω

1

Ntor/Mtor
H

)) ∼=

H0(Nσ̆,τ ,H
1(ı∗Ω

1

Ntor/Mtor
H

)).

For simplicity, let us define X̃ΦH,δH,τ := XΦH,δH,τ ×
CΦH,δH

C̃Φ̆H̃,δ̆H̃
. Then the

structural morphism X̃Φ̆H̃,δ̆H̃,σ̆,τ
→ XΦH,δH,τ factors as X̃Φ̆H̃,δ̆H̃,σ̆,τ

→ X̃ΦH,δH,τ →
XΦH,δH,τ . Over X̃Φ̆H̃,δ̆H̃,σ̆,τ

, there is an exact sequence

0→ (X̃Φ̆H̃,δ̆H̃,σ̆,τ
→ C̃Φ̆H̃,δ̆H̃

)∗(Ω1
C̃Φ̆H̃,δ̆H̃

/CΦH,δH
)

→ ı∗Ω
1

Ntor/Mtor
H
→ Ω

1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

→ 0
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of locally free sheaves, where ı∗Ω
1

Ntor/Mtor
H
∼= Ω

1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/XΦH,δH,τ

. By taking duals,

we obtain an exact sequence

0→ DerX̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

→ ı∗DerNtor/Mtor
H

→ (X̃Φ̆H̃,δ̆H̃,σ̆,τ
→ C̃Φ̆H̃,δ̆H̃

)∗(DerC̃Φ̆H̃,δ̆H̃
/CΦH,δH

)→ 0.

We have similar sequences with X̃Φ̆H̃,δ̆H̃,σ̆,τ
replaced with the locally isomorphic

quotient X̃Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

. (For simplicity, in the notation of such differentials,

we shall suppress the locally isomorphic quotients by ΓΦ̃H̃,ΦH
.)

Since Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ ) is the pullback of an invertible sheaf on C̃Φ̆H̃,δ̆H̃

, the image

of ı∗(Dtor˜̀
jQ

) in H0(Nσ̆,τ ,H
1(ı∗Ω

1

Ntor/Mtor
H

)) lies locally over each Uτ̆ in the image of

(Uτ̆ → CΦH,δH)∗R1h∗(Ω
1
C̃Φ̆H̃,δ̆H̃

/CΦH,δH
)

∼→H 1((Uτ̆ → C̃Φ̆H̃,δ̆H̃
)∗(Ω1

C̃Φ̆H̃,δ̆H̃
/CΦH,δH

))

→H 1(ı∗Ω
1

Ntor/Mtor
H

).

Hence (5.17) factors as

H0(Nσ̆,τ ,H
0(ı∗DerNtor/Mtor

H
))

� H0(Nσ̆,τ ,H
0((X̃Φ̆H̃,δ̆H̃,σ̆,τ

→ C̃Φ̆H̃,δ̆H̃
)∗(DerC̃Φ̆H̃,δ̆H̃

/CΦH,δH
)))

∼→ (XΦH,δH,τ → CΦH,δH)∗R0h∗(DerC̃Φ̆H̃,δ̆H̃
/CΦH,δH

)

→ (XΦH,δH,τ → CΦH,δH)∗R1h∗(OC̃Φ̆H̃,δ̆H̃

)

∼→ H0(Nσ̆,τ ,H
1(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)).

Lemma 5.18. The morphism

R0h∗(DerC̃Φ̆H̃,δ̆H̃
/CΦH,δH

)→ R1h∗(OC̃Φ̆H̃,δ̆H̃

)

defined by cup product with d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ )) depends only on the image ˜̀jQ of

˘̀
jQ,τ̆ in SΦ̃H̃

under the second morphism in (3.6) (and hence is independent of the

choice of ˘̀
jQ,τ̆ ). Moreover, this morphism is surjective over XΦH,δH,τ ⊗Z

Q.

Proof. By forming equivariant quotients and invariants, we may (and we shall)

replace H̃ and H with principal level subgroups of some level n, as in the proof of

Lemma 4.9. Then the morphism h : C̃Φ̆n,δ̆n
→ CΦn,δn is a torsor under its kernel C,

which is an abelian scheme Z×(2)-isogenous to HomO(Q,A)◦ → MZn
n . The restriction

of Ψ̃Φ̆n,δ̆n
(˘̀
jQ,τ̆ ) to C depends only on the image ˜̀jQ of ˘̀

jQ,τ̆ in σ̃∨0 , and is relatively

ample by the same proofs of Corollary 2.12 and Lemma 5.5 (with GMH → MH
replaced with A→ MΦn

n ). Hence the lemma follows. �
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Corollary 5.19. The morphism (5.17) is surjective over Mtor
H ⊗Z

Q. Its kernel is the

subsheaf H0(Nσ̆,τ ,H
0(DerX̃Φ̆H̃,δ̆H̃,σ̆,τ

/X̃ΦH,δH,τ
)) of H0(Nσ̆,τ ,H

0(ı∗DerNtor/Mtor
H

)).

Now consider the induced morphism

H0(Nσ̆,τ ,H
0(DerX̃Φ̆H̃,δ̆H̃,σ̆,τ

/X̃ΦH,δH,τ
)) ↪→ H0(Nσ̆,τ ,H

0(ı∗DerNtor/Mtor
H

))

∼→ R0f tor
∗ (ı∗DerNtor/Mtor

H
)→ R1f tor

∗ (O(Ntor)∧
Z̃[(ΦH,δH,τ)]

)

defined by cup product with ı∗(Dtor˜̀
jQ

). This composition has image in

H1(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)),

because its further composition with

R1f tor
∗ (O(Ntor)∧

Z̃[(ΦH,δH,τ)]

) � H0(Nσ̆,τ ,H
1(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))

is zero (by Corollary 5.19). Thus the question is whether cup product with ı∗(Dtor˜̀
jQ

)

induces a morphism
(5.20)

H0(Nσ̆,τ ,H
0(DerX̃Φ̆H̃,δ̆H̃,σ̆,τ

/X̃ΦH,δH,τ
))→ H1(Nσ̆,τ ,H

0(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

))

surjective over XΦH,δH,τ ⊗Z
Q.

Lemma 5.21. Suppose τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, and ˘̀ ∈ σ̆⊥. Suppose V is an affine open

formal subscheme of X̃ΦH,δH,τ over which the pullback of Ψ̃Φ̆H̃,δ̆H̃
(˘̀) is a principal

ideal of OV generated by some section x. Let U := Uτ̆ ×
X̃ΦH,δH,τ

V and let O
×,gp

U be

the pullback of O
×,gp

Ntor to U. Let

O
×,gp

V := (U→ V)∗(O
×,gp

U ).

Then there exists a canonical injection Ψ̃Φ̆H̃,δ̆H̃
(˘̀) ↪→ O

×,gp

V over V, and the value

of the section d log(x) of (U → V)∗Ω
1

U/XΦH,δH,τ
determines a canonical section of

Ω
1

U/X̃ΦH,δH,τ
(which is independent of the choice of the generator x).

Proof. If we replace x with ax, for some a ∈ O×V , then d log(ax) = d log(a) +

d log(x) = d log(x) because d log(a) = 0 in (U→ V)∗Ω
1

U/XΦH,δH,τ
. �

Corollary 5.22. Suppose τ̆ ∈ ΣΦ̆H̃,σ̆,τ
, and ˘̀∈ σ̆⊥. Then the local generators of

Ψ̃Φ̆H̃,δ̆H̃
(˘̀) in Lemma 5.21 determine a well-defined section of Ω

1

Uτ̆/X̃ΦH,δH,τ
, which

we denote by d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀)).

Proof. Since Ψ̃Φ̆H̃,δ̆H̃
(˘̀) is defined over X̃ΦH,δH,τ (or rather C̃Φ̆H̃,δ̆H̃

), we can always

cover Uτ̆ by open formal subschemes U as in Lemma 5.21. �
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Lemma 5.23. For any τ̆ , τ̆ ′ ∈ ΣΦ̆H̃,σ̆,τ
such that τ̆ and τ̆ ′ are adjacent to each

other, let us define the section u[τ̆ ],[τ̆ ′] of H 0(Ω
1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

)([τ̆ ]
cl ∩ [τ̆ ′]

cl
) to

be

d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ − ˘̀

jQ,τ̆ ′))

(as in Corollary 5.22). Then this is well defined and determines a section u of

H1(Nσ̆,τ ,H
0(ı∗Ω

1

Ntor/Mtor
H

)) that induces by cup product the same morphism as

(5.20).

Proof. If τ̆ and τ̆ ′ are adjacent, then γτ̆ and γ′τ̆ ′ are adjacent for γ, γ′ ∈ ΓΦ̃H̃,ΦH

only when γ = γ′ (by Condition 1.29; cf. Lemma 3.1), in which case

˘̀
jQ,γτ̆ − ˘̀

jQ,τ̆ = γ ˘̀
jQ,τ̆ − ˘̀

jQ,τ̆ = γ ˘̀
jQ,τ̆ ′ − ˘̀

jQ,τ̆ ′ = ˘̀
jQ,γτ̆ ′ − ˘̀

jQ,τ̆ ′

(because ΓΦ̃H̃,ΦH
acts by the same translation on ˘̀

jQ,τ̆ and ˘̀
jQ,τ̆ ′). This shows that

the assignment of u[τ̆ ],[τ̆ ′] is independent of the choices of the respective represen-
tatives τ̆ and τ̆ ′ of [τ̆ ] and [τ̆ ′], and that u is well defined.

Cup product with u induces the same morphism as (5.20) because the canonical
morphism

DerX̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

⊗ ı∗Ω1

Ntor/Mtor
H
→ O(Ntor)∧

Z̃[(ΦH,δH,τ)]

factors through

DerX̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

⊗Ω
1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

→ O(Ntor)∧
Z̃[(ΦH,δH,τ)]

,

and because cup product with the image of ı∗(Dtor˜̀
jQ

) in H0(Nσ̆,τ ,H
1(ı∗Ω

1

Ntor/Mtor
H

))

induces the zero morphism (cf. the paragraph preceding Lemma 5.18). �

Consider any sequence τ̆1, τ̆2, . . . , τ̆k of adjacent cones in ΣΦ̆H̃,σ̆,τ
, such that

τ̆k = γτ̆1 for some γ ∈ ΓΦ̃H̃,ΦH
. The union of the cones in any such sequence form

a subset of Ñσ̆,τ contractible to a path joining a point in τ̆ with its translation
by γ in γτ̆ , whose image in Nσ̆,τ defines a loop. Suppose we have a class s in

H1(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) represented by a collection of sections

s[τ̆ ],[τ̆ ′] ∈H 0(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

)([τ̆ ]
cl ∩ [τ̆ ′]

cl
)

for [τ̆ ], [τ̆ ′] ∈ ΣΦ̆H̃,σ̆,τ
/ΓΦ̃H̃,ΦH

, and suppose we define formally sτ̆ ,τ̆ ′ = s[τ̆ ],[τ̆ ′] for

any τ̆ , τ̆ ′ ∈ ΣΦ̆H̃,σ̆,τ
. Then we can define the path integral of s along the sequence

τ̆1, τ̆2, . . . , τ̆k to be the sum
k−1∑
i=1

sτ̆i,τ̆i+1
.

This defines a morphism

(5.24) H1(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))→ OXΦH,δH,τ
.
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Note that this is a realization of the cap product

H1(Nσ̆,τ ,Z)×H1(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

))

→ H0(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) ∼= OXΦH,δH,τ
.

Lemma 5.25. For any ˘̀ ∈ SΦ̆H̃
that is mapped to ˜̀jQ in σ̃∨0 under the second

morphism in (3.6), the assignment γ 7→ d log(Ψ̃Φ̆H̃,δ̆H̃
(γ ˘̀− ˘̀)) for γ ∈ ΓΦ̃H̃,ΦH

induces a morphism

ΓΦ̃H̃,ΦH
⊗
Z

OX̃Φ̆H̃,δ̆H̃,σ̆,τ
→ Ω

1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

,

which is an isomorphism over X̃Φ̆H̃,δ̆H̃,σ̆,τ
⊗
Z
Q.

Proof. Since γ ˘̀ and ˘̀ have the same image ˜̀jQ in σ̃∨0 under the second morphism

in (3.6), the difference γ ˘̀− ˘̀ lands in σ̆⊥. For any ˘̀′ ∈ σ̆⊥, an elementary matrix

calculation (using any splitting of sX̆ ⊗Z
Q : X̆ ⊗

Z
Q � X̃ ⊗

Z
Q) shows that γ ˘̀′ − ˘̀′

lies in SΦH = (SΦH ⊗Z
Q)∩SΦ̆H̃

(identified as the image of the first morphism in

(3.6)). Therefore, we have (γ1γ2
˘̀− ˘̀) − (γ1

˘̀− ˘̀) − (γ2
˘̀− ˘̀) = γ1(γ2

˘̀− ˘̀) −
(γ2

˘̀− ˘̀) ∈ SΦH , which shows that the assignment γ 7→ γ ˘̀− ˘̀ defines a group

homomorphism ΓΦ̃H̃,ΦH
→ (σ̆⊥/SΦH). By the choice of jQ, the element ˜̀jQ is

represented by a positive definite matrix with respect to any choice of basis, and

hence the homomorphism ΓΦ̃H̃,ΦH
→ (σ̆⊥/SΦH) induced by γ 7→ γ ˘̀− ˘̀ is injective

(by another elementary matrix calculation over Q). By comparison of dimensions,
this shows that the induced injective homomorphism

ΓΦ̃H̃,ΦH
⊗
Z
Q→ (σ̆⊥/SΦH)⊗

Z
Q

is bijective. Since Ω
1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

is generated over OX̃Φ̆H̃,δ̆H̃,σ̆,τ
by

{d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀′)) : ˘̀′ representatives of σ̆⊥/SΦH},

the lemma follows. �

Lemma 5.26. Let τ̆1, τ̆2, . . . , τ̆k be a sequence of adjacent cones in ΣΦ̆H̃,σ̆,τ
, such

that τ̆k = γτ̆1 6= τ̆1 for some γ ∈ ΓΦ̃H̃,ΦH
. Then the composition of (5.20) and

(5.24) is surjective over X̃Φ̆H̃,δ̆H̃,σ̆,τ
⊗
Z
Q.

Proof. If γτ̆1 6= τ̆1, then ˘̀
jQ,γτ̆1 = γ ˘̀

jQ,τ̆1 6= ˘̀
jQ,τ̆1 by the proof of Lemma

5.25. By Lemma 5.25, this implies that d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆1 − ˘̀

jQ,τ̆k)) defines a

nonzero section of Ω
1

X̃Φ̆H̃,δ̆H̃,σ̆,τ
/X̃ΦH,δH,τ

over every U[τ̆ ]⊗
Z
Q. Let t be any section

of H0(Nσ̆,τ ,H
0(ı∗DerNtor/Mtor

H
)). Cup product with u (see Lemma 5.23) sends

t to the class s in H1(Nσ̆,τ ,H
0(O(Ntor)∧

Z̃[(ΦH,δH,τ)]

)) represented (up to a sign

convention) by the collection of sections

s[τ̆ ],[τ̆ ′] ∈H 0(O(Ntor)∧
Z̃[(ΦH,δH,τ)]

)([τ̆ ]
cl ∩ [τ̆ ′]

cl
)
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determined by sτ̆ ,τ̆ ′ = t∪(d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆ − ˘̀

jQ,τ̆ ′))) for any τ̆ , τ̆ ′ ∈ ΣΦ̆H̃,σ̆,τ
.

Therefore, if locally there exists t such that t∪(d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆1 − ˘̀

jQ,τ̆k))) is

the pullback of (local) generators of OXΦH,δH,τ ⊗Z
Q, which is possible by Lemma

5.25, then the path integral

k−1∑
i=1

sτ̆i,τ̆i+1 =

k−1∑
i=1

t∪(d log(Ψ̃Φ̆H̃,δ̆H̃
(˘̀
jQ,τ̆i − ˘̀

jQ,τ̆i+1)))

= t∪(d log(ΨΦ̆H̃,δ̆H̃
(˘̀
jQ,τ̆1 − ˘̀

jQ,τ̆k)))

is defined locally by generators of OXΦH,δH,τ ⊗Z
Q. This shows that the composition

of (5.20) with (5.24) is surjective over X̃Φ̆H̃,δ̆H̃,σ̆,τ
⊗
Z
Q, as desired. �

Corollary 5.27. The morphism (5.20) is surjective over X̃Φ̆H̃,δ̆H̃,σ̆,τ
⊗
Z
Q.

Proof. By Lemma 4.21, (4.25), and Lemma 5.25, the morphism (5.20) is surjective

over X̃Φ̆H̃,δ̆H̃,σ̆,τ
⊗
Z
Q if its composition with (5.24) is surjective over X̃Φ̆H̃,δ̆H̃,σ̆,τ

⊗
Z
Q

for some collection of sequences τ̆1, τ̆2, . . . , τ̆k defining loops in Nσ̆,τ generating
H1(Nσ̆,τ ,Z). Hence the corollary follows from Lemma 5.26. �

Now Proposition 5.14 follows from the combination of Corollaries 5.19 and 5.27.
By Lemma 5.2 and Remark 5.4, Proposition 5.14 implies the existence of the canon-
ical isomorphism (5.3). Thus Corollary 4.36 implies:

Corollary 5.28. For any integer b ≥ 0, we have a canonical isomorphism

Rbf tor
∗ (ONtor) ∼= ∧b(HomO(Q∨,LieG∨/Mtor

H
))

of locally free sheaves over Mtor
H , compatible with cup products and exterior products,

extending the composition of canonical isomorphisms (2.19) over MH.

This completes the proof of (3b) and (3d) of Theorem 2.15, using respectively
(3a) and (3c) of Theorem 2.15. As explained in Section 3E, this also makes (4c) and
(5c) of Theorem 2.15 unconditional. The proof of Theorem 2.15 is now complete.

6. Canonical extensions of principal bundles

6A. Principal bundles. Consider (GMH , λMH , iMH , αH) → MH, the
restriction of the degenerating family (G,λ, i, αH) → Mtor

H , which is iso-
morphic to the tautological tuple over MH; and consider the relative
de Rham cohomology H1

dR(GMH/MH) and the relative de Rham homol-

ogy HdR
1 (GMH/MH) := HomOMH

(H1
dR(GMH/MH),OMH). We have the

canonical pairing 〈 · , · 〉λ : HdR
1 (GMH/MH)×HdR

1 (GMH/MH) → OMH(1)
defined as the composition of (Id×λMH)∗ followed by the perfect pairing

HdR
1 (GMH/MH)×HdR

1 (G∨MH/MH) → OMH(1) defined by the first Chern class of
the Poincaré invertible sheaf over GMH ×

MH
G∨MH . (See for example [14, 1.5].) Under

the assumption that λMH has degree prime to 2, we know that λMH is separable,
that (λMH)∗ is an isomorphism, and hence that the pairing 〈 · , · 〉λ above is perfect.
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Let 〈 · , · 〉λ also denote the induced pairing on H1
dR(GMH/MH)×H1

dR(GMH/MH)
by duality. By [5, Lem. 2.5.3], we have canonical short exact sequences

0→ Lie∨G∨MH/MH
→ HdR

1 (GMH/MH)→ LieGMH/MH
→ 0

and

0→ Lie∨GMH/MH
→ H1

dR(GMH/MH)→ LieG∨MH/MH
→ 0.

The submodules Lie∨G∨MH/MH
and Lie∨GMH/MH

are maximal totally isotropic with

respect to 〈 · , · 〉λ.
Consider the O⊗

Z
C-module

(6.1) L⊗
Z
C→ (L⊗

Z
C)/Ph,

where Ph := {
√
−1x− h(

√
−1)x : x ∈ L⊗

Z
R} ⊂ L⊗

Z
C.

Now suppose there exists a finite extension F ′0 of F0 in C, and a subset 2′

of 2, such that F ′0 is unramified at all primes in 2′, and such that, by setting
R0 := OF ′0,(2′), there exists an O⊗

Z
R0-module L0 such that L0 ⊗

R0

C ∼= (L⊗
Z
C)/Ph.

Once the choice of F ′0 is fixed, the choice of L0 is unique up to isomorphism because
O⊗

Z
R0-modules are uniquely determined by their multiranks. (See [38, Lem. 1.1.3.4

and Def. 1.1.3.5] for the notion of multiranks.) Let

〈 · , · 〉can. : (L0⊕L∨0 (1))×(L0⊕L∨0 (1))→ R0(1)

be the alternating pairing defined by 〈(x1, f1), (x2, f2)〉can. := f2(x1) − f1(x2) (cf.
[38, Lem. 1.1.4.16]).

Definition 6.2. For any R0-algebra R, set

G0(R) :=

 (g, r) ∈ GLO⊗
Z
R((L0⊕L∨0 (1)) ⊗

R0

R)×Gm(R) :

〈gx, gy〉can. = r〈x, y〉can.,∀x, y ∈ (L0⊕L∨0 (1)) ⊗
R0

R

 ,

P0(R) := {(g, r) ∈ G0(R) : g(L∨0 (1) ⊗
R0

R) = L∨0 (1) ⊗
R0

R},

M0(R) := GLO⊗
Z
R(L∨0 (1) ⊗

R0

R)×Gm(R),

where we view M0(R) canonically as a quotient of P0(R) by

P0(R)→ M0(R) : (g, r) 7→ (g|L∨0 (1) ⊗
R0

R, r).

The assignments are functorial in R and define group functors G0, P0, and M0

over R0.

Lemma 6.3. For any complete local ring R over R0 with separably closed residue
field, there is an isomorphism

(L⊗
Z
R, 〈 · , · 〉) ∼= (L0⊕L∨0 (1), 〈 · , · 〉can.) ⊗

R0

R,

and hence an isomorphism G(R) ∼= G0(R). (Consequently, P0(R) can be identified
with a “parabolic” subgroup of G(R).)
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(In practice, it is not necessary to take R to be complete local. Much smaller
rings would suffice for the existence of isomorphisms as in Lemma 6.3.)

In what follows, by abuse of notation, we shall replace MH etc with their base
extensions from Spec(OF0,(2)) to Spec(R0), and replace S0 = Spec(OF0,(2)) with
Spec(R0).

Definition 6.4. The principal P0-bundle over MH is the P0-torsor

EP0
:= IsomO⊗

Z
OMH

((HdR
1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH

),

((L0⊕L∨0 (1)) ⊗
R0

OMH , 〈 · , · 〉can.,OMH(1), L∨0 (1) ⊗
R0

OMH)),

the sheaf of isomorphisms of OMH-sheaves of symplectic O-modules with maximal
totally isotropic O⊗

Z
R0-submodules. (The group P0 acts as automorphisms on

(L⊗
Z

OMH , 〈 · , · 〉λ,OMH(1), L∨0 (1) ⊗
R0

OMH) by definition. The third entries in the

tuples represent the values of the pairings.)

Definition 6.5. The principal M0-bundle over MH is the M0-torsor

EM0 := IsomO⊗
Z

OMH
((Lie∨G∨MH/MH

,OMH(1)), (L∨0 (1) ⊗
R0

OMH ,OMH(1))),

the sheaf of isomorphisms of OMH-sheaves of O⊗
Z
R0-modules. (We view

the second entries in the pairs as an additional structure, inherited from the
corresponding objects for P0. The group M0 acts obviously as automorphisms on
(L∨0 (1) ⊗

R0

OMH ,OMH(1)) by definition.)

These define étale torsors because, by the theory of infinitesimal deformations
(cf. for example [38, Ch. 2]) and the theory of Artin’s approximations (cf. [3, Thm.
1.10 and Cor. 2.5]),

(HdR
1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH

)

and

((L0⊕L∨0 (1)) ⊗
R0

OMH , 〈 · , · 〉can.,OMH(1), L∨0 (1) ⊗
R0

OMH)

are étale locally isomorphic.

Definition 6.6. For any R0-algebra E, we denote by RepE(P0) (resp. RepE(M0))
the category of E-modules with algebraic actions of P0 ⊗

R0

E (resp. M0 ⊗
R0

E).

Definition 6.7. Let E be any R0-algebra. For any W ∈ RepE(P0), we define

EP0,E(W ) := (EP0
⊗
R0

E)

P0 ⊗
R0

E

× W,

called the automorphic sheaf over MH ⊗
R0

E associated with W . It is called an

automorphic bundle if W is locally free of finite rank over E. We define similarly
EM0,E(W ) for W ∈ RepE(M0) by replacing P0 with M0 in the above expression.

Lemma 6.8. Let E be any R0-algebra. If we view an element W ∈ RepE(M0)
as an element in RepE(P0) via the canonical surjection P0 � M0, then we have a
canonical isomorphism EP0,E(W ) ∼= EM0,E(W ).
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6B. Canonical extensions. By taking Q = O, so that HomO(Q,GMH)◦ ∼= GMH

and so that there exists some Z×(2)-isogeny κisog : GMH → N as in Theorem 2.15,

the locally free sheaf H1
dR(N/MH) ∼= H1

dR(GMH/MH) extends to the locally free
sheaf H1

log-dR(Ntor/Mtor
H ) over OMtor

H
. Let

H log-dR
1 (Ntor/Mtor

H ) := HomOMtor
H

(H1
log-dR(Ntor/Mtor

H ),OMtor
H

).

Proposition 6.9. There exists a unique locally free sheaf HdR
1 (GMH/MH)can over

OMtor
H

satisfying the following properties:

(1) The sheaf HdR
1 (GMH/MH)can, canonically identified as a subsheaf of the

quasicoherent sheaf (MH ↪→ Mtor
H )∗(H

dR
1 (GMH/MH)), is self-dual under the

pairing (MH ↪→ Mtor
H )∗〈 · , · 〉λ. We shall denote the induced pairing by

〈 · , · 〉can
λ .

(2) HdR
1 (GMH/MH)can contains Lie∨G∨/Mtor

H
as a subsheaf totally isotropic under

〈 · , · 〉can
λ .

(3) The quotient sheaf HdR
1 (GMH/MH)can/Lie∨G∨/Mtor

H
can be canonically iden-

tified with the subsheaf LieG/Mtor
H

of (MH ↪→ Mtor
H )∗LieGMH/MH

.

(4) The pairing 〈 · , · 〉can
λ induces an isomorphism LieG/Mtor

H

∼→ LieG∨/Mtor
H

which coincides with dλ.
(5) Let H1

dR(GMH/MH)can := HomOMtor
H

(HdR
1 (GMH/MH)can,OMtor

H
). The

Gauss–Manin connection

∇ : H1
dR(GMH/MH)→ H1

dR(GMH/MH) ⊗
OMH

Ω1
MH/S0

extends to an integrable connection

(6.10) ∇ : H1
dR(GMH/MH)can → H1

dR(GMH/MH)can ⊗
OMtor
H

Ω
1

Mtor
H /S0

with log poles along D∞,H, called the extended Gauss–Manin connection,
such that the composition

(6.11) Lie∨G/Mtor
H
↪→ H1

dR(GMH/MH)can

∇→ H1
dR(GMH/MH)can ⊗

OMtor
H

Ω
1

Mtor
H /S0

� LieG∨/Mtor
H
⊗

OMtor
H

Ω
1

Mtor
H /S0

induces by duality the extended Kodaira–Spencer morphism

Lie∨G/Mtor
H
⊗

OMtor
H

Lie∨G∨/Mtor
H
→ Ω

1

Mtor
H /S0

in [38, Thm. 4.6.3.32], which factors through KS (in Definition 1.40) and
induces the extended Kodaira–Spencer isomorphism KSG/Mtor

H /S0
in (4) of

Theorem 1.41.

With these characterizing properties, we say that (HdR
1 (GMH/MH)can,∇) is the

canonical extension of (HdR
1 (GMH/MH),∇).

Proof. The uniqueness of HdR
1 (GMH/MH)can is clear by the first four proper-

ties. To show the existence, let us take HdR
1 (GMH/MH)can to be the sheaf

H log-dR
1 (Ntor/Mtor

H ) (for Q = O, as mentioned before this proposition). It is locally
free with a Hodge filtration by (3c) of Theorem 2.15. Moreover, by taking some
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integer N > 0 prime-to-2 such that N Diff−1 ⊂ O, we obtain by multiplication by
N a morphism jQ : Q∨ ∼= Diff−1 ↪→ Q = O as in Lemma 2.5 such that pullback by

κisog identifies 〈 · , · 〉λMH,jQ
: H1

dR(N/MH)×H1
dR(N/MH) → OMH(1) canonically

with 〈 · , · 〉λMH
: H1

dR(GMH/MH)×H1
dR(GMH/MH)→ OMH(1). Then (1), (2), and

(3) follow from (3d) of Theorem 2.15, and (4) follows from Proposition 5.14 (which
is used to prove (3b) of Theorem 2.15). It remains to verify (5). By definition,
H1

dR(GMH/MH)can ∼= H1
log-dR(Ntor/Mtor

H ). The existence of ∇ in (6.10) follows
from (3e) of Theorem 2.15. By Remark 4.42, the pullback of (6.11) to MH is
induced by the usual Kodaira–Spencer class. Since the extended Kodaira–Spencer
morphism in [38, Thm. 4.6.3.32] is defined exactly as a morphism induced by the
usual Kodaira–Spencer morphism (by normality of Mtor

H and local freeness of the
sheaves involved), it is induced by duality by (6.11), as desired. �

Remark 6.12. The notion of canonical extensions is closely related to the notion
of regular singularities of algebraic differential equations. (See [13] and [34] for
the notion of regular singularities. See [45], [16, Ch. VI], [24], [25], and [40] for
the notion of canonical extensions over C, and see [42] for an earlier treatment of
canonical extensions in mixed characteristics. See in particular [24, Thm. 4.2] for
the explanation of why and how the two notions are related.)

Then the principal bundle EP0 extends canonically to a principal bundle Ecan
P0

over Mtor
H by setting

Ecan
P0

:= IsomO⊗
Z

OMtor
H

((HdR
1 (GMH/MH)can, 〈 · , · 〉can

λ ,OMtor
H

(1),Lie∨G∨/Mtor
H

),

((L0⊕L∨0 (1)) ⊗
R0

OMtor
H
, 〈 · , · 〉can.,OMtor

H
(1), L∨0 (1) ⊗

R0

OMtor
H

)),

and the principal bundle EM0
extends canonically to a principal bundle Ecan

M0
over

Mtor
H by setting

Ecan
M0

:= IsomO⊗
Z

OMtor
H

((Lie∨G∨/Mtor
H
,OMtor

H
(1)), (L∨0 (1) ⊗

R0

OMtor
H
,OMtor

H
(1))).

Definition 6.13. Let E be any R0-algebra. For any W ∈ RepE(P0), we define

Ecan
P0,E(W ) := (Ecan

P0
⊗
R0

E)

P0 ⊗
R0

E

× W,

called the canonical extension of EP0,E(W ), and define

Esub
P0,E(W ) := Ecan

P0,E(W ) ⊗
OMtor
H

ID∞,H ,

called the subcanonical extension of EP0,E(W ), where ID∞,H is the OMtor
H

-ideal

defining the relative Cartier divisor D∞,H (with its reduced structure) in (3) of
Theorem 1.41. We define similarly Ecan

M0,E
(W ) and Esub

M0,E
(W ) with P0 (and its

principal bundle) replaced accordingly with M0 (and its principal bundle).

Lemma 6.14. Let E be any R0-algebra. If we view an element in W ∈ RepE(M0)
as an element in RepE(P0) in the canonical way, then we have canonical isomor-
phisms Ecan

P0,E
(W ) ∼= Ecan

M0,E
(W ) and Esub

P0,E
(W ) ∼= Esub

M0,E
(W ).
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6C. Fourier–Jacobi expansions. Let us fix a representative (ZH,ΦH, δH) of a
cusp label [(ZH,ΦH, δH)] for MH (as in Section 1C). As usual, we shall omit ZH
from the notation.

Definition 6.15. The principal M0-bundle over CΦH,δH is the M0-torsor

EΦH,δH
M0

:= IsomO⊗
Z

OCΦH,δH
((Lie∨G∨,\/CΦH,δH

,OCΦH,δH
(1)),

(L∨0 (1) ⊗
R0

OCΦH,δH
,OCΦH,δH

(1))),

with conventions as in Definition 6.5.

Then we define EΦH,δH
M0,E

(W ) for any R0-algebra E and any W ∈ RepE(M0) as in
Definition 6.7.

Lemma 6.16. Let E be any R0-algebra. For any W ∈ RepE(M0), there is a
canonical isomorphism

(XΦH,δH,σ → Mtor
H )∗Ecan

M0
(W ) ∼= (XΦH,δH,σ → CΦH,δH)∗EΦH,δH

M0
(W ).

Proof. This is because of the canonical isomorphism

(XΦH,δH,σ → Mtor
H )∗Lie∨G∨/Mtor

H
∼= (XΦH,δH,σ → CΦH,δH)∗Lie∨G∨,\/CΦH,δH

. �

By the construction of XΦH,δH,σ → CΦH,δH as a formal completion, we have a
natural morphism

(XΦH,δH,σ → CΦH,δH)∗OXΦH,δH,σ
→

∏
`∈SΦH

ΨΦH,δH(`)

of OCΦH,δH
-modules. By Lemma 6.16, we have the composition of canonical mor-

phisms

Γ(Mtor
H , Ecan

M0
(W ))→ Γ(XΦH,δH,σ, (XΦH,δH,σ → Mtor

H )∗Ecan
M0

(W ))

→ Γ(XΦH,δH,σ, (XΦH,δH,σ → CΦH,δH)∗EΦH,δH
M0

(W ))

→
∏

`∈SΦH

Γ(CΦH,δH ,ΨΦH,δH(`) ⊗
OCΦH,δH

EΦH,δH
M0

(W )),

which we call the morphism of algebraic Fourier–Jacobi expansions.

Definition 6.17. The `-th algebraic Fourier–Jacobi morphism

Γ(Mtor
H , Ecan

M0
(W ))→ Γ(CΦH,δH ,ΨΦH,δH(`) ⊗

OCΦH,δH

EΦH,δH
M0

(W ))

is the `-th factor of the morphism of algebraic Fourier–Jacobi expansions.

Remark 6.18. If GrZ−1 = {0}, then the abelian scheme CΦH,δH → MZH
H is trivial (i.e.,

the structural morphism is an isomorphism), and MZH
H is finite over S0 = Spec(R0).

Hence Γ(CΦH,δH ,ΨΦH,δH(`) ⊗
OCΦH,δH

EΦH,δH
M0

(W )) ∼= Γ(MZH
H ,O

M
ZH
H
⊗
R0

W ). In this

case, the Fourier–Jacobi expansions are often called q-expansions (because no gen-
uine “Jacobi theta functions” are involved).
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de l’Université de Strasbourg XV, Actualités scientifiques et industrielles, vol. 1341, Hermann,
Paris, 1969.

7. S. Bosch, W. Lütkebohmert, and M. Raybaud, Néron models, Ergebnisse der Mathematik und
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bruch et al. [30], pp. 321–383.
16. G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und

ihrer Grenzgebiete, 3. Folge, vol. 22, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

17. W. Fulton and J. Harris, Representation theory: A first course, Graduate Texts in Mathe-
matics, vol. 129, Springer-Verlag, Berlin, Heidelberg, New York, 1991.
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