INTEGRAL MODELS OF TOROIDAL COMPACTIFICATIONS
WITH PROJECTIVE CONE DECOMPOSITIONS

KAI-WEN LAN

ABSTRACT. We construct integral models of toroidal compactifications of PEL-
type Shimura varieties with projective cone decompositions as normalizations
of certain explicit blowups of the corresponding minimal compactifications,
generalizing works of Tai’s, Chai’s, Faltings and Chai’s, and the author’s in
zero or good reduction characteristics. We show that such integral models still
enjoy many features of the good reduction theory, regardless of the levels and
ramifications involved.
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1. INTRODUCTION

In the works of Tai’s [, Ch. IV, Sec. 2], Chai’s [4, Ch. IV], Faltings and Chai’s [5]
Ch. V, Sec. 5], and the author’s [I5] Sec. 7.3] in zero or good reduction characteris-
tics, it was shown that, with the notation in [I5], when the level H of the relevant
Shimura variety or PEL moduli problem My is neat, the toroidal compactifica-
tion M';jfz defined by a compatible collection ¥ of projective cone decompositions
(satisfying certain other running assumptions in each of the works) is canonically
isomorphic to the normalization Mgfl’fdgpol of some explicit blowup of the minimal
compactification Mﬁi“, where pol is a compatible collection of polarization functions
for the corresponding ¥, and where dy > 1 is some integer depending on pol.
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In this article, we will show that, when the image H? of H under the canoni-
cal homomorphism G(Z) — G(ZP) is neat, such normalizations of blowups provide
p-integral models M%-cl)fdopol of toroidal compactifications of PEL-type Shimura va-
rieties in all characteristics, which still enjoy many features of the good reduction
theory, regardless of the levels and ramifications involved at p. For example, we
will show that they admit stratifications by locally closed subschemes, with formal
completions along the strata comparable with the completions of certain putative
boundary charts parameterizing degeneration data of PEL structures, extending
the familiar ones in zero and good reduction characteristics. We will also show that
they carry semi-abelian schemes which are universal in a sense that can be made
precise using the theory of degeneration of PEL structures developed in [5] and [I5].

The idea will be to make use of the integral models I\_/'Igi’fz, constructed by taking
normalizations over good reduction auxiliary models as in [18, Sec. 7] (where the X’

here is the ¥ there), which were constructed only for those ¥’ induced by certain

auxiliary ones; and compare them with I\_/Igf[)fdopol with the help of the putative

boundary charts as in [I8, Sec. 8] defined for some common projective smooth
refinements ¥ of ¥ and ¥'. As a result, we can construct I\_/»Ig,_‘zrE (with desired
properties) not just for those X’s induced by auxiliary ones as in [I8| Sec. 7], but
for all projective ¥’s (satisfying the mild [I5, Cond. 6.2.5.25]).

While for many applications the choices of cone decompositions hardly matter,
such a construction still has the following advantages.

Firstly, we now have a uniform construction of integral models of toroidal com-
pactifications in arbitrarily ramified characteristics, for a large and familiar class
of cone decompositions which can be qualitatively described, without the need to
even mention any auxiliary choices of good reduction models of toroidal compact-
ifications. While it is still true that we need the auxiliary models in the proofs,
the fact that the constructions and results can be formulated without them is not
meaningless. By more practically knowing which cone decompositions are allowed
in the constructions, we can more easily generalize arguments involving simultane-
ous refinements of cone decompositions (see, for example, [T4, Prop. 3.19]). Hence,
we consider the construction here a practical improvement over that in [I§].

Secondly, we can write down invertible sheaves over the integral models of
toroidal compactifications that are relatively ample over the corresponding inte-
gral models of minimal compactifications (see Corollary below). Such relatively
ample invertible sheaves have played crucial roles in many of our earlier works in
good reduction characteristics, such as [20], [21], and [I7]. (See, for example, the
results in Section ) We believe that they should be provided in any sufficiently
complete theory of toroidal and minimal compactifications.

Thirdly, even for Ay, the Siegel moduli of principally polarized abelian schemes
of relative dimension g, it is not clear whether one can construct its toroidal com-
pactification, with the usual expected properties (other than smoothness), for all
(possibly nonsmooth) cone decompositions (see [24, Rem. 4.1.10]). Although we
have not addressed this issue either—indeed, our assumption that the level is neat
trivially ruled out A,—at least at neat levels, the construction in this article will
allow all projective cone decompositions satisfying the relatively mild [15, Cond.
6.2.5.25]. (In particular, even in good reduction characteristics, we will obtain in-
tegral models of toroidal compactifications not already constructed in [5] and [15].)
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Fourthly, except at places where we consider semi-abelian schemes over the in-
tegral models of toroidal compactifications, the rest of the arguments will not just
work for the PEL-type setting, but also for more general types of Shimura vari-
eties, as soon as good integral models of the minimal compactifications and some
(possibly rather restrictive) classes of good toroidal compactifications have been
constructed.

Here is an outline of this article.

In Section [2] we introduce the PEL moduli problem My at level H in char-
acteristic zero, and review the notion of compatible collections of projective cone
decompositions and their polarization functions, which we denote by the symbols X
and pol, respectively, and summarize (after some minor modification or correction)
certain known facts in the literature that will be used later. (We also take this
opportunity to fix a minor error in the literature; see Remark below.)

In Section we construct certain integral models I\7I§f[’fdpo| of toroidal compactifi-

cations of My as normalizations NBI 7 o |(I\_/'Iﬁin) of certain blowups of the integral

models Mmln of minimal compactifications of My constructed in [I8), Sec. 6], along
some coherent ﬁMmm -ideals jH .dpol defined by multiples dpol of pol, for d € Z>;.
In Section |4 I, for each representatlve (P, Z3,) of cusp label for MH, which define
some stratum Z[@H z,)) of I\/Imln by studying the pullback of JH .dpol tO certain
putative boundary chart L{@H 54 /T®,, (based on the constructions in [I5] Sec. 6.2]
and [I8, Sec. 8]), we show that there is a canonical morphism from X, o, /Ta,, to
( \/tor )/\

H.dpol , the formal completion of Mg-cl)rdpol along the preimage of Z[@H}ZH)]

Zi(oyy
in M%dpo“ for all sufficiently divisible d.

In Section [5} we show that such canonical morphisms are isomorphisms for all
sufficiently divisible d. Then we deduce from this and from general facts about
blowups that, for all sufficiently divisible d, the schemes I\/IH "dpol are canonically

isomorphic to each other. Henceforth, we may and we shall abusively write Mto’r
instead of ngrdpo, (It will be justified later that M“’r does not depend on pol at

all.) Moreover, the above-mentioned isomorphisms allow us to stratify I\/Itor by
locally closed subschemes with familiar parameterizations and incidence relatlons
(as in [I5] Thm. 6.4.1.1(2)]), such that the formal completions of Mg_(zrz along the
strata are canonically isomorphic to the corresponding formal completions of the
putative boundary charts. Based on this, by a descent argument as in [I8], Sec. 11],
we show that the tautological objects over My extend to semi-abelian degenerating
families over |\/|tor

In Sectlon@ we summarize our main results in T heorem [6.1] in a format similar
to those of [I5, Thm. 6.4.1.1 and 7.2.4.3]. Moreover, in the same theorem, we also
state and prove that Mtor is universal among base schemes carrying semi-abelian
degenerations of certaln patterns determined by X. In particular, up to canonical
isomorphism, Mtor depends only on 3, but not on pol. (This, finally, justifies the
notation of Mtor ) The statements are admittedly very lengthy, but in practice we
have found it more useful to have a place where almost all important information
can be found. We also include the Corollary [6.7] concerning invertible sheaves over
Mtor that are relatively ample over l\_/l'ﬁi“, and record some byproducts concerning
local properties along the boundary (as in [I8, Sec. 14]).



4 KAI-WEN LAN

In Section [7} we explain how the functorial morphisms and Hecke actions in [I8]
Sec. 13] can be defined for the toroidal compactifications constructed here. We also
record some important facts about higher direct images of structural sheaves and
boundary ideals under the canonical morphisms between toroidal compactifications,
and about the canonical extensions of relative first de Rham homology groups of
the tautological abelian schemes over the integral models.

In Section [§] we show that, under mild assumptions on the coefficient modules,
the analogue of the vanishing of higher direct images under the canonical morphisms
from toroidal compactifications to minimal compactifications as in [I7, Thm. 3.9]
remain valid in the context of this article. (Such vanishing have played crucial
roles in several recent developments in the constructions of p-adic automorphic
forms and p-adic Galois representations. See the overviews in [I0], [16, Sec. 8.2],
[19], and [17]. The generalization here is not completely routine, because it allows
nonordinary loci and arbitrary levels and ramifications.) When O %Q is a simple

Q-algebra, we also show that the analogue of Koecher’s principle as in [I7, Thm.
2.3] holds here. (Both of these allow general coefficient rings not necessarily flat
over Z(p))

We shall follow [I5], Notation and Conventions| unless otherwise specified. While
for practical reasons we cannot explain everything we need from [15], we recommend
the reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. We recommend that the reader go
through the review materials in [I4, Sec. 1; see also the errata] before reading
Section [2| below. It is not necessary to have completely mastered the techniques in
[18] before reading this article.

2. PROJECTIVE CONE DECOMPOSITIONS

Suppose we have an integral PEL datum (O, *, L, (-, -),ho), where O is an
order in a semisimple algebra finite-dimensional over Q, together with a positive
involution x, and where (L, (-, -}, hg) is a PEL-type O-lattice as in [15] Def. 1.2.1.3],
which defines a group functor G over Spec(Z) as in [I5, Def. 1.2.1.6], the reflex
field Fy (as a subfield of C) as in [I5, Def. 1.2.5.4], and a moduli problem My
over Sy := Spec(Fp) as in [I5, Def. 1.4.1.4] (with O = ) there). Suppose that L
satisfies [15, Cond. 1.4.3.10]. (This is harmless in practice, as explained in [I5]
Rem. 1.4.3.9].)

Definition 2.1 (cf. [I5, Cond. 6.3.3.2 and Def. 6.3.3.4]). A compatible collection
of admissible rational polyhedral cone decomposition data for My is a
complete set ¥ = {Xa,, }(@,.,5,)] of compatible choices of Y, (satisfying [13,
Cond. 6.2.5.25]) such that, for every surjection (®y,09) — (Y, 0%,) of represen-
taties of cusp labels, the cone decompositions Yo, and Yg: define a surjection
(Pre, O3ty Ty, ) — (P, 04y, qu) as in [15, Def. 6.2.6.4].

Definition 2.2. We shall say that a compatible collection ¥ in Definition 18
smooth if the cone decomposition Lg,, is smooth as in [15, Def. 6.1.1.12], for each
representative (Py, d¢) of cusp label for My,.

Remark 2.3. Every ¥ induced by some auxiliary choices as in [I5, Sec. 7] is a
(possibly nonsmooth) compatible collection as in Definition
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Remark 2.4. We remind the reader that, for each representative (¥4, d%) of cusp

label, the cone decomposition ¥¢,, is a decomposition (satisfying certain proper-

ties) of the set Pg,, of positive semi-definite O ® R-valued Hermitian pairings with
Z

rational radicals over some O ® Q-module defined by ®4. (See the beginning of [15]
V

Sec. 6.2.5], and the references from there to earlier sections in [I5].) In addition to
our recommendation of [I4, Sec. 1] at the end of Section [I} the reader might also
find the review materials in [I6, Sec. 1.1.1, 1.1.2, 1.2.1, 1.2.2, and 1.3.1] helpful.

Definition 2.5 (see [15, Def. 7.3.1.1]). Let ¥s,, = {0;}jecs be any I's,, -admissible
rational polyhedral cone decomposition of Pg,,. An (invariant) polarization
function on Pg,, for the cone decomposition Xg,, is a I's,, -invariant continuous
piecewise linear function polg,, : Pe, — R>o such that:
(1) polg,, is linear (i.e., coincides with a linear function) on each cone oj in
g, - (Therefore, polg,, (tx) = tpolg, (z) for all v € Py, andt € Rxq.)
(2) polg, ((Pa, NSy, )—{0}) C Zso. (Therefore, polg,, (z) > 0 for all nonzero
z in Pg,,.)
(3) polg,, is linear (in the above sense) on a rational polyhedral cone o in Pg,,
if and only if o is contained in some cone oj in Xa,, .
(4) For all z,y € Pg,,, we have polg,, (z +y) > polg,, (z) + polg,, (y). This is
called the convexity of polg,, .
If such a polarization function exists, then we say that the I'g,, -admissible rational
polyhedral cone decomposition X, is projective.

Proposition 2.6 (cf. [I, Ch. II], [B, p. 173], and [15, Prop. 7.3.1.2]). Suppose
polg,, : Pa, — Rxq is any polarization function as in Definition @

(1) Kpoly,, = {z € Pg,, : polg,, (x) > 1} is a conver subset of Pg,, — {(E such
that R>q 'Kp°'<1>u = Kpoly,,, and RZO'Kpolq>H D Pg,,, whose closure Kp0|q>H
in (Sa,,)§ is a cocore in the context of [I, Ch. II, Sec. 5]. For simplicity,
we shall also call KP°|<I>,H a cocore.

(2) The dual KI\J’OLI>H = {z € Sg,, %R t(zy) 2 1Vy € Kol } of Koo,

is a convex subset in (R>q - Pg,,)°, the interior of R>q - Pg,,, such that
R>q - vaolcbH = K;/o|,1>H and R - KPOLLH = (R>¢ - Pg,,)°, which is a core
in the context of [1, Ch. II, Sec. 5].

(3) The top-dimensional cones o in the cone decomposition X, correspond
bijectively to the vertices £ of the core K;/dq) , which are linear forms whose

restrictions to each o coincide with the restriction of polg,, to o.

Definition 2.7 (cf. [15, Def. 7.3.1.3]). We say that a compatible collection ¥ =
{Zas H(@a.00)) @S in Deﬁnition is projective if it satisfies the following con-
dition: There is a compatible collection pol = {poly, : Pa, — R>0}[(@.55)]
of polarization functions labeled by representatives (Pyy,03) of cusp labels, each
polg.,, being a polarization function of the cone decomposition Xg,, in X (see Def-
ination , which are compatible in the following sense: For every surjection
(Ppe, 0) = (DY, 0%) of representatives of cusp labels (see [15), Def. 5.4.2.12]) in-
ducing an embedding Py, — Po, , we have po|¢H|p®,H = poI(D/H. In this case,
because of condition of Deﬁnition we also say that 3 is induced by pol.

Proposition 2.8 (cf. [15, Prop. 6.3.3.5 and 7.3.1.4] and [I16, Prop. 1.2.2.17]).
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(1) A compatible choice X of admissible rational polyhedral cone decomposition
data for My, as in Definition [2.1], exists. Moreover, we may assume that
¥ is smooth as in Definition[2.2], or projective as in Definition 2.7, or both.

(2) Given any ¥ and ¥/, we can find a common refinement for them, which
we may require to be smooth, or projective, or both. The same is true if
we allow varying levels or twists by Hecke actions (see [I5], Def. 6.4.2.8 and
6.4.3.2]). We may assume that this common refinement is invariant under
any choice of an open compact subgroup H' of G(A>) normalizing H.

Proof. See the proof of [16, Prop. 1.2.2.17] and the references made there (to [25]
5.21, 5.23, 5.24, 5.25] and [12, Ch. I, Sec. 2, Thm. 11 on pp. 33-35]). |

Remark 2.9. By the last statement of [0, Prop. 3.4], since we have assumed (for
simplicity) that the auxiliary compatible collections of cone decompositions in [I5]
Sec. 7] are all projective, the induced ¥ there is projective as in Definition

Lemma 2.10 (cf. [5, Ch. V, Lem. 5.3] and [I5, Lem. 7.3.1.7]). Let ¥ and pol
be as in Definition . For each open compact subgroup H of G(Z), there is an
open compact subgroup H' C H (which can be taken to be normal) such that the
compatible collections XM = (e, H(@4y .5, and poI(H,) = {polq,w}[(q)w’(;w)]
defined in [I5, Constr. 7.3.1.6] for My satisfy the following condition: For each
lzftmg ‘P’HI = (X, Y,Qﬁ,g@,g)q.[/,(po’ﬂ/) Of (PH = (X,K(b,(p,zyﬁpo}%) to l@’l]@l Hl,
and for each vertex £y of KF\’/OLI)H, corresponding to a top-dimensional cone oy in

Yo, , we have
(2.11) (lo,x) < (v Lo, x)
forallxz € 5o N Pgw and all v € 'y, such that v # 1.

Lemma 2.12 (cf. [5, Ch. V, Lem. 5.4]). Let o be a top-dimensional cone in
Yo, , which corresponds to a vertex Ly, of K;/olq . Then there exist elements
PH

loty-oslon, of Se, NKY. (which are not necessarily vertices of KPVOLpH) such

POlq,,H
that
(213) Rsp-0’ = > Reo-(U—tloo)= > Ryo:(loi—Loo).
LE€Sq,, N KPVO,(I>H 1<i<n,
Proof. Let 11,..., 7. be all the one-dimensional faces of o. For each 1 < 5 < r, con-

sider the unique element y; of 7; such that S(\I’)H NT7; = Z>1-Y;, so that Kpolq>H Nt =
R>q - (polqm (yj)*lyj). For each j, let L; := {z € So,, %}R Hx,yy) = polg,, (yi)}
Then £, is the intersection of Li,..., L, by definition, and L; N KI\J’OLI>H is a top-
dimensional face of Kpq . for each j, whose vertices are in Sg,, N vaolq>H because
y; € S%H and polg, takes integral values on S%H. Consequently, the R>¢-span of
£—"Lg forall £ € vam% can be identified with the two outside members of ,

for some finitely many (5 1,...,0lsn, € Sa, ﬁvadq) , as desired.
H

Remark 2.14 (cf. [5, Ch. V, Sec. 5, p. 175, Rem.]). The integral version of Lemma
is not true in general. We cannot replace R>o with Zx>¢ in . This
difference is immaterial because we are taking normalizations of the blowups we
consider. (But this is one of the reasons that we have to take normalizations.)
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Remark 2.15 (Erratum). The literal statements of [, Ch. V, Lem. 5.4], which
are stronger than those of Lemma [2.12] are unfortunately flawed. For example, if
P;FH = Rs¢ = o, then there are no other top-dimensional cones at all, and hence [5]
Ch. V, Lem. 5.4] asserts that ¥ = {0}—but ¢ is certainly nonzero. This error was
inherited from a similar error in [I, Ch. IV, Sec. 2, p. 330] (which was still present
in the recent revision in [2, Ch. IV, Sec. 2, p. 211]), and was in turn inherited by [5]
Ch. V, Lem. 5.5] and [I5, Lem. 7.3.1.9]. Nevertheless, all of these can be fixed by
slightly weakening their statements, by also allowing some of ¢, 1,...,%45, to be
non-vertices as in Lemma m which still suffice for the proofs in [, Ch. IV, Sec.
2], [B, Ch. V, Sec. 5], and [15], Sec. 7.3.3] (after relatively minor changes). (See the
errata of [I5] and the latest revision of [I3], both available at the author’s website.)

3. MAIN CONSTRUCTIONS

Construction 3.1 (cf. [15, Def. 7.3.3.1]). Let ¥ be a compatible collection that is
projective, with a compatible collection pol of polarization functions, and let X" be
a projective smooth refinement of 3 (which always exists by Proposition , as in
Definitions[2.1] and[2.7] (If ¥ is already smooth, we may take X to be ¥ itself.)
Let Mgft’fz,, be as in [I5, Thm. 6.4.1.1 and 7.2.4.3] (which is a scheme projective and
smooth over Sg = Spec(Fp)). By [I5, Thm. 6.4.1.1(3)], the complement Do, 3y of
My, in M., (with its reduced structure) is a relative Cartier divisor with normal
crossings, each of whose irreducible components is an irreducible component of
some 7[@%5%0)] that is the closure of some strata Zjs,, s, ) labeled by the
equivalence class [(®y, 03, 0)] of some triple (Py, d3;,0) with o a one-dimensional
cone in the cone decomposition ¥g_ of Pg, . Let 73 pol, s be the invertible sheaf
of ideals over My, supported on Do 7 5 such that the order of 7 pol, s along

each 7[@%5%0)] is the value of polg, at the Z-¢-generator of o N Sgﬂ for some
(and hence every) representative (®y,dy,0). This is well defined because of the
compatibility condition for pol = {polg,, }[(®;,5,)] as in Definition For each
d € Z>1, let dpol denote the compatible collection of polarization functions defined
by multiplying all polarization functions in the collection pol by d. Then we have
a canonical isomorphism 73 gpol, s = j%jf)ol,E”'

Lemma 3.2. In Construction|3.1], suppose there exists a refinement X' of ¥ such
that X" is a refinement of X', and such that My, is also defined (either as in [15)
Thm. 6.4.1.1] when X' is smooth, or as in [18, (7.10)] when ¥ is induced by some
auziliary choices), with a canonical proper surjection Mg_‘;fz,, — Mg_‘zfz, (as in [15]
Prop. 6.4.2.3] or [18, Lem. 9.8]). Then the coherent Oyuor_-ideal

(33) JH . dpol,>! = (Mg-c[)fzﬂ — Mt}?le)*]?-t,dpol,i)”
1s invertible, and depends only on X'. Thus, if X' can be taken to be X itself, then
(3.4) Jrdpol = (M5 = M35 ) 724, dpol, 50

is invertible and independent of the choice of ¥

Proof. Since invertibility of coherent sheaves can be checked by pullback to comple-
tions by fpqc descent (cf. [7} VIII, 1.11]), it suffices to show that, for each represen-
tative (@4, d3;) of cusp label for My, and for each o € % satisfying o C P;ﬁﬂ, the
pullback of 73 dpol tO (M%f[fz,)/z\[@%gﬂﬁ)] >~ Xo,,,5,,0 (by [15, Thm. 6.4.1.1(5)] or [18|

Thm. 10.13]) is invertible. Also, since the canonical morphism M, — M, is
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proper, by [8, ITI-1, 4.1.5], taking direct images commute with pulling back to formal
completions of the target. Consider (as in [I8, (10.5), (10.6), (10.7), (10.8)]) the for-

mal completion X3 5 _ of Ea,,.5, (0)" = U E®,,,5,, (7) along the closed
HHOH TEE&;H,TC(T

=/ —
subscheme =g 5 . :

= E&,,,64,7, Which induces a canonical proper sur-
TEXY ,7Co T
Gy

jection Xg_ 5. . — X&,,,6,,0 Which can be identified (as explained in the proof of

[18, Thm. 10.13]) with the pullback of M., — My, to (M%_‘zfg,)g(@%a%g”.
By the same argument as in the second paragraph of [I5, proof of
Thm. 7.3.3.4(1)], the pullback of 3 gpoi, v to the open formal subscheme

11 — 1" = 11
Xp, 607 = Xb, 5,0 X ) S0 (1) of Xi, 5, , corresponds to the
:<DH,5H(U)
sub-Op, -module & Vs, 5, (0) of Oxn > D Uy, 5, (0)
T (Cy)zdpoly, (y)Vyer TadwT ey T

and hence (by [8 III-1, 4.1.5]) the pullback of J3 dpol t0 X@,,,6,, 0 corresponds to the

sub-0 -module &) \J {) of O ~ & U Y4
Crron (y)2dpoly, (y),Vyco 0 (4) o LeaY e (4)

(where the sums & all denote the formal completions with respect to the topology
induced by that of X, s,,0), which is invertible because the restriction of polg,,
to any cone in Xg,, is a linear function by definition (see of Definition ,
and because ¥ and ¥j_ are refinements of Y¥g,,. O

HOH T

Definition 3.5 (see [15, Sec. 7.3]; cf. [B, Ch. V]). For any H, %, pol, and ¥ as
in Construction[3.1], and for each d € Z>1, let

d Y
(36) jH,del = \7’;{’3}& = (fH,E”)*(J%i)Ol) - (fH7E//)*jH7dpo|a

where the canonical morphism §,, ., : M s — MEn is as in [15, Thm. 7.2.4.1(3)].
Then we also define

(3’7) MP}-(L)pooI = NBIJH,dpm(M%in)a
where NBL. (+) denotes the normalization of the blowup (see [15, Def. 7.3.2.1]).
Remark 3.8. We introduced the notation jigz)o, for the sake of consistency with

[5L Ch. V] and [I5 Sec. 7.3]. Later we will mainly use J3;,dpol and 7z dpol in our
exposition. Note that Jz dpol is a coherent ﬁME’:in—ideal because f?—t s 18 proper and

because the canonical morphism Oy — (45, 2,,)*@\,,;?2” is an isomorphism. By
Lemma J1.dpol does not depend on the choice of ¥”, and coincides with the
T dpol = J']ELdz)oI in [15, Sec. 7.3] when ¥ is (projective and) smooth.

Let us introduce the following condition for any ¥ and pol (cf. [I5 Lem. 7.3.1.7])
as in Definition

Condition 3.9. (See [I5] Cond. 7.3.3.3]; ¢f. [1, Ch. IV, Sec. 2, p. 329] and [5], Ch.
V, Sec. 5, p. 178].) For each representative (P, d3;) of cusp label for My and each
vertex £y of KF\)/olq, corresponding to a top-dimensional cone oy, we have

H

(lo,x) < (7o, )
for allx € 5o NPY_ and all v € Ty, such that v # 1.
Dqy H

Then we have the following prototype for the later constructions and results:
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Theorem 3.10 (see [15, Thm. 7.3.3.4] and [16], Thm. 1.3.1.10]; cf. [I, Ch. IV, Sec.
2.1, Thm.] and [5, Ch. V, Thm. 5.8]). Suppose H is neat, and suppose ¥ is projective
smooth with a compatible collection pol of polarization functions, as in Definitions

and 2.7, For each d € Z>1, suppose Ju dpol is defined over M’y as in
Construction (with X" = X there), or equivalently as in (3.4) (by Lemma[3.2)),
g

and suppose Ju dpol 15 defined over M%in as in Definition Then there exists
do € Z>1 such that the canonical morphism f;lz T, dopol * ﬁ'\"%‘ifz — JH,dopol Of
coherent ﬁM%@’"E -ideals is an isomorphism, and such that the canonical morphism
NBIJ’H,dOpoI(.f’}-LE) : M%-(L),rz — ME;‘-(L)TdOpoI = NBIJ’H,dOpoI(M%in) over SO = SpeC(Fo),
induced by the universal property of the normalization of blowup (see [15, Def.

7.3.2.2]), is an isomorphism. In particular, M%—‘Z,rz is a scheme projective over Sg.
If Condition[3.9) is satisfied, then the above are true for all dy € Z>3.

Remark 3.11. Theorem |3.10| serves as a prototype, but will not be needed in the
later constructions and proofs. The results we will obtain, however, have no explicit
control on the possible dy’s even when Condition |3.9]is satisfied.

Construction 3.12. Let p > 0 be any rational prime number. Let H, X, pol, ¥",
JH,dpol,.= s JH,dpol, a0 T3 dpol De as in Construction Lemma and Definition
for each d € Z>;, with the additional running assumption that the image H”
of H under the canonical homomorphism G(Z) — G(ZP) is neat (which means,
a fortiori, that H is also neat; the neatness of H?P was the running assumption in
[18]). Let My and Mﬂi“ be constructed over Sy = Spec(Op,, () as in [I8, Prop.
6.1 and 6.4], with a fixed choice of some lattice collection {(gj, Lj, (-, - )j) }jes as in
[18, Sec. 2]. (In what follows, all objects denoted with an arrow on the top will
mean the p-integral versions over §0 = Spec(Op,,(p)) of the analogous characteristic
zero objects over Sg = Spec(Fp), often constructed using certain auxiliary choices.)
For each d € Z>q, let jH’dpd be the coherent & ~;T,,—ideal defining the schematic

closure in l\_}lﬁin of the closed subscheme of M%;™ defined by the coherent Oppin-ideal
T, dpol; and let (cf. (3.7) and [I6, Prop. 2.2.2.1])

(3.13) M3 oot == NBLz (M),

TH.,dpol

By construction, I\_/Iﬁrct’fdpol is a normal scheme projective and flat over §0 =
Spec(Opy, ). When ¥ is (projective and) smooth, by Theorem there is
some dy € Zx; such that M§'y, = MY", | = Mg_‘i’fdopolg So over So = Spec(Fp).

0

Our goal is to show that there also exists some (possibly much larger) d € Z>,
such that Mg;’fdpol satisfies sufficiently many desired properties, extending as many
as possible those in [15, Thm. 6.4.1.1] in the good reduction case, which will then
force M%_‘,ffdpol to be canonical—i.e., depending only on ¥ and the linear algebraic

data involved in the construction of I\7IH, but not on the choices of pol and d.

4. FORMAL LOCAL DESCRIPTION OF IDEAL SHEAVES

Lemma 4.1. Suppose T is a geometric point over the [(Py,dy)]-stratum
Zi@non) = MY of ME™ (see [18 Thm. 121 and 12.6]).  Let
(Py,0%) be any representative of the cusp label [(Py,d%)]. As in [I8|
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Prop. 12.}4], let (M%m)% denote the completion of the strict localiza-
tion of ME™ at z, let (Z’[(@H’(;H)])Q = Z[(@H’(;H)] X (Mzin)g, and let
Nimin
(IVI?_[“)%\ = |\7|§_L” X (Z[@%,M])g. For each ¢ € Sg,,, let (@gl7éﬂ)g denote
Z((@3,.53))
the pullback of F;]g:{ﬁ?{ = (Cop5,, — M%“)*(\IHJ@H’(;H (£)) under the canonical
morphism (l\_/l’gf)é\ — l\_/l’frz*, where g, 5, (£) is as in [I8, Prop. 8.7]. Then the
pullback (jﬂ,dpd)g of the ﬁ_‘l;zin -ideal j’}-{7dpo| to (I\_/'Iﬁin)A can be identified with

T
- (¢
the subsheaf of ﬁ(ﬁlz‘“)g ] (KGFUV (ﬂfbi,éﬂ)g)hﬂ consisting of sections whose
Dy

nonzero terms are supported on those £ € d - K;’olqm (see of Proposition .

Proof. By definition (see [8, I, 9.5.1 and 9.5.4]), since the canonical morphism
MZin —  MRM s quasi-compact and separated, the ﬁm,ﬂin—ideal T, dpol
is the kernel of ﬁl\?l‘;;‘“ — (M — M%in)*(ﬁ,\,,%m/j%dpm), and the for-

mation of such a kernel is compatible with flat base change. Therefore,
by taking any geometric point Z’ of Z((3,,,5,,)) Specializing to z such that

(ME™)A, (MBI s defined, it follows that (Ja.apol)) is the kernel of

x

ﬁ(m,ﬂin)g — (MEm)2, — (M%in)%\)*(ﬁ(M;{zin);—\//(j’}-[vdpcﬂ)g/), and it suffices to show
that (T dpol)} corresponds to the subsheaf of Ominyn, = ( 11 (ﬂfg M)%)F@H
* tePy i

consisting of sections whose nonzero terms are supported on those £ € d - K

polg,,
Then the assertion follows from Proposition [2.6| and from the same argument Zs
in the proof of [I5, Thm. 7.3.3.4(1)], by computing (3. dpol)4 using the pullback
of the proper morphism 3%—[,2” s M, — MEn to (ME)2, (by [8, III-1, 4.1.5]),
which shows that (Jz,apol)% is (by abuse of language) the common intersection of

the &, ~ -modules & W, 55, ()2 (see the proof of Lemma
(Caqgy 59,00 () >dpol, (y),VyEa( Hs ’H( )) (

B.2), for all o € 4 € & satisfying o C P§_, which has the desired form. O

Let us fix once and for all a collection {¢,;},.; as in Lemma where o runs
through all top-dimensional cones in Xg,,, and where ¢ runs through integers from
0 to ny, such that n,, =n, and £,,; = {,;, for all y €'g,, and 0 <7 < ny.

Lemma 4.2. With the above choice of the collection {{s;}s,i, there exists dp°'¢>n €
Z>1 such that, for each top-dimensional cone o in Xs,,, for each integer i such
that 0 < i < n,, for each geometric point T over the [(Pyq, d3¢)]-stratum Z[(@H’gﬁ)]
of I\_/'Iﬁin as in Lemma and for each d € Z>q - dp°'¢>n’ the invertible sheaf

(\I_}‘;,%(;H (d-ly;))s = (‘I_}dm,éa (lyi)® N2 over ((7%75%)9 is very ample, and hence is

generated by its global sections, which can be canonically identified with the sections
dly ; -
of (Flg,, 5, )2 over (M%),

Proof. Since l\_/l'ﬁin and its strata (as in [I8, Thm. 12.1 and 12.6]) are quasi-compact

and separated over §0, and since there are only finitely many I'¢,, -orbits of cones
in ¥g,, (by its admissibility), it suffices to show that, for each ¢ € Sg,, ﬂvadq) ,

H
the invertible sheaf Wg,, 5, (¢) over Cs,, s, is relatively ample over M%¢. By
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Proposition each such ¢ lies in the interior (R>g - Pg,,)° of Rsg - Pog,,.

Therefore, there exists some N € Z>; such that N - £ is the image of some

(bj,aux)jcs € 11 Sy under the morphism (Se,, )o — (Se,)o in [18
jed jraux j,aux

(5.21)], so that lI_)‘:DH#SH (N =~ \I_}@H,,g,{ (N - ¢) is isomorphic to the pullback of

jgj \11¢Hj$aux,5?{j$aux (4,aux) under the finite morphism Cg,, 5, — jl;[J C‘I)Hj,aux76Hj,aux

in [I8, (8.6)], where /; .ux lies in the interior of Rxg - P(@Hj,aux for each j € J.

Since each such \IJ¢>Hj (4j.aux) over Cg,, is relatively ample

,aux767'¢j,aux J,aux"sHj,aux

over MZ?:‘:‘ by the same argument as in the proof of [I5] Thm. 7.3.3.4(1)], the

pullback ‘17%{,6% (N - 4) of _% Vg, 5. (fj,aux) tO C}H’(;H is also relatively
j Jraux

j,aux’

ample over I\_/Ig_t“; and so is \I_;q)mgﬂ (£), as desired. O

Remark 4.3. 1f (Cyp,, 5,,)0 — (I\_/Ii“)g is an abelian scheme torsor, then it suffices

to take dPO'epH = 3, by Lefschetz’s theorem (see, for example, [23, Sec. 17, Thm., p.
163] for the very ampleness of the pullback of (W, s, (d-£y))2 to the fiber over Z,
and see [23], Sec. 5] and [8 III-2, 7.7.5 and 7.7.10] for the base change argument).

However, (Cs,, 5, )2 — (MZ”)_{E\ is not an abelian scheme torsor in general.

Definition 4.4. We define dyo to be the smallest d € Z>1 such that, for every
representative (P, 04) of cusp label for My, there exists some dPO'qm € Z>1 as
mn Lemma such that d € Z>1 - dpo|q>%. (Note that each dP°|q>H can be chosen to

depend only on the cusp label represented by (Py,0%), and there are only finitely
many cusp labels for My,.)

Construction 4.5. Let (P4, 03 ) be any representative of cusp label for My;. For
each o € ¥g,,, as in [I5], Sec. 6.2.5] and [I8, Sec. 8], we define

(4.6) éq’?—hé’H (0) == Spec@g ( & \Ijéﬁ,éﬂ (E))»
Cdpy 59y leaV
(4.7) i@%(;%a i= Spec,, ( ® \I_J'qm}(;,{ (f)),
Cay, .65 MEot
and
(4.8) Xy om0 = (Bs.on (0))§¢ s o
#5350

(These constructions do not require o to be either smooth or induced by some
auxiliary choices.) As in [I5] Sec. 6.2.5], let us also define the toroidal embedding

— =

(4.9) By o0 = E‘I’%é%ﬂb,{ = Eay.00(0)

U
0€E¢H

using the cone decomposition Xg,, (cf. [I5, Thm. 6.1.2.8]), and define f@%

H 03,50,
to be the formal completion of é@%’(gﬂ)z(ﬁﬂ along the union of ip%g%g for all
o € Yo, satisfying o C P;ﬁﬁ. For each such o, we also define

(4.10) x5,

—
— =
- 4

2,03 (0) x :%‘1’%5%72@%-

RS VALEARL

5’,\.(,0' :

(1]

By their constructions, by [18, Prop. 8.14] (for the case of E@H,(;H (0)), and by [8]
IV-2, 7.8.3], these schemes and formal schemes are all normal (i.e., all the local rings
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o . . . - ~ _ao
are normal). By definition, we have canonical morphisms Xe,, 55,0 = Xg,,. —

67{,0’
X$4,,65,5s,,» Where the second one is an open immersion of formal schemes. We
shall tacitly extend such definitions to the cases with other cone decompositions.

Lemma 4.11. Suppose ¥’ and X" are two compatible collections as in Definition
such that E” s a refinement of ¥.'. Then there is a canonical proper morphism

_¢H 63,54, — H(b s, 5 inducing a canonical proper surjection
KED HOH Dy,

(4.12) i%(g,{,zgﬂ — %o,

03,2 @H'

Proof. These follow from the definitions of the toroidal embeddings. O

Lemma 4.13. For any compatible collection ' for which l\_/lﬁr‘t’fz, is constructed as
in [I8, Sec. 7], we have canonical morphisms

(4.14) Ko, = Zopsnsy, /Ta = (M55 — (M3™)5

Zi(@4,60)] (P9g.590))

where (M%_‘zrz/) is the formal completion of M . along the preimage of
Zi(®94,69))

Z[(q>H 5] i MH s (see [18, Thm. 12.1)), and where the third morphism (4 is
the proper sur]ectzon induced by the canonical (necessarily proper and surjectwe)

morphism 557{ o l\/IEH s — M s in [I8, Thm. 7.11].

Proof. Let us construct the canonical isomorphism in (4.14)). By construction, the
formal scheme X@H#;H,gf% is covered by its open formal subschemes Xg_ 5. .

for p € EfbH satisfying p C P;CH, each of which carries tautological tuples as in
[18, (8.25)], so that, by Mumford’s construction as in [I5, Sec. 6.2.5], we have
the corresponding Mumford families over .%’qm S (cf. [18, Sec. 6.2.5] and [I8

. which induces compatible morphisms — Mter,,, the univer-
(8.29)]), which ind patibl phi %0 Mg{,E by th

D34,6m,p
tor

sal property of MH s as in [I8, Thm. 7.14 and 11.4], which patch together and

define a canonical morphism Xg,, 5, 57 /T'a, — (M%‘ZYZ,)/Z\ . On the other
H [(®3¢.520)]

hand, the pullbacks of the tautological tuples over ng’rz, (as in [I8, Thm. 11.4))

to (M';_’frz,)/\ define degeneration data parameterized by Xo. 5. sv /To,,,
Z[(CP’H 5’;‘{)] HHOH q>,H

which induce a canonical morphism (M%fzrz,)/\ — X&4,,5,,5, /T, These
Zi(@34,540)] ey

two canonical morphisms are inverses of each other by applying [15, Thm. 5.3.1.19]
(to degenerating families of types My, for all j € J), which only require the affine
open formal subschemes to have good generic characteristics. Hence they are both
isomorphisms as desired. ([

Lemma 4.15. For each representative (Py, 0% ) of cusp label for My, there exist
canonical morphisms

3 > min\ A
(4.16) xq)ﬂﬁn,ﬂiﬂ - %én,én,ﬁ@ﬂ /F<1>H = (M3 )2‘[(@%15%)]’

where (Mﬁ‘“)/zl s the formal completion of l\_}lﬁi“ along the locally closed
[(@44,69¢)]

subscheme Z((w,, .5,y (cf- the explanation in [I5, Thm. 6.4.1.1(5)]), and where the

second morphism is proper and surjective, satisfying the following characterizing

property: Suppose ¥ is any compatible collection for which M';_‘Z s 18 constructed
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as in [I8, Sec. 7], and suppose X is any common refinement of ¥ and X' (which
exists by Proposition|2.8)). Then the composition of the canonical proper surjection

(4.17) x@;{,&H,EgH — }:@H,S;{,E@H

(¢f. Lemmald.11)) with (4.16]) coincides with the composition of canonical morphisms

A

" = o ~ in
(4.18) x@u,éuazgﬂ - xéu,én,%% - :{‘1)7{751-172&)% /F@H - (MH )Z[((b%(m)]

(¢f. Lemmas and [4.13)).

Proof. Let ¥’ and X" be as in the statement of the lemma, so that (4.17) and (4.18)

are defined. Then the proper surjection Xg,, s, 5y /To, — (M,m{i“)/z\
T [(Pgy.69¢)]

induced by (4.18) factors as a composition of the proper surjection
Z{q,%g%ggﬂ/qu = Xo3,60,%,, /Te, induced by (4.17) with an induced

Mzmin) A which is the desired

proper surjection fqm,gﬂ,z%{/rqm - (ME™)

Zi(@yy.59))
second morphism in (4.16]), because by [18, Prop. 12.14] so does its pullback to the
completions of strict local rings of M%in at geometric points over Z(,,,s5,)- (I

Proposition 4.19. For each representative (®3,d0%) of cusp label, there
exists some dy € Z>1, which can be taken to be any dy € Z>p - clpoL1>H (see
Lemma when Condition holds, such that, for any d € Z>y - dy, the
pullback of j;.t’dpd under the composition of with the canonical morphism

(Mzin %{(@H . — M s the invertible sheaf over Xay,.6.,50, Whose restriction
_’O
to each open formal subscheme X%, 6,0 COTTEspOnds to the sub-ﬁ@)%LSH -module
] Vo, .60 (0) of O ~ & Vg, s, (0). Hence, by the
' PO LeaV ’

(6y)>dpoly, (y),YyEo
universal property of M%—?,rdpol = NBl= (M%m) (see ), the canonical

T, dpol

morphisms (4.16)) lift to canonical morphisms

(4.20) %@H,ZSH,Z@,H — x@H,5H,Eq}H /Fcl)H — (Mg'(zf‘dPOI)/Zj[(¢H15H)]7

tor

where (Mg_?fdpd) denotes (as usual) the formal completion of |\7|H’dpo| along

A

ZATC VR IN) . ~
the (locally closed) preimage of Zj(w,, 5,y in I\/Igfzfdpo,, and where the second mor-
phism is proper and surjective.

Proof. By Lemma [2.10] there exists a normal open compact subgroup H’ of H
such that Condition is satisfied by the induced ©*) = 1Za,, (@, .6, and
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poI(H/) = {pol@H,}[(q,H,’(;H,)] as in [I5, Constr. 7.3.1.6]. Then we have a commuta-
tive diagram

(421) LI (£¢H/ﬁﬂh2® //F¢H/)4444>£§HnﬁbZ®H/F¢n
[(®307,6500)] Lifts [(@2¢,5%))] "

|

\Amin\A \/min\A
(M3)5 — (M5™)3
[(®307,097)] Nifts [(P3e,09)] (#307:031)] ((®2¢:020)]
Mo Mo

of canonical morphisms, in which the horizontal arrows induce an isomorphism
from the quotients of the objects at level H’ (at the left-hand sides) by H/H' to
the objects at level H (at the right-hand sides). If the assertions of Proposition
are true at level H' (with all notation accordingly denoted with a prime) when
d' € Z>y - dj for some dfy, € Z>1 - dp°"f’w’ by taking norms of local generators with
respect to the action of H/H’, the corresponding assertions are also true at level
H when d € Z> - dy for dy := #(H/H') - d,. Hence, we may and we shall assume
that Condition E 9 holds, and that d € Z>1 - dp°'<1>n

For each open formal subscheme Xq) S0 of %4)%75%24)%, for some o € Xg,,

satisfying o C P<D , since xq, s is an open formal subscheme of %% s for
H HHOH O HOH T
any top-dimensional cone 7 in Xg,, having o as a face, we may and we shall assume
that o is top-dimensional, which corresponds to some vertex £y of K pol (see
of Proposition in the sense that po|q> (y ) (lo,y) for all y € o.
Let = be any geometnc pomt of M A Z[(q,%(;ﬂ)] (We shall adopt the same
notation system as in Lemma [4.1]) Smce

(4.22)  (Se, N(d- Kpo, )) +oV cd-ly+o¥ ={{l,y) > dpolg,, (v),Vy € o}

¢
by Lemma [2.12} we can write each section f of (J pol) ( 11 (FJ;L, )%)F‘I’H
lePg)H

(see [1I8, Prop. 12.14] and Lemma as a formal sum f = S O, where
ted-LotaV
each f) is a section of (F;]gl’(;ﬂ)g. Since f is I'g,,-invariant, it decomposes as a
formal sum f = > f1 of subseries fl = 37 £ where each
(1€ (T, -(d-Lo+a¥))/Tay, el
[¢] is by definition the I'g,,-orbit of some ¢ € d - £y + oV. Since the largest ideal of

definition of Ox, > @ Vg, 5, (¢) consists of sections whose nonzero terms
‘I>H (SH o Zeo-\/
are supported on those £’s in oy, := N 7o, and since oy, contains

T a face of o, TCP Dy

Py, —1{0} (because each 7 as above does), we see that fldbol = 5~ flr(dbo)) §g
Y€l @,

a leading subseries of f in the sense that f — f1%%!] has a higher degree than fldto]
in the natural grading of , & (Ug,,.5,,(0))2 defined by the above ideal of definition
coV

of & \f/qm’g,{ (¢). Since Condition holds by assumption, f(@%) is a leading
leoV
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term of fl%l in the sense that fléfl — f(dt0) (or equivalently f — f(¢*0)) has a

higher degree than f(#%) in the natural grading of & (Ug,, 45, (¢))2. (These are
LeaV

x

abused terminologies because the leading subseries or terms might be zero.)

Suppose fi,..., fr are sections of (jﬂ’dpm)g generating (fq.[’dpd)g\ such that

. . o (d-€
their respective leading terms fl(d L) ., lgd to) generate (Efbﬂii)n)é\. Since

d€Zs>t- dpolq)H by assumption, by Lemma the pullbacks of fl(d'%), ceey f,id'eo)
to (igmw)g generates the pullback of (Wg,, 5, (d - €))%, while the pullbacks

T

of fi,...,fr generate the (coherent ideal) pullback of (j%dpd)’i\. By 1)
this last pullback is invertible and corresponds to the sub—ﬁ’(é¢ s )A—module
H O )

~ =g /\ . ~ ~ = /7\ . —_ .
<z,y>2dpolq>H(y),Vyea(\Ijq’”"s“ (O of ﬁ(%wéwa)? B egv(qj%’&“ (0)z. Since z is

arbitrary, the proposition follows, by fpqc descent (cf. [7, VIII, 1.11]). O

Corollary 4.23. Suppose d € Z>1 such that, for each representative (®y,dy) for
My, it is divisible by some integer dg as in Proposition [4.19] Suppose X" is a
projective smooth refinement of the X induced by pol. Then there is a canonical
proper surjective morphism

(4.24) M55 — M3 ool

such that, for each representative (P, d02) of cusp label for My, we have a com-
mutative diagram

can. can. R
(4.25) %‘I)H’(;H’Eg% :{‘1’%7571’2@% 7 x¢H,6H,2¢H
can.l " %Q J]4,20
tor tor \tor
e wee—
M’H,E” @23 M’H,,dpol can. M’H,dpol
(where x‘I’Hﬁ%E% = x@;{,&{,&py %Q and x‘I’Hﬁ%E&;H = ‘x‘buﬁngﬂ %Qimﬂ

they can be more directly constructed using toroidal embeddings of Eg,, sy, )-

Proof. For any representative (®4,d%) of cusp label for My, since d is divisible by

some dg as in Proposition 4.19} the pullback of j”)-t,dpol to %¢H75H7E¢H is invertible,

and so its further pullback to Xo,, 5,5y 1s also invertible. By the definition of
H

j;{,dpo. (see Construction 7 and by the characterizing property of 1 in
Lemma this pullback to Xg,, 5,z  is canonically isomorphic to the pullback
H

of Ju,dpol under the composition of the canonical morphism .’{q,%(;%ggn — Mg_‘zfz,,

(given by the universal property [I5] Thm. 6.4.1.1(6)], by the same argument of the
proof of [15, Thm. 6.4.1.1(5)]) with the canonical morphism f%Z,, MY, — Mg
(asin [I5, Prop. 7.2.4.1(3)]). By fpqc descent (cf. [7, VIII, 1.11]), this shows that the
pullback of Jx dpol under f?{,zﬁ is invertible, and hence fﬂ,zﬂ lifts to the desired
canonical morphism , which is necessarily proper surjective and makes the

diagram (4.25) commutative. O

5. STRATIFICATION AND COMPLETIONS

Proposition 5.1. In Proposition[£.19] up to replacing dy with a multiple, we can
assert additionally that the second morphism in (4.20) is an isomorphism.
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It is convenient to first introduce the following consequence of Proposition

Corollary 5.2. Suppose d,d € Z>1 such that, for each representative (P, dy) of
cusp label for My, they are both divisible by some integer dg as in Proposition [5.1].
Then the canonical morphisms

\jtor 1tor
(5.3) M3 ddrpol = M3 dpol
and

\Ator \ 1 tor
(5.4) M3 ddrpol — Mg arpol

) ] ] o - - -

induced by the canonical morphisms J?idpol — JH,dd’pol ANA J{zd,po, — JH,dd’pol

between coherent O -ideals are both isomorphisms. Consequently, up to canoni-
H

cal isomorphism, l\_/’lgfzrd ol does not depend on the precise choice of d € Zi>1 - dpol,

Proof This 15 because, by Prop051t10n for each stratum Z[(q)H 530)] of M“‘”1
and induce orphis I\7] — Mtor o

and (Mtor )4 —  (Mter,
H, dd pol)z[( 53] ( H,d pol)z[(q) 53]
(M%ln)/\ 0

[(CPH 57—1)]

over the formal completlon

Now we begin with some reduction step:

Lemma 5.5. It suffices to prove Proposition[5.1] under the additional assumption
that Condition@ holds, and that d € Z>1 - dp°|q>H

Proof. Suppose that we are in the context of the first paragraph of the proof of
Proposition [£.19] that the assertions of Propositions [1.19] and [5.1] and hence of
Corollary n are true at level H' (with all notation accordlngly denoted with a
prime) when d’ € Z>; - df, for some dj € Z>1 - dpol@,{,v and that the assertions of
Proposition are true at level # when d € Z>1 - dy for some dy € Z>1-dj. Then
the commutative diagram induces a similar commutative diagram

(56) H (£¢H/ Oy Xa,, /I‘(I)H’) — i‘@H,JH,E@H /F‘I>H
(@47 ,830)] lifts [(@2¢,69¢)] "

f
[(P307,857)] Nifts [(Pe,09)]

|

\/min \//min
N Nz

tor A \/tor A
H’,dpol(H/))z (MH,dpol)z

[(®@qyr:6941)] [(®gy,09¢)]

of canonical morphisms, in which the top and bottom horizontal arrows induce
an isomorphism from the quotients of the objects at level H’ (at the left-hand
sides) by H/H’ to the objects at level 7 (at the right-hand sides), and in which
the middle horizontal arrow is defined and H/H'-equivariant for the following rea-
son: Let Ju (resp. j;) be the invertible ideal pullback of Ja dpol (resp. Ty gooin))
under MYg", | — M (resp. I\7I;_‘Zf7 o M%), Then the ideal pullback of
j;{,dpo. under the composition I\_/Igi o Tt M’mln — I\ﬁﬁi“ of canonical mor-

phisms coincides with 7], because 1ts further pullback under each isomorphism
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3 ~ \/tor A RN : g
%@H/,éﬁl,zq,w/lj@”, 5 (MH',dpoHH’))2[(%,,57{,)] coincides with the pullback of 7y

o = = .
under the composition X¢H,75H,7g¢w /Te,, — %q)%(;%g@% /To, — M3 dpor Of
canonical morphisms, whose restriction to each open formal subscheme Xg_ | ;

MO T

(for 7 € Y, satisfying 7 C Pj}jw) corresponds to the sub—ﬁ’db -module
H/) ’,_L/
\I_;q) , 5., (£) of Oz, = é\ﬁ@,g,E.Hence,b the
(&y>2dpolq>w(y),Vy€a’ o () xéw,a,{,,f terv  HTH (€) Y

universal property of ngfdpol = NBI jﬂ,dpol('\_;lﬁin) as a normalization of blowup, we

have a canonical morphism
\ A tor \/tor
(5.7) M’H/,dpol(H') — MH7de|

under which the ideal pullback of 7y is 7, which is H/H -equivariant (because all
objects involved are) and induces the middle horizontal arrow in ({5.6]).
The ideal pullback of 7; to I\_/Isf[’f dpol (4 /(H/H') under the canonical morphism

3 3 3 3 \ or 1 or ry H/Hl
induced by 1) coincides with <(M;-y,dpol<”’> — M;—L’,dpoﬂ”/)/(?—l/?{,))*]dl) ,

~

because their pullbacks under each canonical isomorphism :%4’9{76%2@% /Tao, —
\/jtor nA 3
(MH',dpoHH’)/(H/H ))z[(q}%ém] induced by 1) correspond to the same

sub-0 4 -module & j l) of Oz, ~ & U l

Coa o (€:y)>dpoly, (v),Vy€o éﬁ’éﬂ() o890 teoV (I)H’(SH()
over each open formal subscheme i%ﬂﬁ%a (for o € Xg,, satisfying o C P};H).
Therefore, by Corollary and by [5, Ch. V, Lem. 5.9 and 5.10, and Prop.
5.13] (cf. [I, Ch. IV, Sec. 2, p. 327, Lem.] or [2, Ch. IV, Sec. 2, Lem. 2.14], and
[15, Prop. 7.3.2.3]), up to replacing dy with some multiple, we may and we shall
assume that 1' identifies M37", ,; with the quotient of M;-Cz)/r,dpm(“” by H/H', so
that 1) also induces the isomorphisms Xo,, 6,50, /Toy 5 (Mgft’fdpol)/zl[@%sm],
as desired. O

Proof of Proposition[5.1] By Lemmal5.5] we may and we shall assume that Condi-
tion holds, and that d € Z> - dPO'q»,{'

Let T be an arbitrary geometric point of M%_z* = Z[(.@H’gﬂ)]. (We shall adopt the
same notation system as in Lemma ) Consider the proper morphism

(58) (%‘PH,&H,Z@H)/E\/F@H - (Mg-(t),rdpol);'c\'

induced by (4.20)). It suffices to show that (5.8]) is an isomorphism.
By the definition of M39"; | as the normalization of a blowup, since the formation

of normalizations is compatible with pullbacks to the formal completions of strict
local rings for excellent schemes, (Mi9"; )7 has an open covering by affine open
A

T

formal subschemes {il;}; labeled by nonzero sections f of (j;.[,dpo.) where each

il is tautological for the pullback of j%dpd to be an invertible ideal generated by

f, which only depends on sufficiently high powers of f. Concretely, let R denote the
- (¢

ring of global sections of ﬁ(mﬂi“)g = (ZEII:IV (E;L,éﬂ)g)%’i, which is a noetherian

Dy

normal domain, and let J denote the R-ideal of global sections of (j;{,dpo.);\; then

Uy = Spf(R(y)), where Ry is the integral closure in Frac(R) of the subring of
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Frac(R) generated by R and by fractions of the form f=% T[] g;, where g; € J,
0<j<k
forall 0 <j <k.
For each such f, let us write it as a formal sum f = > f® where
(€8 ay N(d K, )

each f is a section of (F;]EI)L’(;H)% which can be further decomposed as a formal

sum f = > f1 of subseries fl1 = S f where each [(] is
[(l€(Se,, N(d: K,,ouq) N/ Ty Lel(]
by definition the F@H—Orblt of some ¢ € S, (d K;;/ol ). Note that I's,, acts

can be

freely on d - KS/()lq),H because (by Proposition any element of d - Kp0|

Py
identified with some positive-definite pairing over some ¥ @ R (as in [15], Sec. 6.2.5]),
z

whose stabilizer in I'p,, can be identified with a discrete subgroup of a compact
orthogonal subgroup of GLg (Y ® R), which must be finite and hence trivial, by the
zZ

neatness of H.

In order to give an open covering of (M", )%

T

we only need a collection of

/’s such that every section g of (j’;.[ dpol)5 has a sufficiently high power which lies
in the subideal generated by the collection. Consequently, we only need those f’s
such that fI) £ 0 only for one T's,,-orbit [¢] = [{o], represented by some £, and
we may and we shall assume furthermore that ¢; is a vertex of d - K ;/olq,H’ which is

equal to d - £, for some vertex £, of vaolq) corresponding to a top-dimensional
H

7 in ¥g,,. Let U,w, denote the maximal open formal subscheme of (C_”',;,%(;H)Q
over which f(0) is a generator of the pullback of \I_}q)H,(;H (o), and let W (o) denote
the preimage of U« under the canonical morphism (Xg, 5. ;)7 — (Co,.6,)%-
By the proof of Proposition@ W ey is the preimage of ${; under the canonical
morphism (3%% s ) — (M35 induced by (5 , so that we have a canonical

morphism
(5.9) Qﬂf(zo) — ﬂf.

Since f is I'y,,-invariant, for each v € I'y,,, the similarly defined canonical mor-
phism 20 (yeq) — 4y is compatible with (5.9) and with the canonical isomorphism
v Qﬁf(eo) = Qﬂfwzo) induced by the isomorphism ~ : 3_62’1)%6%7 = ién,ﬁ .-
With the collection {¢,;},; chosen in the paragraph preceding Lemma there
are {r1,...,0rp, inSe, N KVOI such that R>o-7¥' = > Rsq-(lr;—lrp) (cf.
. > >

1<i<n,

2.13). Since d € Z>1 - dpol,, » by Lemma the sections of (FJ<1>H :5;)) generate

(\f/(1>%5H (d-£:,))2 over (Cq>H 5, )2, for each integer ¢ such that 0 < i < n,. For each

(d-lri
section g(@r) of (Flg,, 613) the formal sum g; = glétil = 37 ygld i) where

v€l®,,

(d (’YZT i)

yg(dbri) 1s a section of (FJq) )5 for each v € I',,, defines an element of J,

and so f~'g; defines an element of Rsy. (Since I'y,, acts freely on d- K , there

is no cancellation among different terms in the formal sum ¢g; = Y yg(d i) )
YE€la,,
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Let V be any complete discrete valuation ring with valuation v : Inv(V') — Z and
with an algebraically closed residue field k, and let z : Spf(V) — &Iy be any mor-
phism. Without loss of generality, up to replacing £y with another representative in
its T'g,,-orbit, we have v(f(0)) < v(g®)) for all g = > g¥) € J and all

(€S0, N(d-Ky,, )
e Sy, ﬁ(dovadq)H ). By applying this to formal sums g; = Y. g% as in the
Y€l a,,

previous paragraph, for all 0 < i < n,, we have v(f()) < v(g{®*r)) for every sec-

by
tion g(44r4) of (FJEI)H 5;) By Lemmal.2|again, the sections (f(¢))~1g(dr) gen-

erate (\I_}<1>H75H (d-(br;—lr0)))5a over ‘Bf(zo). Since R>o-7" = 1<¥ R>o-(4ri—4rp),
i<n,

it follows that any y : Spf(V) — &Iy as above necessarily uniquely lifts to a mor-

phism y : Spf(V) — W, via the canonical morphism . Since V' and y

are arbitrary, this shows7 in particular, that 2., is the preimage of ty under

the proper morphism Since both W, and Ly are affine, this forces the

morphism (5.9)) to be ﬁnlte which is induced by some finite homomorphism

(5'10) R(f) (ufa ﬁﬂf) - F(wf(’o)a Oy (z(,)) Z (ij(’o)v (\Ijéu O (E))/\)

of R-algebras. Since R(y) is noetherian normal by construction, the above unique
liftability (for arbitrary V and y) also shows that (5.10) induces an isomorphism
between the total rings of fractions, and so and (5.9)) are isomorphisms.
Thus, the inverse of defines a local inverse of (5.8) over 4Ly, which is (up to
canonical isomorphism) independent of the choice of ¢y in its I'g,,-orbit [¢y]. Since
(M%’fdpol)%\ is covered by such &l¢’s, is an isomorphism, as desired. O

Corollary 5.11. Suppose d € Z>1 such that, for each representative (P, 0%)
for My, it is divisible by some integer dy as in Proposition [5.1] Suppose that
|\7|'“”rZ is constructed as in [I8, Sec. 7] (which means that the X induced by pol is
also induced by some auxiliary choices of cone decompositions there). Then the

canonical morphism fH = ngrz — Mmln lifts to a canonical isomorphism

(5.12) Mgf[fz — Mgf[fdpol.

Proof. By Lemma (.13} we have Xo,, 4,5, /To, = (M;?YE)AK@ 4,y T each rep-

resentative (P4, d3) of cusp label for My,. By Proposition 4.19) and by the same
argument as in the proof of Corollary the pullback of jy,dpd to M;_‘Zfz under

; 4.5 is invertible. Hence, by the universal property of the normalization of blowup

(see [18, Def. 7.3.2.1)) f?—t 5, induces a canonical morphism NBI 7
Mggrz - M?‘-([)rdpol = NBled |(

representative (®,d%) of cusp label for My, its pullback (Mg_‘zrx)

T, dpol fﬂ b
Mm‘“)7 which is an isomorphism because, for each

Zi(@5.630)]

Mter )4 is, by Pro 051t10n O
( H’dp0|)z[(®H,SH)] Yy p

Definition 5.13. By abuse of notation, we shall henceforth denote any l\_}lg_‘Zfdpol n
Proposition and Comllary as I\ﬁgj’rz, and adjust all related notation accord-

ingly. We shall denote the canonical morphism |\7|§:L’,rE — |\7|7”_iin by ;H,E’ or simply
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by 5_5’7_[ when the context is clear. (To fully justify such notation, we will show in
@ of Theorem below that l\_/IEr‘er does not depend on the choice of pol.)

Remark 5.14. By Corollary this is justified even when I\_/‘Ig_‘zrE has already been
constructed in [I8, Sec. 7] for the ¥ induced by pol.

Proposition 5.15. Let I\7I§f[’rZ be as in Definition and let ZK¢H75H7J)] denote
the isomorphic image of the locally closed subscheme Za,, 6,0 0f Xo5,60,54,, /T4
under the composition of the second morphism in (4.20) (which is an isomorphism

by Proposition with the canonical morphism (Mg_‘[’fz)/z\[(qm . — Mg_‘ZfE, for

any representative (P, 04,0) of [(Py,01,0)]. Then 2[(%75%0_)] is well defined
and locally closed in ngrz (with admits the canonical structure of a reduced locally

closed subscheme of I\_/'lg‘fz), and we have a stratification

(5.16) My = I Ziwwswo
[(®3,09,0)]
in which the [(®Y,0dy,0")]-stratum Zi(ay, 54,00 lies in the closure of the
(3, 090, 0)]-stratum  Zjw,, 5,00 i and only if [(Py,0%,0)] is a face of
[(®%,0%,0")] as in [15, Thm. 6.3.2.14 and Rem. 6.3.2.15].
By construction, we have a canonical isomorphism

(5~17) (M%-(L)],FZ)%\ = Xy, om0

[(@4¢,69,0)]

inducing a canonical isomorphism
(5.18) Z{(@40,63,0)] = By 69,0

Moreover, the canonical morphism ;’H,E : I\_/'I'qj_‘fZ — I\_/'Iﬁin maps Z'K%’(;W)] to
Z[(%M”, and induces a surjection z[(¢H’5H70)] —» Z[@HM)] which can be canon-
ically identified with the canonical surjection §¢H75H7a — M?—Z{ (via and the
canonical isomorphism Z[(q)%(;ﬂ ~ |\7|§_z* in [I8, Thm. 12.16)).

If ¥ is as in Corollary then the morphism maps the stratum
Zi(@y 50,7 of M5 (defined as in [I5, Thm. 6.4.1.1(2)]) to the stratum

Z((@30,60,0)] = Z[(®3,090,0)] %Q of Mg_‘ZfE = I\_/Ig_‘ZfE%Q (where l\_/'lgf[”rE is defined as

in Definition I whenever T € Xy, € ¥ is contained in o € ¥g, € X in Pgﬂ.
Moreover, each L|(s,, s,,0) s the union of the images of all such Z|(,, s, 7))

-

Proof. By the stratification by locally closed subschemes I\_/an_}i“ = I Zyawu.sm)
[(@3¢,0%)]

(see [18, Thm. 12.1]), and by Proposition each Z[(¢H,5H7U)] is locally closed
in Mg‘{’fz, and we have a disjoint union as in (5.16)). Moreover, the assertions in
the second paragraph (of the proposition) also follow from Proposition and
the assertions in the last paragraph follow from Corollary Thanks to the
isomorphism , the characteristic zero fiber Zj(q,, 5,,,0)] Of Z[(®4,,6,1,0)] 15 dense

in Zj(a,,,5,,0), because the analogous assertion for Zg,, s, o is true (cf. [I8, Cor.
10.15]). Consequently, by the assertions in the last paragraph, the locally closed
subschemes in ([5.16|) satisfy the desired incidence relation, because the (finer) strata
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of M,/ satisfy the analogous incidence relation as in [I5, Thm. 6.4.1.1(2)], for
any projective smooth refinement X" of X. O

Lemma 5.19 (cf. [I8 Lem. 11.1]). Suppose (Py,dy,0), where o C P:}ﬁH and
0 € Xa,,, is as in [I5, Def. 6.2.6.1], and suppose [(®y, d1,0)] # [(0,0,{0})]. Let U

be any open subscheme of ,\7,3?2 that is a union of strata and contains Z((a,, 5, ,0)]

as a closed subscheme; and let U’ be the complement of z[(q)%(;%a)] in U, which nec-
essarily contains Z[(Oyoy{o})] = My because [(Dy, 62, 0)] # [(0,0,{0})] (see Propo-

sition . By definition, the formal completion 4 of U along Z[@Hﬁ%g)] can be
A

canonically identified with (M%TE)Z[@H o’ so that we have a canonical isomor-
phism .'%@H,g%o 5 U given by . Suppose j € J, and suppose the tautological
object (Aj, Ay, ij, ap;) over My, = My (see [18] (2.1)]) extends to a degenerating
family (Gj.ur, \jur,t5,07, ;o) of type My, over U’ (see [15, Def. 5.3.2.1]), where
ayy; v 18 only required to be defined over My,. Then this degenerating family further
extends to a degenerating family (Gj.u, \u, iU, an;u) of type My, over U.

Proof. Let ¥ be any projective smooth refinement of 3. Consider (as in [I8]
(10.5), (10.6), (10.7), (10.8)]; see also the proof of Lemma the formal

. " = "o =

completion Xg_ 5. , of Ea, 5, (0)" = TEZ“U e Benbn (r) along the closed
@40

=

subscheme Edsby.0 =

Ed,,,64,7» wWhich induces a canonical proper
TeXY ,7Co
H
morphism Xg_ 5., — Xo,.6,,0. Then Xg, ;
=/

5 .
of TEE”U s X%,,.60,r along =g 5 . By the same argument as in the proof
Bq0

of [I5 Thm. 6.4.1.1(5)], by [15, Thm. 6.4.1.1(6)], the Mumford families carried

0 1s also the formal completion

1" . : s : 1 ~ tor A
by X§.,, 5, 0 induces a canonical isomorphism Xg 5 , = (MH,E”)ZHQH .
where Zﬁqm ba,0)] = U Z((®4,,5,,7))- Since this isomorphism is induced

TGE&QH,TCJ
by the universal property in [I5, Thm. 6.4.1.1(6)], for each affine open formal
subscheme Spf(R") of Xg_ 5. ,, the pullback of Zg, 5, under the induced
morphism Spec(R”) — coincides with the pullback of My under the

=/

—®4,09,0
induced morphism Spec(R") — I\_/Ig_‘[’fz,,. Consequently, by Corollary for each
affine open subscheme Spec(R) of U inducing an affine open subscheme Spf(R", I)
of i(@%(;%g = §[, with canonical morphisms Spec(R") — Spec(R) — U, there
is a canonical isomorphism over the preimage of My in Spec(R”") between the
pullbacks of the tautological object (Aj, Aj, i, az;) over My, = My and of the
Mumford family (VGj, VX;, Vi, Qdy,) over Xa,, 5,0 (cf. [I5, Sec. 6.2.5] and [I8,
(8.29)]). Then the lemma follows from the same descent argument as in the proof
of [I8 Lem. 11.1] (which was based on [7, VIII, 7.8] and [22, Thm. 1.1]). O

Proposition 5.20 (cf. [I8, Thm. 11.2]). For each j € J, there exists a degenerating
family ((_jj, Xj, f}, dyq;) of type My, over l\_/'lgf[”r2 (see [15] Def. 5.3.2.1]), whose pullback
to My, = My, (see [18], (2.1)]) is isomorphic to the tautological object (Aj, Ay, iy, cay;)
over My, and whose pullback to My is isomorphic to the degenerating family of
type My, over My, which was denoted (/Yj,Xj,Zj,o?Hj) in [18) Prop. 6.1]. (The
notation of Xj, fj, and dyy; is abusive and dependent on the context.) For each
(Py, 0n,0), the pullback of (éj, Xj, E}, ) to fﬁqm,gﬂﬂ via the canonical morphism
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-

) s canonically isomorphic to the Mumford family (Oéj, ij, Qij, Q&Hj) over
Xay, 60,0 (cf [15 Sec. 6.2.5] and [I8, (8.29)]).

Proof. The same argument as in the proof of [I8 Thm. 11.2] works here, with the
stratification in [I8 Thm. 9.13] there replaced with the stratification (5.18) here,
and with [I8, Lem. 11.1] there replaced with Lemma here. O

6. MAIN RESULTS

Theorem 6.1 (cf. [I5, Thm. 6.4.1.1 and 7.2.4.1(3)—(5)]). For each open com-
pact subgroup H of G(Z) whose image HP under the canonical homomorphism
G(Z) — G(ZP) is neat, for each choice of lattice collection {(g;j, Li, (-, -)i)}ies
as in [I8, Sec. 2], and for each projective compatible choice ¥ = {Xa,, }[(4,5:)]
of admissible rational polyhedral cone decomposition data as in Definitions[2.1] and
there is a normal scheme Mggrz projective and flat over Sy = Spec(Opy,(p))
containing the scheme MH as in [I8, Prop. 6.1] as an open fiberwise dense sub-
scheme, together with a tautological degenerating family (éj7 va fj, dyq;) of type My,
over Mg_‘zrz (see [15), Def. 5.3.2.1]), for each j € J, where dy; is defined only over the
open dense subscheme My = I\7IH %Q of Mggfz, such that we have the following:

(1) For each j € J, the pullback of (éj,Xj,Zj,&Hj) to |\7|7-t is the tautological
tuple (/Yj,xj,fj,d’yj) over My as in [18, Prop. 6.1].
(2) (Compare with [18, Prop. 7.11].) There exists a canonical proper surjection

—

f?—t,z : ,\_}lf}_([)rz — l\_/lﬁin (over Sy), where Mﬁm is as in [18, Prop. 6.4]. If X' is
a refinement of 3, then there exists a canonical morphism Mig's, — M5
compatible with fﬂ)z, and §H7Z, If we denote by Wrdser 3 the pullback of

the ample invertible sheaf Wgmin ; over I\ﬁ%i" as in [I8, Prop. 6.4], then it
min

is canonically isomorphic to ® w@ti"r ,
jeJ M’H,X]’J

and where a; is as in [I8, Lem. 5.30, and Prop. 6.1 and 6.4], for each

. L _ " h
j € J, and we have M}j™ = PrOJ( ) F(ng’rz,wgm J)) Moreover, Wejo:
k>0 H,Z H, D

. Atop T:nV
where w = AP Lie%s -
ME0"s i =G /MR

descends to an invertible sheaf Wgimm ;. over I\_/'Iﬁin, for each j € J, and the
H

j
. . . ® aj
above canonical isomorphism Writor g = Qws,

tor H

jeld M3

. . . ® a;
a canonical iSOMOTPhism Wgmn ;3 = @ wmmfn )
o jed o

(3) (Compare with [18, Thm. 9.13, and Cor. 10.18 and 11.9].) I\_/'Igf[”fE has a
stratification by locally closed subschemes

\jtor
over M3y, descends to

\min
over My,

—

(6.2) My = I Ziewswon
[(P,09,0)]

with [(Py, Iy, 0)] running through a complete set of equivalence classes of
(P, 09,0) (as in [I5] Def. 6.2.6.1]) with ¢ C legH and 0 € Xg, € X.
(Here Z4; 1is suppressed in the notation by [15, Conv. 5.4.2.5].)

In this stratification, the [(®%, 0%, 0")]-stratum Zy(ay, 54,0 lies in the
closure of the [(Py, 0%, 0)|-stratum Zj(a,, s,,.0y if and only if [(Pyy, 634, 0)]
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is a face of [(®%,,0%,0")] as in [15, Thm. 6.3.2.14 and Rem. 6.3.2.15]. The
analogous assertion holds after pullback to fibers over So.

The [(Py, 03¢, 0)]-stratum z[(qm)g%g)] is flat over So and normal, and
is isomorphic to the support of the formal scheme .’%qm,(s%g for any rep-
resentative (Py,094,0) of [(Py,d4,0)]. The formal scheme .'%@H 59,0 G-
mzts a canonical structure as the completwn of an affine tomzdal embedding
B0 (0 ) (along its o-stratum Eq,, s,,.0) of a torus torsor Ze,, s, over a
scheme C¢H75H flat over Sy and normal. The scheme C_"@HﬁH is proper (and
surjective) over a finite cover Mi“ of the boundary version I\ﬁi” of MH (cf.
[18, Prop. 7.4]). (Note that Z3; and the isomorphism class of I\_/‘Ig_LH depend
only on the class [(Pyy, 014, 0)], but not on the choice of the representative
(3, 0%,0).) .

In particular, My, = Z[9,0,40})) s an open fiberwise dense stratum in this
stratification.

(Compare with [18 Thm. 10.13 and 11.12, and Cor. 10.16].) The for-

mal completion (ME:ZYZ)A of M%_‘Zrz along its [(Pyy, Oy, 0)]-stratum
Z{(@q,59¢,0)] ’

Z[@H’g%g)] is canonically isomorphic to the formal scheme %qm,g%g for
any representative (P34, 63, 0) of [(Py, O3, 0)]-

For any open immersion Spf(R,I) — iq;,”’(;ﬁ’g inducing morphisms
Spec(R) — ip%g,{ (o) and Spec(R) — l\_/lg_‘frz (via the above-mentioned iso-
morphism), the preimage of B, 5,, under Spec(R) = B, 5,,(0) coincides
with the preimage of My, under Spec(R) — l\_/‘l';_‘zrE

For each j € J, the pullback to (I\/I%grz) of the degenerating

Zi(@y 590.0)]
family (Gj, )\j, zj, dyq,) over M‘;_‘zfz s canonically zsomorphic to the Mumford
family (Oéj, OXJ-, Of}, Od’;{j) over iqm)g%g (cf. [15, Def. 6.2.5.28] and [18,
(8.29)]), after we identify the bases using the above-mentioned isomorphism.
(Compare with [18, Cor. 10.15, and Thm. 12.1 and 12.16].) The stratifica-

tion 1) is compatible with the stratification of l\_/l,“_}i“ as in [I8, Thm. 12.1
and 12.16], in the sense that the restriction of the proper surjection §H,Z
mn to the stratum Zj(s,, 5,,,0)) of M%f[)rz induces a surjection to the stra-
tum 2[(%,5%)] of |\7|min, which can be identified with the composition of the
canonical isomorphism Z[(%ﬁw)} = éq;H,(;H,g (induced by the canonical
and the
isomorphism |\7|§_LH = z[(@%éa)] given by [18, Thm. 12.16]. In particular, it
is proper and surjective if o is top-dimensional in Pgﬂ C (Soy )i

(Compare with [18, Thm. 7.14 and 11.4].) Let S be an irreducible noetherian

normal scheme over §0, with generic point n, which is equipped with a
morphism

isomorphism in ), the structural morphism éfp%&h MZH

7

Let (A, )‘777 iy, Qp.n) denote the pullback of the tautological object of My to
7 under . Suppose that, for each j € J, we have a degenerating family

(GJ,)\J, i ) of type My, over S, whose pullback (G, Njp, 5.9, 0;.)
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to n defines a morphism
n — My,

by the universal property of My, which we assume to coincide with the
composition of with the canonical isomorphism My, = My, given by
18 (2.1)].

Then (necessarily uniquely) extends to a morphism

\ A tor
S = My's,

(over §0) if the following condition is satisfied at each geometric point s of
S:

Consider any dominant morphism Spec(V) — S centered at 5, where
V is a complete discrete valuation ring with fraction field K, algebraically
closed residue field k, and discrete valuation v. By the semistable
reduction theorem (see, for example, [15, Thm. 3.3.2.4]), up to replacing
K with a finite extension field and replacing V accordingly, we may
assume that the pullback of A, to Spec(K) extends to a semi-abelian
scheme G* over Spec(V). By the theory of Néron models (see [3];
of 26, IX, 1.4], [5, Ch. I, Prop. 2.7], or [15, Prop. 3.3.1.5]), the
pullback of (Ay, Ay, iy, apn) to Spec(K) extends to a degenerating family
(Gi,/\i,ii,a;ﬂ[) of type My over Spec(V), where a% is defined only over
Spec(K), which defines an object of DEGpgr,m,, (V) corresponding to a
tuple (BI,)\Bi,iBi,Xi,Xi,qSi,ci,cv’I,Ti,[agf]) in DDpgr,m,, (V) under
[[5, Thm. 5.3.1.19]. Then we have a fully symplectic-liftable admissible
filtration Zi determined by [ ] Moreover, the étale sheaves X* and Y*
are necessamly constant, because the base ring V' is strict local. Hence it
makes sense to say we also have a uniquely determined torus argument
<I>1H at level H for Zfﬂ. On the other hand, we have objects ®,,(G%),
Ss,, (Gt), and B(GY) (see [15, Constr. 6.3.1.1]), which define objects ®3,,
S‘I’i’ and in particular BY : S(I)% — Inv(V) over the special fiber. Then
vo Bt Sdﬁ{ — Z defines an element of Séi , where v : Inv(V) = 7Z is the

H

homomorphism induced by the discrete valuation of V.

Then the condition is that, for each Spec(V) — S as above (centered
at 5), and for some (and hence every) choice of 57{, there is a cone ot
in the cone decomposition Zq)i of Pcpi such that G+ contains all v o Bt
obtained in this way. (As ewplamed in the proof of [15, Prop. 6.3.3.11], w

may assume that ot is minimal among such choices; also, it follows from
the positivity of T+ that ot C P; . Then the extended morphism 1}

H
maps 5§ to a geometric point over Z[(¢¢ 5, o)’ conversely, this property

also characterizes the stratum Z, z: of |\/|tor )
[(‘i)’}-t 76H7

In particular, since this condition involves only ¥, the scheme I\_/'Ig_‘zrZ
depends (up to canonical isomorphism) only on the compatible collection ¥
induced by pol and on the linear algebraic data in [18, Sec. 2], but not on
the choice of pol or on any auziliary choices made in [I8], Sec. 7].
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Proof. Let Mtor be as in Definition Which is projective by construction
(see Constructron . By Pr0p0s1t10n it carries the tautological families
(GJ, )\J, ZJ, ;) of type My, which satisfy the assertion

As for the assertion |ID the existence of the morphrsm f?-t 5, and the canonical

isomorphism qu_}m = Pr0J< I‘(Mg_‘zrg, r%l)t]zr J)) follow from the fact that (by
H,D

abuse of language) the canomcal proper surjective morphism f Hx M%‘fz — I\_/I’ﬁin
is its own Stein factorization (see [8, III-1, 4.3.3 and 4.3.4]), because l\/ltor and

Mmln are normal, and because fﬂ 5 is generically an isomorphism (over My).

The assertions . and (|9 . ) follow from Proposmonsandm, 5.20, and from
the same argument as in the proof of [I8, Cor. 10.16], except for the statement
in assertion that the stratification satisfies the same incidence relations after
pullback to fibers over Sy (which will be proved two paragraphs below).

Let us prove the assertion @ Since the desired extensibility is a local question
(because Mtor is separated over §0), we may replace S with the spectrum of the
completion R of the strict local ring of S at an arbitrary geometric point §, and
assume that it is local with 5 as a closed point. Let K := Frac(R), so that n =
Spec(K). By applying [I5] Thm. 5.3.1.19] (to degenerating families of types My,
for all j € J), and by the same argument as in the proof of [15, Prop. 6.2.5.11], there
exists a canonical morphism 7 — Zg,, z,,, which extends to a canonical morphism
S — Zg,,.2,,(0) mapping 5 to Eg,, 2, . and lifts to a canonical morphism S —
:%4)9{,29{,0 exactly when the condition in the second last paragraph of the assertion
(6) (cf. the second last paragraphs of [I5, Thm. 6.4.1.1(6)] and [187 Thm. 7.14]) is

satisfied (at §), under which the degenerating families (GT )\]T, i LJ) over S are

the pullbacks of the Mumford families over iq;.H 4.0, for all j € J. By Proposition
and by [5, Ch. I, Prop. 2.7] or [I5, Prop. 3.3.1.5], the composition of any such
morphlsm S — %q>H 74,0 With the canonical morphism %@H Zo,o Mtor (induced
by (5 ) gives the desired extension S — Mto of (6

Then the statement in the assertion that the stratrﬁcation satisfies the same
incidence relations after pullback to ﬁbers over §0 follows from same argument as
in the proof of [18, Cor. 11.9].

Finally, let us complete the proof of the assertion (2). If E’ is a refinement of 3,
then the existence of the canonical morphism Mt s = M " (which is necessarily

compatible with f W and f Hx because all of them extend the identity morphism

over the dense subscheme MH) follows from the assertion @ In order to show

that wgir = ® w@ i since the canonical morphisms MEor., — Mtor as above
Mg, T = oy Ny s

are their own Stein factorizations, or equivalently since the canonical morphisms

ﬁﬁl%.?f; — (I\_/I’E:Zrz, — M%gfz)*ﬁmgif.z/ are isomorphisms, by [15, Lem. 7.2.2.1], we
may replace ¥ (up to a common projective refinement) with one that is induced by
some auxiliary choices as in [I5] Sec. 7] (see Remarks[2.3]and 2.9), in which case the
desired isomorphism follows from [I8, Prop. 7.11]. Since the proper morphism ; nx
is its own Stein factorization (by what we have shown in the second Paragraph of

this proof), or equivalently since the canonical morphism ﬁMm,n ( fH,E)*ﬁIVI;;’fE
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is an isomorphism, by [15, Lem. 7.2.2.1] again, it remains to show that wgor ;

H,2

descends to an invertible sheaf Wiimin ; OVeT M%i“, for each j € J; or, rather, that the
H

pushforward (EH,E)*WM%Z ; 1s an invertible sheaf. By [8] III-1, 4.1.5] (since 5_5'%72 is
proper) and by fpqc descent (cf. [7, VIII, 1.11]), as in the proof of [I5] Thm. 7.2.4.1],
it suffices to note that, for each (®4;,4,0) defining a stratum Z[(q>,H’6,H7U)] as in
the assertion , the pullback of Wiiser, to iqm)g%g descends to the invertible

sheaf (AP Xj) %(/\tOp Eéj/ﬁlﬁf) over |\7|§_Z“ (cf. [I5, Lem. 7.1.2.1] and its proof),
where Xj is part of the torus argument ®4; associated with ®4; as in [I8] (3.3)],
and where éj is part of the tautological family (éj, /\]§j , igj ,P—1,7;) over I\_/Ig_z* as in

[18, Prop. 7.4]. O

Corollary 6.6. In Corollary if the 3 induced by pol is already smooth (and
satisfies [I5, Cond. 6.3.3.2]) as in Definition[2.2] and if we take X" = there, then
the canonical morphism li is an isomorphism, and the stratification of MY,
in [15, Thm. 6.4.1.1(2)] coincides with the one induced by (5.16). l

Proof. This is because, by [I8, Lem. 3.21], the universal properties of Mi9's; in [I5)
Thm. 6.4.1.1(6)] and in () of Theorem imply each other. O

Corollary 6.7. Let H and X be as in Theorem . There exists an effective
Carter divisor D' over M'y;, with D} 4 = M5, — My (with its canonical reduced

closed subscheme structure) such that Og... (—D’) is relatively ample over l\_/l'ﬁin,

tor
MH,Z

with respect to the canonical morphism fH,E : M%_‘zfz — M%in.

Proof. This follows from the definition of M§"y; as M3%; | = NBI j’H,dpol(M%in) (see
Definition|5.13)), because the pullback of J3 dpol to MY9"y; is of the form O, (—D)
’ H,Z

as in the statement of the corollary, by Propositions and ’ O

By the same arguments as in the proofs of [I8, Prop. 14.1 and 14.2, and Cor.
14.4], we obtain the following:

Proposition 6.8. Suppose 3 is smooth as in Definition . Then '\7"}-[ is regular
if and only if My 5 is.

Proposition 6.9. Let P be the property of being one of the following: reduced,
geometrically reduced, normal, geometrically normal, Cohen—Macaulay, (Ry), geo-
metric (Ro), (R1), geometric (Ry), and (S;), one property for each i > 0 (see [8|
IV-2, 5.7.2 and 5.8.2]). Then the fiber of I\_/'IgfzrE — Sy over some point s of So
satisfies property P if and only if the corresponding fiber of the open subscheme
I\7IH — §0 over s does. If 3 is smooth as in [I5, Def. 6.3.3.4], then P can also be
the property of being one of the following: regular, geometrically reqular, (R;), and
geometrically (R;), one property for each i > 0.

Corollary 6.10. Suppose that I\7|H — Sy has geometrically normal fibers. Then all

geometric fibers of M%jfz — So have the same number of connected components, and

the same s true for |\7|H — §0. (The analogous statements are true if we consider
irreducible components instead of connected components.)
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7. FUNCTORIAL PROPERTIES AND HECKE TWISTS

For most of this section (except for Proposition and its proof), as in [I8]
Sec. 13], for the sake of clarity, we shall abusively denote all objects constructed
using {(gj, Lj, (-, - )j) }jes by an additional subscript J.

Proposition 7.1 (cf. [I8, Prop. 13.7 and 13.9]). With the setting as in [I8, Prop.
13.1], suppose moreover that ¥ and X' are compatible choices of admissible rational
polyhedral cone decomposition data for My and My, respectively, which are pro-
jective as in Deﬁmtions and such that ¥ is a 1-refinement of ¥/ as in [15],
Def. 6.4.3.3]. (The definition there naturally generalizes to the case of nonsmooth
cone decompositions.) Then there is a canonical projective morphism

(7.2) M5 5 — M s 5

extending the canonical proper morphism [I8, (13.2)] and is compatible with
the canonical morphism [I8, (13.5)] under the canonical projective morphisms
[SVESREE I\_/’IE:ZTZ)J — I\_/I’EHJ1 and $,,, 5 50 I\_/olg_‘z,r)z,“], — l\_/’lﬁi,f‘y, which maps the
[(P3g, 03, 0)]-stratum  Zia,, 55,0010 of M'sy to the [(®%y, 03, 0")]-stratum
Z[((I);{/,(SH,)O./)LJ/ of M';_‘[f’z,)y if and only if there are representatives (P, oy, 0)
and (®%,,04,0") of [(Pu,d0n,0)] and [(PYy,04,0")], respectively, such that
(3, 094, 0) is a L-refinement of (4, 0%,,0") as in [15], Def. 6.4.3.1].

Proof. By the universal property of Mgfl)f’z,7 y asin @ of Theorem H’ the canoni-
cal morphism [I8] (13.2)] extends to a canonical morphism (|7.2]), under which the
subcollection {(éj,Xj,E},&q_[lg)}jey of {(éj,Aj,Zj,dHJ{)}jeJ over M§'y; ; is the pull-
back of the corresponding collection over M%_(L’,{Z,,J,, which maps Z(@,,,5,,0),5 t0

Z[@;{Higwﬁl)]’y if and only if the condition as in the proposition holds. It is then
compatible with the canonical morphism [18, (13.5)], by of Theorem [6.1 g

Proposition 7.3 (cf. [I8, Prop. 13.15]). Given any collection {(gj, Lj, (-, - )j) }ieJ
satisfying the conditions imposed by an open compact subgroup H C G(Z) as in [I8|
Sec. 2], suppose that H' C G(Z) contains both H and g~ 'Hg, and that gjfl'ng sta-

bilizes L; ®Z for allj € J, so that {(gj, Lj, (-, -)j) }ies also satisfies the conditions
Z

imposed by H'. Then the collection {(g°gj, Lj, (-, - )j) }(e.j)ef0,1} x 5 Satisfies the con-
dition imposed by H as well, and we have two canonical projective morphisms as
in [18, (13.16) and (13.17)]. Given any projective X' as in Definitions [2.1] and 2.7,
there exist some refinement X of ¥/ such that the two canonical projective mor-
phisms [I8] (13.16)] extend to two canonical projective morphisms

— tor - tor

(7.4) 1] gl M%fx,{o,u xJ 7 Mgft)'r,z/,J
compatible with the two canonical projective morphisms [18), (13.18)].

— tor - tor
The morphism [1]  (resp. [g] ) in maps the [(Pyy, oy, 0)]-stratum
Z((@0,00,001, 0,1} x 3 0f M5 1.1y g to the [(Rhy, 090, 0")]-stratum Zyar , 5,,,01],3
of M£f72,7.] if and only if there are representatives (®y,09,0) and (P, 04,,0")
of [(Py,09,0)] and [(®Yy,05,0")], respectively, such that (Py,dy,0) is a
1-refinement (resp. g-refinement) of (®%,,,04,,0") as in [15, Def. 6.4.3.1].
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Proof. This follows from Proposition and the same argument as in [I8, Ex.
13.14] (with (J, Jo) there replaced with ({0,1} x J,J) here). O

Proposition 7.5. The morphism (7.2)) induces canonical morphisms

(7.6) iy, = (M 5 — I\7I5f2,r72,7j,)*ﬁ,\7,33f2w1

and

(7.7) jﬁ'%ﬂ,z/.y — (Mgfz,J - M%(Z'r,zl,‘]')*fm;g’rzyj,

where jﬁ'%ifz,l (resp. ']'\7'235',2/"],) denotes the coherent ﬁM%-‘Zfz,J -ideal (resp.
ﬁmng)zlyy—ideal) defining the boundary l\_/'lg_?fzyJ — '\_/"'H’J (resp. l\_/ligfz,r,z,,y - l\_/'lq.m/)

with its canonical reduced subscheme structure. When H' is a normal subgroup

of H, the finite group H/H' acts on the right-hand side of (7.6) (resp. (7.7)))
and identifies the left-hand side with the H/H'-invariants in the right-hand side.
Moreover, we have

(7.8) R (Milsg = Mgl 30 )« Or =0
and
(79) Ri(MP’_CZfE’J — Mg'?lrwz/v*]/)*jmgi,rz,hl = 07

for all i > 0. The analogous statements for the two morphisms (7.4)) are also true.

Proof. By the same argument as in the proof of Lemma and by (@ of
Theorem §J¢H75H,2¢H7J/F¢H carries Mumford families (cf. [I5, Sec. 6.2.5]
and [I8, (8.29)]) which are isomorphic to the pullback of the tautological

objects over M4, ; under the composition of the canonical isomorphism
e ~ 7t A o . .
%(p%g%g@wk]/ﬁp% — (MﬁfE’J)z[@H . (see Proposition j with the canonical

2 — MY%; ;. The similar statement for MY s, 5, is
Z((#34,830)1,9 - o

also true. Hence, since the morphism (7.2 is induced by the universal property of
M‘;_‘Z{Z,} 7 asin @ of Theorem (6.1} it induces the canonical proper morphism

morphism (M%grzj)

(7.10) 1T (Xar 03,20y 3 /M) = Xay 1,0/ Ter s
(¢H55H) lifts (@;{/76%/)

which is the formal completion of the canonical proper morphism

(7.11) 1T (Er0630,80,0/Ps) = Ear o, 3, 0/ Ty,
(@3,0m) lifts (27,,,67,/)

Since the morphisms (7.2, , and ([7.11) are all proper, by [8, III-1, 4.1.5],

it suffices to prove the obvious analogues of the statements of the proposition for
(7.11)). Since the canonical morphism

(7.12) 0~ = (Capy63.3 = Coorgo5ny.37) 0

Cagy 65,9 Coyy59,3

is an isomorphism by Zariski’s main theorem (see [8, III-1, 4.4.3, 4.4.11]) and by
noetherian normality of é¢n,5n,J and C_"qm,(;,{,y (note the change from J to J' in the
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subscripts), it suffices to prove the analogues of the statements for the morphism

(7.13) 11 Eowdu Loy I Mo = Zoy 00,5 0 /Tey,,
(P3¢,09¢) lifts ((I)H”(S’ /)

now with the same J'; or rather the analogues for the morphism
(7.14) U EBdyy.00,0(0) = ~¢>' 5!

! H”
(¢"H,5H) lifts (<I>;_¢,,5;_¢,), UGZ@H, oCo’

(o)

for each o’ € Eq,;{/, which then follow from the arguments in [12, Ch. I, Sec. 3,
especially p. 44, Cor. 2] (cf. the proof of [I5, Lem. 7.1.1.4]), as usual. O

(From now on, for simplicity, we shall again drop J from the subscripts.)

Proposition 7.15. For each j € J, the locally free sheaves Q?R(&/MH) and
ﬂ‘lm(/fjv/l\ﬁ%) over My, where f_l; is as in [I8, Prop. 6.1], extends to locally free
sheaves ﬂ‘fR(ffj/MH)ca" and ﬂfR(ijv/l\_/l'H)Can over Mgft’rz, with a canonical pairing
(7.16) HI (A /Myg) o x H{R(AY /M) — O,
(necessarily uniquely) extending the canonical pairing

S o
(7.17) H™(Aj/My) x HIY (A} [My) — O
(Here we have ignored the Tate twists for simplicity, which can be compatibly rein-
stated when needed in applications.) Moreover, the canonical exact sequences

(7.18) 0 Lieg, g, — Hi"(4;/My) = Lieg g, — 0
and

(7.19) 0 Lie} g — H"(A} /Ma) = Liegy g, — 0
over MH extend to canonical short exact sequences

(7.20) 0= Liegy e = H" (Aj/Mp)™" — Lieg, gjror =0
and

(7.21) 0= Liek e — HY (A /My = Liegy g — 0

over M%-(Z,rz; where Gj and le are the semi-abelian schemes as in Theorem
which are compatible with each other in the sense that the sheaves

Ller/Mm and Lle(—;; s, in l and 1) (viewed as submodules of the

middle terms) are annthilators of each other under the pairing (|7.16| -, and the

canonically induced morphisms HdR(A /MH)Can/Ller/Mmr (Lle@ SR )V and
ﬂ(llR(AJy/M )ean /Liek g (Ller/Mmr ) can be identified with the identity

morphisms on Lle@j/Mé.‘ZfE and Lleij/Mgi’fz , respectively.

Proof. Let us first show that H{®(A4;/My) and ﬂfR(%V/MH) extend to locally
free sheaves ﬂfR(gj/MH)can and ﬂfR(ﬁy/MH)can over m%;’fz, with short exact

sequences and ([7.21)) extending (7.18)) and (7.19| -, respectively.

Let X/ be any compatlble collection for Wthh Mtor , is constructed as in [I8] Sec.
7], and let ¥ be any common projective smooth reﬁnement of ¥ and ¥’ (which
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exists by Proposition 2.8), so that (by (2) of Theorem [6.1) we have canonical
morphisms §2”2 MH s = Mg_‘zrz and fz,, - MH s = MH 5. By Propo-

sition (with H = H and J = J' there), we have ( fz,, )5 O~ = ﬁMmr ,
. N ’ . H, 2!
" S *ﬁ_'tor = ﬁ tor i " *ﬁ_'tor = 07 d i " S *ﬁ_'tor = 07
(fz ,z> Mter_, Nito , R (fz ;2) Mo, and R (fz ,2) MH_’Z,#
for all ¢ > 0. Therefore, if ﬂ R(A;/My,) extends to a locally free sheaf over M5,
which we abusively also denote by H' ‘fR(/_fj /M) with a short exact sequence

0— Lleév/Mmr / ﬂ?R(z‘Tj/MH)C&" N @éj/M;;)fz, 50

extending 1) over M%_‘zfz,, where the same symbols éj and G}V abusively also

denote the semi-abelian schemes extending A; and A;" over M§'s;,, then we have a
similar short exact sequence

0 — Lie) (fzﬂ)z;)*(fz”,z;/)*ﬂ(liR(A’j/MH)can — Lies

GV/MtOr - 0’

G /Mtor

which shows that ( fg,, 5 fz,, E, HdR(A /I\/Ig.[)Can is the desired locally free ex-
tension of H{ R(A i / MH) over I\/Ig_‘ZfE. Similarly, the corresponding assertion for
H ?R(/TJV /My,) is also true. Hence, it suffices to construct the locally free exten-

sions over M%_‘ng/. (If I\7I5_‘Z’rZ is already constructed in [I8] Sec. 7], then we can take
Y’ = %, in which case the reference to Theorem is not really necessary.)

By [I8, Lem. 9.8] and [T4, Prop. 6.9], the pullback H{®(A;/My) ofﬂfR(zéYj/MH)
to My extends to a locally free sheaf HI® (A;/ My )™ over MH s, together with
a short exact sequence

0— @éjv/mgfz,, — HY{™(Aj/Myg) " — @GJ/MQTE,, -0
over M%f[fz/,, extending the canonical short exact sequence
sV dR .
0 = Liejy m,, = Hi"(Aj/Mu) = Liey; jm,, = 0

over My, where Gj and G}’ are semi-abelian schemes over M¥'s,,, extending A; and
A~V7 respectively. Let fz,, s MH s = M%_(Zfz/ denote the canonical morphism as

n [I8 (9.9)]. Then the same argument as in the previous paragraph shows that
(fz,,,z,)*ﬂ‘fR(Aj/MH)can is locally free. Thus, H{®(A;/My) extends to a locally
free sheaf & over the open subscheme MH U I\/Igfz, of M%fzh whose complement
is a closed subscheme of codimension at least two (because |\7|H is open fiberwise
dense in l\_;lg_‘zrz,, by [18, Cor. 10.18]; cf. Theorem. Similarly, ﬂ(llR(Ajv/l\/IH) also
extends to a locally free sheaf over MH U I\/IH 5. Let us denote the canonical open
immersion My U M — M';_‘j)rz, by j. Since ME;Z)’Z, is noetherian and normal by
construction, it is (S3) by Serre’s criterion (see [8, TV-2, 5.8.6]). Therefore, by [6]
VIII, Prop. 3.2], j«& is a coherent sheaf over MH s and, by [II, Prop. 1.11 and

Thm. 3.8], j.& = Z if there exists any locally free extension .# of & over Mg_‘ZfE,.
Consequently, it suffices to show that

H{M (A X (A7) %2 [Myy) = H{®(Aj /M) ® 450 @ HY (AY [Mgy)® 52
May;
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extends to a locally free sheaf over |\7|5f27r2, for some integers a;; > 0 and aj2 > 0

as in [I8, Lem. 4.1]. By [I8, Prop. 4.12], under the morphism M3 — My, .

induced by [18, (6.2)], ﬂfR(AjX G (Ay)* 2 /My) is canonically isomorphic
M'Hi

to the pullback of the sheaf ﬂ‘fR(Ajyaux/l\/lHj’a"x) over My

morphism I\7IB:ZTZ, — MP}'(er,auxazj,aux as in [I8), (7.8)], any locally free extension of the

and, under any

j,aux)?

latter sheaf over MLoF ST pulls back to a locally free extension of the former

j,aux,&j

tor

over I\7IH,E,. Thus, it suffices to note that, by [I4, Prop. 6.9] again, the latter
extends to the locally free sheaf H{™(A; aux/ M3 0 ) OVer Mg-(zir‘aux,ﬁj,aux' Since
the auxiliary polarization Ajaux : Ajaux — A}faux is prime-to-p (by assumption),
the corresponding assertion for the dual abelian schemes is also true.

Thus, we have constructed the desired locally free extensions over l\_/lﬁrct’fz,, and

hence also over M%‘Zfz, with short exact sequences as in 1) and lj extending
|| and 1) respectively. Since Mg_‘zrz is noetherian normal, to construct the
canonical pairing ([7.16)) extending ([7.17)), with the desired compatibility with ([7.20)
and (7.21)) as in the statement of the proposition, it suffices to construct it over
M%‘{’fz UMy; or, rather, over M%;’fz,, UMy, by the same pushforward argument as
above; or, rather, just over Mgfz,,. This, again, follows from [I4], Prop. 6.9]. |

8. VANISHING OF HIGHER DIRECT IMAGES, AND KOECHER’S PRINCIPLE

As in [I5] Sec. 7.1.2], let Py, 7,, : C’EH’&H — I\7I§{H denote the structural mor-
phism. As in [T, Sec. 6], let Pé‘: ={l €S, :({,y) >0,Yy € Pg,, — {0}}.

Lemma 8.1. There exist infinitely many integers n prime to p such that, for each
such n, there exists a finite €tale commutative group scheme H, of order prime
to p over |\7|§_LH acting on C_"@H,(;H via morphisms compatible with Py, 5, , inducing
canonical morphisms C_"‘;H,(;H — C_;q>H75H JH, = 5¢H’5H over I\_/I%’*, whose compo-
sition we denote as [n], such that [n]*\I_J'@%(;H (0) = \17¢H75H (n?0) = \I_}q),_‘,a,_t (0)®n*,
for each £ € Sg,, . Moreover, for any Op, (,)-algebra R, the canonical morphism
(8.2) Toy50(t) ® R [0]u(Vays,(n*) ® R)
7o, (p) Or,(p)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hy-invariants (cf. [23, p. 72, Cor.]).

Proof. Let m > 1 be any integer such that ker(Gj(Z) — G;(Z/mZ)) C H; and
such that multiplication by m annihilates the analogues for My, (see [I8, Sec.
3]) of the finite étale group schemes my(C'p,/M?') as in [I5, Prop. 6.2.2.4], for
all j € J. By the construction of Cg,, 5, = Cayy 6y, (see [15, Sec. 6.2.3-6.2.4]),
for each of the infinitely many integers n that are prime to p and congruent to
1 moduli m?2, and for each j € J, the multiplication by n on the tautological
tuple (cf;.[j,c}/{j) (which is an orbit of objects at level m satisfying certain lifta-
bility and pairing conditions that are unaffected by multiplication by n, because
of the choice of m) induces a canonical morphism [n] : Cs,, s5,, — Cao,, .5, OVer

> Dy . . . z Zy, .
My* = My, 7 (which is then also a morphism over M3}* = M, ), which can be
J J
realized as a quotient of Cs,, 5,, by a finite étale subgroup scheme H,, of order
prime to p. Up to replacing m with a (positive) multiple, the canonical morphisms
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(0] Can by e = Cony 03y o, 87€ similarly defined by multiplication by
n on the tautological tuples (C’?‘l.l,auxvcyij,aux)v for all j € J, which are naturally
compatible with the above morphism [n] : Cs,, 5,, = Cao, s, via the canonical
morphism [I8, (8.5)]. Therefore, by the construction of 6¢H75H (see [I8 Prop.
8.4]), the action of H, on Cs,, s, extends to an action of H, on Cs,, s,,, which
also induces the multiplication by n on the tautological tuple (¢3;, Eg/_[j), for all J;

and the induced finite morphism C_"@H75H /H, — C_"4>H75H between noetherian nor-
mal schemes is necessarily an isomorphism, because it is so in characteristic zero,
by Zariski’s main theorem (see [8] 111-1, 4.4.3, 4.4.11]). As for the canonical isomor-
phisms [n]*Ua,, 5,, () = Vg, 5, (n20) = Vg, 5, (0)®"* | they exist over Co,, 65 DY
the construction in [I5, Sec. 6.2.4], and they extend over Cg,, 5, by the argument
in the proof of [18 Prop. 8. 7} (for extending the Eg.,,-torsor Za,,.5,, — Ca, .65 tO
the Eg,, -torsor Zg,, .5, — C’@H 5,.)- Finally, since the order of H,, is invertible in
the base ring Op, (p), the canonical morphism admits a splitting (by descent
and) by taking averages under H,-action, as in the proof of [23] p. 72, Cor.]. Conse-
quently, its left-hand side can be identified with a direct summand of its right-hand
side, consisting of H,-invariants, as desired. ([l

Proposition 8.3. Suppose { € Pé’;. Then Ri(ﬁ¢%zﬂ)*(\if'¢%5ﬂ ) ® R)=0

OFo, ()
for alli >0 and all O, p)-algebra R.

Proof. Since Pg,, z,, is proper and since I\7I§f is quasi-projective over
Sy = Spec(Opy,(p)), by the usual limit argument (cf. [I5, Thm. 1.3.1.3] and the
references made there), we may and we shall assume that R is noetherian. For
any such /¢, as explained in the proof of Lemma [4.2] the invertible sheaf \Ilq,H oy (0)
over C@H 54, 1s relatively ample over M . Smce Po,, z, 18 proper and since M "
is of finite type over the noetherian ring OFo,(p)v there exists some integer Ny 2 1
(depending on R) such that Ri(ﬁq,%zﬂ)*(\l_}qmygﬂ (Nl) ® R)=0foralli>0

Fo,(p)

and N > Ny. Let n be any integer considered in Lemma such that n? > Ng.
Then Ri(f)'q,%zﬂ)*(\l'q)%g%(é)o ® R) = 0 for all ¢ > 0, because it is a direct

Fo,(p)
summand of Ri(ﬁé%zﬂ)*(\ff@%g%(n%) ® R)=0,by Lemma O
Fo,(p)
Proposition 8.4. Suppose that S, = Z, that { € Sg, is negative,
and that the morphism PDg,, 5, has positive-dimensional fibers. Then
([')}I,H,ZH),.<(‘~Il<1>7{75H 0) o ® R) =0 for all Op, ) -algebra R.

Fo,(p)
Proof. As in the proof of Proposition @ we may and we shall assume that R
is noetherian. Suppose that (Pg,, 7, )«(Va,.6,,(f) ® R) # 0. Since Pg,, 5, is

Fo.(p)

proper, by Grothendieck’s fundamental theorem [§] ITI-1, 4.1.5], there exists some

morphism U = Spec(Rg) — I\7I§_l” ® R, where Ry is an Artinian local ring whose
Org.(p)

residue field we denote by ko, and some nonzero f in D(U, ¥g,, 5, (0)|5), where

\I/qm,(;ﬂ( )| denotes the pullback of \17%{ 5, (£) under the canonical morphism U :=

C’cp,{ oy X U— C’¢H 54 - By Lemma for each integer n considered there, f has
'\7IZ

H
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nonzero image f,, in I'(U, \I7<1>H75H (n?0)|) under the canonical morphism induced
by , where Wg,, 5,,(n2€)|; denotes the similar pullback of g, 5,, (n2¢).

Since U is noetherian, by using primary decompositions of zero ideals in noe-
therian rings of sections over affine open subschemes, there exists an integer N > 1
such that, for each open subscheme V of U and each nonzero h in O5(V), there
exists some = € V such that h has a nonzero pullback to Spec(ﬁﬁw/mi\'), where
m, denotes the maximal ideal of the local ring 0y . (We will use similar notation
without further explanation.) Moreover, for each x as above, there is some asso-
ciated point y of V (i.e., y € Ass(Oy); see [8, IV-2, 3.1.1]) whose closure {y} in
V' contains x such that h also has a nonzero pullback to Spec(ﬁg,y/mé\[). Since
invertible sheaves are locally trivial, the analogous statements are true for their
sections. (The same N works for all invertible sheaves over U.)

Since Pg,, 7, has positive-dimensional fibers by assumption, for any integer n
considered in Lemma each geometric fiber of the morphism [n] there has car-
dinality increasing with n?, because (under the H,-action) the number of values
of the tautological tuple (EHJ,E;(LJ_) over each geometric fiber also does. If f has
nonzero pullbacks to Spec(ﬁam /m) only at some closed points x, which are nec-
essarily associated points of U, then f, has nonzero pullbacks to Spec(ﬁ’g,m /m)
only when z is in the preimage of these closed points under [n]. But this is impos-
sible because, for all sufficiently large n, such a preimage cannot be supported on
the finitely many closed associated points of U. Since there are only finitely many
associated points of U , there exists one of them with positive-dimensional closure
@ in U and with an infinite sequence n; < ny < --- of integers considered in
Lemma 8.1)such that f,, has nonzero pullback to Spec(&y , / m)Y) for alli > 1. Up
to replacing Ry with a flat extension, we may and we shall assume that its residue
field kg is algebraically closed with uncountable cardinality. Then the closed points
in @, which are all kg-points, cannot be a countable union of its proper closed
subsets, and hence there exist mutually distinct closed kg-points x; in @, indexed
by integers 1 < j < r for some integer r > lengthp, (I‘(ﬁ, O)) (which is possible
because Pg,, z,, is proper and Ry is Artinian), such that f,, has nonzero pullback
to Spec(ﬁﬁ’mj /mivj) foralli>1landalll<j<r.

Consider the (coherent) Op-ideal 5 := ker(0y — @ (ﬁg,xj/mi\g)). Since ¢

1<j<r
is negative, \f&p%g,{ (—2) is relatively ample over I\_/IE{”‘7 as explained in the proof of
Proposition Hence, by Serre vanishing [8] ITI-1, 2.2.1], there exists some suf-
ficiently large i > 1 such that H' (U, ¥s,, 5, (—nZ )|g ® &) = 0, and so that
45
(U, \I/qh{’gﬂ(—n%o()‘ﬁ) — 1<EB< (\P¢H}5H(—n§0£)|ﬁgg(ﬁg@j/mg)) is surjective.
<j<r o
For each 1 < j < r, let g; be any element of F(U,\I_)@H,(;H(—ngoﬂ)|0) such that its
image in \flq,%(;ﬂ(—n?oﬁ)b ®(Op ., /m )is 1 (resp. 0) when j = j' (vesp. j # j'),
ﬁ[} * J

foralll1 <j <r.Ifg= > c;g; for some ¢c; € Ry, then f,, g= > ¢jfn. g;
1<j<r i ’

~

is a global section of Wg,, s, (n,0)|g g \17@%75H(—n120€)|0 = 0 whose image in
U

ﬁU’Ij /mivj is ¢j fn,,» which is nonzero when c; € Ry, for each 1 < j < r. This
shows that lengthp, (T'(U, 0)) > r, contradicting the choice of r, as desired. O
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Definition 8.5 (cf. [I7, Cor. 5.8]). Let R be an Op, (p)-algebra. We say that a

quasi-coherent sheaf & over M%fl)rz is formally canonical (resp. formally sub-

canonical) (over R) if it satisfies the following condition: Suppose T is a geometric
point over the [(Py, 0y )]-stratum Z[(¢H75H)] of M%in as in [18, Thm. 12.1], which
is canonically isomorphic to I\ﬁ?f by [I8, Thm. 12.16]. Then there exists a quasi-
coherent sheaf &y z over (5¢H,5H)§ satisfying the following properties:
(1) For each o € Xg, satisfying o C Pgu, the pullback & of & to
the affine formal subscheme (X5 5. )2 of (Xa,.50.5., )0 (via the
canonical morphisms induced by ; see Proposition is of the

form & ((‘17%{75%(5))9 ® éo,z) (as an O G s )A—module), where
Ler ﬁ(é@ﬂ,aﬂ)g o
? =0 (resp. ? = oY), where oY is the intersection of 7y (in Ss,,) for T

running through faces of o in Lg,, (including o itself).

(2) There is a finite exhaustive filtration on & z whose graded pieces are isomor-
phic to pullbacks of quasi-coherent sheaves over §0 = Spec(Op,,(p)) associ-
ated with finite R-modules, under the structural morphism (Cip%g,{)%\ - Sp.

Theorem 8.6 (vanishing of higher direct images; cf. [I7, Thm. 3.9]). Suppose R
is an O, (p)-algebra, and suppose that & is a quasi-coherent sheaf over M%i’,rz that

is formally canonical (resp. formally subcanonical) over R, as in Definition .
Let D’ be as in (Jorollary and let &(—nD’) := gﬁ® ﬁM%“E(_nD/)’ for each

M5 s
integer n. Then Rl(;H 5)+&(—nD") =0 for all i >0 and n > 0 (resp. n > 0).

Proof. Thanks to Theorem [6.1] which provides almost the same axiomatic setup
in [I7, Sec. 4], except that 6¢H75H — I\_/'I%H is in general not an abelian scheme
torsor over a finite cover of I\ﬁ?f; and thanks to Proposition which implies the
analogue of [I7, Lem. 6.1] for the context here; the same argument as in the proof
of [I7, Thm. 3.9] also works here (see Remark [8.9 below). O
Theorem 8.7 (Koecher’s principle; cf. [I7, Thm. 2.3]). Suppose O %(@ s a simple

algebra over Q. Suppose R is an Op, ,y-algebra, and suppose that & is a quasi-
coherent sheaf over Mtﬁrg that is formally canonical over R, as in Definition ,
For each open subset U™ of M%i“, consider its preimage U™ in l\/Igfsz under
the canonical morphisms ;H’E, and its preimage U in MH under the canonical
morphism My — M%in. Then the canonical restriction map

(8.8) LU &|yeer) — T(U, &)

is a bijection, except when both dim(My) =1 and U™ — U # () hold.

Proof. As in the proof of Theorem thanks to Theorem and thanks to

Proposition which implies the analogue of [I7, Lem. 6.2] for the context here
(under the assumption that O ® Q is a simple algebra over Q), the same argument
Z

as in the proof of [I7, Thm. 2.3] also works here (see Remark [8.9 below). O

Remark 8.9. While we assumed in [I7] that ¥ is not only projective but also smooth,
the arguments there were carried out up to replacing ¥ with its smooth refinements



TOROIDAL COMPACTIFICATIONS WITH PROJECTIVE CONE DECOMPOSITIONS 35

(see [T, Rem. 4.17]). Hence they also work for possibly nonsmooth ¥’s in the
contexts of Theorems and Note that [I7] was written for the smooth
integral models in [5] and [I5], where 3 was always assumed to be smooth.

Remark 8.10. However, since the proof of [I7, Thm. 2.5] made use of Serre duality,
we cannot easily generalize the higher Koecher’s principle to the context here. In
general, we do not yet know whether it is still true in ramified characteristics.
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