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ABSTRACT. We construct toroidal and minimal compactifications, with ex-
pected properties concerning stratifications and formal local structures, for all
integral models of PEL-type Shimura varieties defined by taking normaliza-
tions over the splitting models considered by Pappas and Rapoport. (These
include, in particular, all the normal flat splitting models they considered.)
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1. INTRODUCTION

In the article [I3], we constructed normal flat integral models for all PEL-type
Shimura varieties and their toroidal and minimal compactifications constructed by
taking normalizations over certain auxiliary choices of good reduction models, with
no assumption on the level, ramification, and residue characteristics involved, and
showed that such integral models still enjoy many features of the good reduction
theory studied as in [5] and [12]. In the article [I5], we extended the construction
of toroidal compactifications in [I3] to allow general projective cone decomposi-
tions which are not necessarily induced by the auxiliary choices. When the local
model M'"° for the PEL-type Shimura variety in question is known to be flat over
Spec(Z,)) and normal, the integral model constructed in [I3] coincide with the
k¢ as in [I7, (15.4)], which can be interpreted as being constructed by taking
normalizations over certain naive models. Thus, the constructions in [I3] and [15]
provide good toroidal and minimal compactifications for all such integral models.

One naturally also considers the moduli problem ,Q{CSBI in the same diagram [I7],
(15.4)], which corresponds to the splitting model M"P' = .# introduced in earlier
sections of [I7], which are built over #75¢ (over some more naive models) as the rel-
ative moduli of certain filtrations on the first de Rham homology of multichains of
abelian schemes. For simplicity, let us also call such moduli problems the splitting
models of the PEL-type Shimura variety. Although they are defined over base rings
that are often more ramified, their local properties are often nicer—they do not
admit singularities due to restrictions of scalars from ramified extensions. Already
in the Hilbert modular case—where the constructions are simple-minded because
the splitting models and naive models coincide over the Rapoport loci (see [18] and
[]), which are all that are needed for the gluing of boundary charts—the compacti-
fications for splitting models are known to have useful arithmetic applications (see,
for example, [22] and [21]).

Our goal is to give a uniform construction, based on [12], [I1], [13], and [I5], of
toroidal and minimal compactifications of all integral models of PEL-type Shimura
varieties defined by taking normalizations over such splitting models. These in-
clude, in particular, all the normal flat splitting models considered in [I7]. But we
shall also allow the levels at p to be arbitrarily higher than the stabilizers of the
multichains of p-adic lattices used in the definitions of the splitting models.

For the construction of toroidal compactifications of splitting models, the idea
is to realize them as splitting models of toroidal compactifications. We consider
certain filtrations on the canonical extensions (over toroidal compactifications of
naive models) of the first de Rham homology of multichains of abelian schemes,
extending the ones over splitting models. We can show that, over the boundary
strata, the normalizations of the relative moduli of such filtrations depend only on
the abelian parts of the semi-abelian degenerations, and that their formal boundary
charts can be directly built over the formal toroidal boundary charts of the naive
models. This allows us to prove a long list of nice properties of such normalizations,
including precise descriptions of their stratifications and formal local structures,
which allows us to call them toroidal compactifications of splitting models.

For the construction of minimal compactifications of splitting models, the con-
ventional approach would be to introduce some variants of the Hodge invertible
sheaves, and to consider the projective spectra of the graded algebra formed by
sections of their powers. However, there is some subtlety in the choices of such
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variants. For the projective spectra to define compactifications of our splitting
models and admit canonical morphisms from the toroidal compactifications, we
need the variants to be ample over the splitting models and (at least) semiample
over the toroidal compactifications; yet we have no a priori knowledge of such vari-
ants, except in very special cases. Rather, we will obtain the existence of them as
a byproduct of our argument, which is based on a tricky analysis over the formal
boundary charts. We will also obtain a long list of nice properties of the corre-
sponding projective spectra, with precise descriptions of their stratifications and of
their relation with toroidal compactifications, which allows us to call them minimal
compactifications of splitting models.

Here is an outline of this article.

Section [2] is devoted to the construction of splitting models of our PEL-type
Shimura varieties. In Section [2.1] we review the linear algebraic data for defining
multichains of lattices, which are required for the remainder of the article. In
Section we review the notion of multichains of isogenies of abelian schemes
with additional structures; we also introduce their moduli, and relate them to the
integral models of PEL-type Shimura varieties constructed by taking normalizations
(over certain naive moduli) as in [I3]. In Section|2.3] we define the notion of splitting
structures, and introduce the relative moduli problems for them. In Section [2.4] we
study the splitting structures over the naive moduli and over the integral models of
PEL-type Shimura defined by taking normalizations, and introduce their splitting
models.

Section [3] is devoted to the construction of toroidal compactifications of the
splitting models constructed in Section[2] In Section [3.1] we introduce the splitting
models over the toroidal compactifications constructed by taking normalizations
as in [I3] and by normalizations of blowups as in [I5], and define the boundary
stratification on them. We will consider these the toroidal compactifications of the
splitting models. In Sections[3:2]and [3:3] we introduce splitting models over simpler
objects over integral models of smaller PEL-type moduli problems associated with
the boundary strata, and use them to describe the formal completions of the toroidal
compactifications of splitting models along their boundary strata. Theorem [3.3.1
can be considered the technical heart of this article. In Section we summarize
our main results for toroidal compactifications in Theorem [3.4.1] in a format similar
to the one of [I2, Thm. 6.4.1.1]. The theorem is rather long, but has the advantage of
collecting all relevant information at a single place. We also record some byproducts
concerning local properties along the boundary.

Section [4 is devoted to the construction of minimal compactifications of the
splitting models constructed in Section[2] In Sections[d.I]and .2} we construct them
as certain birational contractions of the toroidal compactifications constructed in
Section [3] overcoming the difficulty mentioned above. In Section we summarize
our main results for minimal compactifications in Theorem[£.3.1] in a format similar
to the one of [I12, Thm. 7.2.4.1].

We shall follow [I2], Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from [12], we recommend
the reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. It is not necessary to have completely
mastered the techniques in [12], [I3], and [I5] before reading this article. (Readers
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who are willing to work with less precise collections of cone decompositions induced
by certain auxiliary ones, as in [I3] Sec. 7], can ignore most references to [15].)

2. SPLITTING MODELS

2.1. Multichains of p-adic lattices. Suppose we have an integral PEL datum
(O, %, L, (-, -}, ho), where O is an order in a semisimple algebra finite-dimensional
over Q, together with a positive involution x, and where (L, (-, -), ho) is a PEL-type
O-lattice as in [I2] Def. 1.2.1.3], which defines a group functor G over Spec(Z) as
n [12 Def. 1.2.1.6]. Let us denote the center of O%Q by F, and denote by F'T

the subalgebra of F' consisting of elements invariant under *. Suppose that L
satisfies [I2] Cond. 1.4.3.10]. (This is harmless in practice, as explained in [12]
Rem. 1.4.3.9].)

Let Fy denote the reflex field defined by (O %)]R, (-, ), ho) asin [12] Def. 1.2.5.4],

which is a subfield of C. Let V; (resp. V') denote the maximal sub-O ® C-module of
Z
L ®C on which hy(z) acts as 1 ® z (resp. 1 ® 2¢), where ¢ denotes the complex con-
Z

jugation. Then Vj and Vi are maximal totally isotropic with respect to the pairing
(-, ) ®C, and we have the Hodge decomposition L@ C = Vo®V{ = Vo V.
Z 7

By [12], Def. 1.4.1.4] (with O = ) there), for each open compact subgroup H of
G(Z)7 we have a moduli problem My, over Sop = Spec(Fp), defined as the category

fibered in groupoids over (Sch /Sgp) whose fiber over each scheme S is the groupoid
My (S) described as follows: The objects of My (.S) are tuples (A, A, 4, oy ), where:

(1) A — S is an abelian scheme.

(2) A: A — AV is a polarization.

(3) i: O — Endg(A) is an O-endomorphism structure for (A, A) as in [12], Def.
1.3.3.1].

(4) Lie, g with its (’)@Q module structure given naturally by ¢ satisfies the

determinantal condltlon in [I2] Def. 1.3.4.1] given by (L®]R (-, ), ho).
(5) ay is an (integral) level-H structure of (A, A, ) of type (L® Z,(-,-))asin
z
[12, Def. 1.3.7.6].

The morphisms of My (S) are the naive ones induced by isomorphisms between
abelian schemes, respecting all the additional structures.

Let p > 0 be a rational prime number. For simplicity, and for consistency with
[T7, Sec. 15], we shall make the following:

Assumption 2.1.1. The order O is mazimal at p (see [12, Def. 1.1.1.11]).

Let v denote a place of Fy above p, and let Fj , denote the v-adic completion of
Fy. Let Q denote the algebraic closure of Fy in C, and let @p denote an algebraic
closure of Fy,, with a lifting Q- @p of the canonical morphism Fy — Fp,. Let
Y denote the set of homomorphisms 7 : ' — Q,. For each 7 € Y, let F, (resp.
FF) denote the composite of Q, and 7(F) (resp. 7(F*)) in Q,. We define two
7:F — F.and 7 : F — F, to be equivalent, denoted 7 ~ 7/, if there exists an
isomorphism o : F 5 F, over Q, such that 7/|p+ = 0 o (7|g+). In other words,
they are equivalent if their restrictions to F'* are in the same Gal(Q,/Q,)-orbit.
For each equivalence class [7] € T/ ~, let us fix the choice of some representative
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7 of [7], and abusively write [7] : ' — Fj and [7] : FT — F[JTF], where F[Jr = Fr

T] T

and Fi;) := F ® F;. Then we have a factorization
P+

(2.1.2) FeQ,= II F
[rleT/~

which induces and is induced by a factorization
+ ~ +
(2.1.3) F %Qp =~ I 7
[rlex/~

(cf. [I2] Sec. 1.1.2]). These factorizations induce the corresponding factorizations of
rings of integers. Since O is maximal at p by Assumption [2.1.1} it contains the ring
Or (resp. Op+) of integers in F' (resp. F*). (We shall always denote by O the
ring of integers in any 7 that is a product of local or global fields.) Consequently,
the identity elements of the rings Op, define idempotent elements of O %)Zp, and

we have a factorization

2.1.4 7, ~
(2.1.4) 08Z, II o

inducing for each O ® Z,-module M a canonical decomposition
Z
(215) M = ©® M[T],
[r]leYX/~
where each M, is the maximal submodule of M on which the action of O ®Z,

Z
(resp. Or) factors through Oy, (resp. OF,). In particular, we have a canonical

decomposition

2.1.6 L®Z,= @ Ly,
(2.1.6) P = & L

Let 2 be a set of O®Q)p-lattices in L ®Q, that is a product of sets £, of
Z Z
O|--lattices in Lj;; @ Q in the sense that, for each A € &, there exist Aj;) € £,
Z
for all [7] € T/ ~, such that

(2.1.7) A= @ Ay
et~ 1)

as subsets of

2.1.8 L® E Li1®Q).

(2.1.8) ©Qp [T]er/~( 1®Q

For simplicity, we shall assume that Ao = LQZ, € Z.
Z

We shall assume moreover that each £;) is a chain in that it satisfies the fol-
lowing two conditions, as in [I9, Def. 3.1]:
(1) If Afry and A{T] are two distinct elements in .%},}, then either A C AET] or
AfT] C Ay
(2) If bis a unit of O %) Qp which normalizes O %) Zy, then bA (7 € £ for each
Ay € Zjr-
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Then % is a multichain as in [19], Def. 3.4]. We shall assume that .Z is self-dual in
the sense that, for each A € £, the dual lattice

(2.1.9) A = {z € L%M@p {z,y) € Zp(1), Yy € A}

is also contained in .Z (see [19, Def. 3.13]). As in [19], we shall consider .Z as a
category with morphisms given by inclusions of lattices.

Definition 2.1.10. U,(Z) is the subgroup of G(Q)) consisting of elements stabi-
lizing all lattices A in £ .

Remark 2.1.11. By the explanation in [19, 3.2], under the assumption that Ag =
L%)Zp € 2, we have Uy(p) := ker(G(Z,) — G(F,)) C Upy(Z) C G(Zp). In

particular, U,(.Z) is an open compact subgroup of G(Z,). (The assumption that
Ao = L®Z, € Z is only made for the sake of simplicity. It is practically harmless
Z

for our purpose, thanks to [12), Cor. 1.4.3.8].)

Definition 2.1.12. Suppose S is a scheme over Spec(Op, ). An Z-set of po-
larized O ® Os-modules is a triple (J€,.F, j), where:
2 J

(1) K : A= Ay and F : A — Fn are functors from the category £ (with
morphisms being inclusions of lattices) to the category of O @ Os-modules.
Z

(2) j: F — H is an injective morphism, whose value at each A is denoted by
Ja 2 Fa — H (which is a morphism of O ® Os-modules).
Z

(3) For each A € £, let us identify Fa with an O ® Og-submodule of F,
Z

which is its image under the injective morphism jx. Then we require
that both Fa and H0\/Fa are finite locally free Og-modules, and that
| Fu satisfies the determinantal condition in [12], Def. 1.3.4.1] given by
(L%R’<" '>ah0)'

(4) For each A € £ and each unit b of O (229 Qp which normalizes O (%) Z,, there
are periodicity isomorphisms Hgﬁ R 05’%\ c FL D T
of O ® Os-modules satisfying jpa © 9}/\ = 9{%\ o ja, where the superscript
b on %my O @ Og-module means conjugating the O @ Z,-structure by b=
(i.e., each eleZment a€O®Z, acts by b='ab). ’
(5) For each A € £, there e:m'Zsts a perfect pairing
(2.1.13) (v, A X I — Os(1),
inducing an isomorphism
(2.1.14) (s A S ().
Moreover, for each inclusion A C A’ in £, we have the natural compatibility
(A = A#) 0 ()3 = (- )i o (A A).
(6) For each A € &, the orthogonal complement Fi- of Fx with respect to

the pairing (-, - )a in (2.1.13)) coincides with Fp4 as submodules of .
Therefore, the isomorphism (2.1.14)) canonically induces an isomorphism

(2.1.15) Fn 5 (Hn | Far)' (1)
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By definition, we have the following:

Lemma 2.1.16. Suppose S is a scheme over Spec(Or, ), and suppose (K, Z, j)
is an ZL-set of polarized O ® Os-modules as in Definition [2.1.12| Then the pullback
Z

of (M, F,j) to any scheme T over S is an £-set of polarized O ® Op-modules.
= 7

For any (A, .7, j) as in Definition [2.1.12} we have compatible canonical decom-
positions

(2.1.17) HNE D A
[r]eX/~

and

(2.1.18) FAE P EA,[T]
[r]eX/~

of O ® Os-modules, as in |D which induces a collection
Z

(2.1.19) {(K[T] A~ %,[T],Z[T] A 9A,[T})}[T]ET/~

of functors from the category £ to the category of O ® Os-modules.
Z

2.2. Multichains of isogenies. For each scheme S, let AVg)(S ) denote the cat-
egory of abelian schemes A over S equipped with homomorphisms i : O ® Z(,) —
Z

Ends(A) ® (Z,))s, whose morphisms are generated by the homomorphisms and
Z
all Z(Xp)-isogenies (see [12], Def. 1.3.1.17] and [19} 6.3]) that are compatible with the
O @ Zpy-structures. As usual, for each abelian scheme A in AVg)(S), we consider
Z

the dual abelian scheme A" as an object of AVg ) (S), equipped with the homomor-
phism iV : O® Z(,) — Ends(AY) ® (Z(,))s defined by b — i(b*)".
z z

Definition 2.2.1. Given any multichain £ as in Section an ZL-set of

abelian schemes A over S is a functor A : & — AVg)(S) : A — Ap, equipped

with a Q*-isogeny fan : Axn — Ap for each inclusion A C A', which is a

(Z(Xp))s—multz'ple of an isogeny, compatible with the O @ Zy)-structures, satisfying
Z

the following two conditions (see [I9, Def. 6.5]):

(1) For each inclusion A C A" in L, consider ker(fa a[p™]) C Aa[p™°] (where
fan[p™®] o Aa[p™] — An[p™] is defined because fap : An — Apr is a
(Z(Xp))s-multiple of an isogeny), which admits an action of (’)Q;Zp induced

by the action of O @ Z,y on Ax, and factorizes as a fiber product
Z
ker(fanp™) 2= [ (ker(fan[p™)))i
[TleY/~

of finite locally free group schemes over S. On the other hand, the inclusion
A C A induces an inclusion A C A{T]. Then the condition is that

ko ((ker(fa,ar [POO]))[T]) = [A/[T] : A[T]].
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(2) For each O % Lp)-structure in on Ap, and for each unit b of O %)Q which
normalizes O @ Ly, we define a twisted structure iy by i} (a) = ia (b~ ab)
foralla e O ®ZZ(p), and we denote abusively AY for Ap with such a twisted
O%Z(p)—stmfture, so that in(b) induces a Q*-isogeny [b] : A, — Ap in
AVg)(S). Then the condition is that, for each b € (O%Q)X O(O%Z(p))
that normalizes O%Z(p), there are periodicity isomorphisms 9?41\ AR S
App such that [b] = fapa © 9%1\.

Lemma 2.2.2. For any such A, to define a Q-homogeneous principal polarization
A as in [19, Def. 6.6 and 6.7], it suffices to give the following (less canonical) data:
(1) A lattice Ay € &£ such that Ay is contained in its dual lattice Agﬁ (with
respect to (-, -)®Qp). (Such a Ay € & always exists, by scaling any
Z
A € Z by a sufficiently large power of p.) We may and we shall just take
Ay to be the same Ag = L ® Zy, introduced above.
Z
(2) A polarization Ny, : Ax, — AY, respecting the O ® Zy,)-structures of Ax,
Z
and AXO such that, for each A C Ay, so that Ag C A# C A#*, we have

ker(fay,a%[p™]) = ker((f5 o, © Ano)[P™])

in An,[p™] (where fa, a#[p™] and (fY o, © An)[p™] are defined because
faoax and fY - are (Z?p))s-multiples of isogenies), so that

(2.2.3) FXong ©Ang © fropn + Anw — A
is a Z(Xp)—isogeny (i.e., an isomorphism in the category AVg))(S)).

Remark 2.2.4. The notation system in Lemma slightly differs from that in
[19, Def. 6.6 and 6.7]—we reserve the symbol A for the polarizations, rather than
for the induced Z(Xp )-isogenies such as Ay — Al 4.

Definition 2.2.5. Let HP be an open compact subgroup of G(A*P). The mod-
uli problem M?_f‘;"e over Spec(Op, ,) is defined as the category fibered in groupoids
over (Sch / Spec(Op, ,)) whose fiber over each scheme S is the groupoid M5iive(S)
described as follows: The objects of M“Hag"e(S) are tuples (A, A, i, a0 ), where:

(1) A is an Z-set of abelian schemes over S as in Definition [2.2.1]

(2) A is a Q-homogeneous principal polarization as in [19, Def. 6.6 and 6.7],

which can be less canonically defined as in Lemma [2.2.2]
(3) i ={ia}acg is a collection of O QZ@ Q-structures such that each iy gives the

O ® Ly -structure on Ay (as an object ofAVg)(S)), so that i satisfies the
z

Rosati condition defined by the Q* -polarization f)x a, © Ay © fpra.n, (cf.
[12] Def. 1.3.3.1]) whenever p"A C Ag in L for some r € Z.
(4) For each A € £, Liey, g with its O ®Z,)-module structure given by
Z

ip satisfies the determinantal condition as in [12, Def. 1.3.4.1] given by
(L%Rv<'v '>7h0)'
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(5) ayp is a rational level-HP structure for (A, A, 1), which can be defined by a
rational level-H structure [Ga,lue for (Aag, Argsin,) as in [12, Def. 1.3.8.7]
(with O = {p} there, ignoring the requirement of self-duality of pairings at
p). (Since the Q* -isogenies fan : Ax — An induces canonical isomor-
phisms VP Ap s = VP Apr 5 of m1(S, 8)-modules at every geometric point 5,
we might as well define ayp as a collection {[&alwr }acy whose members
are all canonically identified with each other.)
The morphisms of M“Ha,j"e(S) are the naive ones induced by isomorphisms in the

category AVEgp) (which are induced by Z(Xp)—isogenies between abelian schemes).

Remark 2.2.6. The moduli problem M2V is the same as the ones in [I9, Ch. 6]
and [I7, Sec. 15], although the formulations are slightly different. It generalizes the
moduli problem M%} in [12, Def. 1.4.2.1], or rather the one in [10, Sec. 5] (which was
in the good reduction case, without the consideration of multichains of isogenies).

Lemma 2.2.7. Let S be any scheme over Spec(Ok), and let (A, A, i, ay») be an
object of M32ve(S). Consider the assignments

K N Ay = H{Y(Ay/S)

and

T . —TieV

F A~ Fp = Liejy g,
and the morphism j : . — H whose value at each A € £ is the canonical
embedding j : mXX/S — HI®(AL/S) dual to the last morphism in the canonical
short exact sequence 0 — @XA/S — Hig(Ar/S) — Lieyy/s — 0 (see [2, Lem.
2.5.3]). Then (K, F,j) is an ZL-set of polarized O & Og-modules as in Definition

= Z

2.1.120 (The level structure ayy, s not used in the construction of (H,.Z,j).)

Proof. For each A € £, the desired perfect pairing as in is induced by
the canonical perfect pairing H{®(Ar/S) x HIR(AY/S) — Os(1) (see [ 1.5)),
and by the canonical isomorphism H{®(A,%/8) = H{®(AY/S) induced by A (or,
concretely, by (2.2.3)). The other conditions in Definition then follow from
the various conditions in Definitions 2.2.7] and 2.2.5 O

Remark 2.2.8. Since H®(A,/S) is canonically isomorphic to the relative Lie al-
gebra of the universal vectorial extension of Aj over S (see [16, Ch. 1, Sec. 4]), the
% and %, in Lemma are the My and Fy in [I7, Sec. 15], respectively.

Choices 2.2.9. By the explanation in [19] 3.2], there exists a finite subset .&; =
{Aj}ies of £ such that an O ® Zp-lattice A in L ® Q,, belongs to .Z if and only if
Z Z

there exist some integers (7[;))j;jer/~ and j € J such that A = p"7A; [, for all

[7] € Y/ ~, where A[;; and A; ;] are the direct factors of A and Aj, respectively, as

in (2.1.7). Take any ro € Z such that A; C p™Ag for all j € J. Then there exists

a set {L;}jes of O-lattices in L ® Q such that L; C p™L, such that the canonical
Z

morphism (p™L)/L; — (p°L®Z,)/(L; ®Z,) is an isomorphism of O-modules,
Z Z

and such that Li®Z, = Aj in L®Qy, for all j € J. Let g; = 1, and let (-, -);

Z Z
be the restriction of p=27 (-, -) to L;, for each j € J. For each j € J, since O
is maximal at p by Assumption [2.1.1} and since L; ® ZP = L®ZP, the lattice L;
Z Z
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satisfies [I2, Cond. 1.4.3.10] as L does. Moreover, if H? is any subgroup of G(Z?),
whose action stabilizes L ® ZP by definition, then it also stabilizes L; ® ZP. From
Z Z

now on, we shall fix the choices of J and £y = {A;}ies.

Choices 2.2.10. Let us take H to be any open compact subgroup of G(A*°) such that
its image #? under the canonical homomorphism G(Z) — G(Z?) is a neat (see [12,
Def. 1.4.1.8]) open compact subgroup of G(ZP), in which case H is also neat, and
such that the image H,, of # under the canonical homomorphism G(Z) — G(Z,)
is contained in U,(.Z) as in Definition (see also Remark [2.1.11)). Then the
collection {(1, Lj, (-, - )j) }jes satisfies the requirements in [I3} Sec. 2], and we can
define l\7|7.¢ as in [13, Prop. 6.1] (by taking normalization over a product of minimal
compactifications of auxiliary good reduction integral models indexed by j).

Proposition 2.2.11. Let H and HP be as in Choices [2.2.10, Then there is a
canonical finite étale morphism

(2.2.12) My ® Fy, — MEN 2 Q
F, Z

over Spec(Fp ), which is an open and closed immersion when H is of the form
HPU, (L), which extends to a canonical finite morphism

(2.2.13) My ® Op,, — Misve

OFrq,(»)

over Spec(Op, , ).

Proof. Since the canonical morphism My, — Myey, (o) is finite étale, and since the

induced canonical morphism MH — Mﬂpup( ) is finite (essentially by definition),
we may and we shall assume that 1 = HPU,(Z) in the remainder of the proof.
Consider the pullback to S := My ® Fp, of the tautological tuple over My,
Fy

which we abusively denote by (A, \,4,az). For each j € J, we also have the
pullback to S of the tautological tuple over My, via the canonical isomorphism
My, = My, given by [I3, (2.1)], which we abusively denote by (Aj, Aj, ij, oz, ).
By [13l Prop. 6.1], for each j € J, the triple (A4;, Aj, ;) over S extends to a triple
(/I},Xj,a) over S := '\7'7.[ ® Opg,,. By [7, IV-2, 6.8.2 and 7.8.3], S is noetherian
Fo,(p)
normal, because MH is of finite type over Spec(Op, (p)) and normal. By the proof
of [13, (2.1)] based on [12], Prop. 1.4.3.4 and Cor. 1.4.3.8], for any two j,j’ € J, there
canonically exists a Q*-isogeny f;; : A; = Ay over S. By [12, Prop. 3.3.1.5] and the
noetherian normality of 5, it (uniquely) extends to a Q*-isogeny fj)y : /_1; — /fj,
over S. Hence, for any j € J, with A; = L; %ZP in L%Qp, and for any r € Z,

we can define Aj,-p; to be the abelian scheme f_l; over 5. In general, for each
A € £ such that Ap = p'I71Aj - for some integers (r(;){rjey/~ and j € J, for
all [r] € T/ ~, as in Choices there exists some r € Z such that r > r(;,
for all [7] € T/ ~, in which case we have a finite locally free subgroup scheme
K:= 1] (/YJ [p" ")) (7 of /_1; over S, and we can define A5 to be the abelian
[rlex/~
scheme ffj /K over S, with a canonically induced isogeny fpra; A @ Apra; — Aa. For
any A’ € . such that A € A’ and AfT] = prflAjly[T] for some integers (TfT])[T]ET/N
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and j’ € J, for all [7] € T/ ~, as in Choices so that we have a similarly defined
isogeny f, Ay A A, YAy Ans, we define fa ar : Ax — Aas to be the Q*-isogeny

’
T"I“On

given by the composition of f, " Ay, A © fJ g0 fpr A A with multiplication by p
Aps. At any geometric point § —> S, the level structures as;; and a, compatibly

induce isomorphisms matching the submodules (L; @ ZP) x A and (Lj @ ZP) x A" of
Z Z
L®A>® = (L®A™®P)x (L®Q,) with the submodules T Aj 5 and T A/ 5 of V Aj,
Z Z Z

respectively, so that the conditions in Definition holds over the open dense
subscheme S of S , and therefore also over the whole S. Thus, the assignments
above define an .Z-set A of abelian schemes over S , as in Definition

For any jo € J, since Aj, C p™Ay (see Choices , we have an isogeny

fp—ro Ajg Ao Apyro Ay = /_l'jo — An,, as in the previous paragraph, and we can define
the Q*-polarization Ay, : Ap, — AY, to be (f;/*TOAjO,AO) oXj, 0 f 0 Ay Ao
the level structure agy;,  matches the submodules (L @ 7ZP) x Ag and (L# ® 7P) x Ag&
z Z
of LA® = (L®A>®P) x (L®Q,) with the submodules T Ay, s and T A  of
Z zZ Z k

. Since

V Aj, respectively, for each geometric point § — .S, and since Ay C AO# (see Lemma
, the Q*-isogeny A, defined above is a Z(Xp)—multiple of an isogeny over S,

and hence is also a Z(Xp)—multiple of an isogeny over 5’, again by [12 Prop. 3.3.1.5]
and the noetherian normality of S By Lemma we have also obtained a

Q-homogeneous principal polarization A for A as in [I9 Def. 6.6 and 6.7].
The O ®Zy)-structure i = {ipfrce for (4,]) is compatibly induced by the
Z

O-endomorphism structures {; for (ffj, ;\}), for all j € J.
For each A € &, the O ® Og-module Lie An/S satisfies the determinantal con-
7

dition as in [I2], Def. 1.3.4.1] defined by the data (L®R, (-, -), hg) because the
Z

O ® Og-modules mAj/s do, for all j € J, over the open dense subscheme S of 5,
zZ

and because the determinantal condition is a closed condition by definition.
Finally, by forgetting the factors at p, the level structures as; over S compat-

ibly induce the level structures aqr away from p, realized by compatible collec-

tions of subschemes «;, of Homg((L;/nL;)s, Aj[n]) >§Ho7ms(((Z/nZ)(1))s,un’s)

finite étale over S, which are étale-locally-defined orbits of symplectic isomor-

phisms, for sufficiently divisible integers n prime to p. Since S is noetherian

and normal, they uniquely extend to compatible collections of subschemes &;

of Homg((Lj/nLj)g, A i[n]) x Homz(((Z/nZ)(1)) 5, 1, 5) finite étale over S, which
S

define level structures aHp away from p and induce the desired level-HP structure
ayyp for (4, A, 1) (by the same argument as in [I2, Constr. 1.3.8.4 and Rem. 1.3.8.9]).

Thus we have obtained a tuple (G A, 4, Quyyp) OVEr S which is parameterized by
M22ive | which induces a morphism S M22ive as in ) Since the construction
of the canonical finite morphism S — H My

jed

level structures away from p, by rewriting the objects of I\/Inalve represented by
Z(p) isogeny classes in terms of isomorphism classes by the same argument as in

given by [13, (6.3)] only uses

j,aux
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the proof of [I2], Prop. 1.4.3.3], it factors as a composition S — Myaive HJ M, s
je
where the first morphism S — MnHagve is (2.2.13)). This shows that (2.2.13) is also
finite.
By restriction to S, we obtain a finite morphism S — M“Ha;i"e ®Q as in (2.2.12)).
zZ

By comparing their universal properties, both sides of (2.2.12)) admit compatib

morphisms to S := My» ® Fy,. By assumption, U, (-£) (see Definition(2.1.10

OFry, ()

is the subgroup of G(Q,) consisting of elements stabilizing all lattices A in ., which

is also the subgroup of G(Q,) consisting of elements stabilizing all the submodules

L; of p°L®Z,, for all j € J (see Choices [2.2.9). Take any 7 € Z such that
z

PL®Zy C Ly®7Z, C p°L®Z, for all j € J. Since the morphism S — S? is
Z Z Z

@

the pullback of the canonical morphism My — My» ® Fy, which is defined by
Ory.(»)
forgetting the level structures at p, it parameterizes étale-locally-defined orbits of

symplectic isomorphisms of the form ((p™L)/(p™L))s — A[p™*~"°] over S, under
which the images of (L;j/(p™ L ®Zy))s determine some isogenies A — A;, satisfy-
Z
ing some additional conditions which are open and closed. On the other hand, the
morphism M}%V¢ ® Q — SP parameterizes exactly such isogenies A — A; satisfying
Z
some other closed conditions. Hence, by comparing the relative universal proper-

ties, the morphism (2.2.12)) is an open and closed immersion (under the simplified
assumption that H = HPU, (L)), as desired. O

2.3. Splitting structures and their relative moduli.

Choices 2.3.1. For each equivalence class [7] € T/ ~, let us order the elements
T(#,05 T[], 15 - - » T[r]is - - - i [T], where the index i satisfies 0 <4 < d[7) := [Fjr) : Qp),
in a way such that any two elements with the same restriction to F'™ are successive.
Let K be any finite extension of Q, in @p that contains the composite of F’- in Qp
for all 7 € T, namely the composite of Q, and the Galois closure of F' in @p. Then
Fy,», C K (cf. the proof of [I2] Cor. 1.2.5.7]). We shall fix the choices of K and of
the orderings 7(,1,0, T(r),1 - - - » T[#]i» - - -» fTOM NOW on.

Let {r;} ey be integers such that, for every b € F, we have
(2.3.2) det(T — b-Tdyy [Vy) = [ (T - r(0))"
TeY

in Qp[T7], as in [I7, Sec. 14]. (As explained in [I7, Sec. 14], for every 7 € Y, the
Fi;-module Li;) @ Q is necessarily free of rank r. + rro..)
Z

Definition 2.3.3. Suppose that S is a scheme over Spec(Ok), and that (€, .7, j)
is an ZL-set of polarized O ® Og-modules as in Definition [2.1.12] which induces
zZ

as in (2.1.19) the collection {(A ), Z(;))}irjex/~- A splitting structure for
(A,Z,7) is a collection

(23.4) UF 3 et /mozica,

where each Zfﬂ A~ 3‘\1{,[7] is a functor from the category £ to the category

of O ® Og-modules, and where each jfT] : zf}] — %H i an injective morphism,
Z J
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whose value at each A is denoted by jj\#] : f}'\,m — H) [, which satisfies the
following conditions:

(1) For each A € &, let us identify ﬂf\’m with an O % Os-submodule of 4 [+,

which is its image under the injective morphism j}l\ym. Then we require that
both F§ (7] and %‘j\’m/ﬁf\ym are finite locally free Og-modules.
(2) For each A € £, we have

gz (-1
[]C‘/A[]

as O®ﬁs—subm0dule of H} |7, where Fy (71 is as in (2.1.18). For each

mteger i satisfying 0 < i < d|.), the quotient L?A [T]/ A [T] is a locally free

Os-module of rank -, . annihilated by b® 1 —1® 771 4(b) for allb € OF,,.
(3) For each A € Z, each [r] € Y/ ~, each integer i satzsfymg 0 <i < dp,

and each unit b of O ® Qp which normalizes O QZ§ Z,, there are periodicity

0_/ C"'Cgk,[ﬂCyA07[T]:yA,[T]

isomorphisms 0?’% (FL In ]) = Fl (7] of O ® Os-modules satisfying
AL[7] ’ YA

j[ir],bAoag,im = e%,m 0j) () (where the superscriptb on an O ® Os-module

means conjugating the O ® Z,-structure by b=', as in Definition [2.1.12)).
Z

(4) For each A € £ and each integer i satisfying 0 < i < dj, let (%\f\,[ﬂ)l

denote the orthogonal complement of 9}\ (7] in Hp# ;] with respect to the

perfect pairing Hy 7] X j‘fj\# — Os(1) induced by the perfect pairing
1) which satisfies 7, I C Fp# ] = f/tm C (ﬁ}x)[ﬂ)L. Then

[T @1 -1@m@)(ZL )Y € Fae
0<k<i

for allb € Op,, for every 0 <i < dj;y divisible by [Fl7 F[JTF]].
Definition 2.3.5. Two splitting structures
{(Z] [+ J )}[T]ET/N 0<i<dy
and

{(sz]’ )}[T]GT/~,0§i<d[T]

as in Deﬁmtzon 2.3.3| are 1som0rphlc tQ each other if there exist isomorphisms
p[ E AR = 33[ | such that][’] ° Pl = [T] Jorall [T € T/ ~ and 0 <i < dp.

By definition, we have the following:
Lemma 2.3.6. Suppose that S is a scheme over Spec(Ok), that (J,.Z,j) is an
Z-set of polarized O %) Os-modules as in Definition and that
{(Z] [T]aj ]

is a splz'tting structure for (J€,.7,3j) as in Definition m Then the pullback of
{(Z; (7]’ ] )}[T]ET/N 0<i<dy,, to any scheme T over S is a splitting structure for the

pullback of( Z,j) toT (cf. Lemma [2.1.16]).

)}[T]ET/N 0<i<dq
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Proposition 2.3.7. Consider the (contravariant) functor
Splie.7.j)/s ¢ (Sch/S) — (Sets)

defined by assigning to each scheme T over S the set of isomorphism classes of split-
tings structures for the pullback of (€, .7, j) to T. Then the functor Sploe.z 5)/s
is representable by a scheme over S, which we abusively denote by the same sym-
bols. This scheme is locally over S projective, with a relatively ample invertible
sheaf given by the relative Hodge invertible sheaf

(2.3.8) I (/\top (g/z‘\’m))®(uk,[r]—%,ﬁ])))

w7 . = ® ® (
(,Z.5)/S AP ([T]GT/N 0<i<d,

(with the convention that /‘Xl[r] = 0), where £ is the subset of £ as in Choices
and where the tensor and exterior pfoducts are over ﬁsPl(i,z@)/S’ for each
triply indexed collection of integers p = {/#l/\,[r]}AGXJ,[T]GT/N,OSKd[T] that is posi-

tive in the sense that ui\j[lT] > Mj\,[T] forall A€ &5, [1] € T/ ~, and 0 < i < dj5.

Proof. For simplicity, let us abusively denote by the same symbols the pullback of
(A, 7, j) to any scheme T over S. Let {(zfﬂ,ZZT])}[T]GT/N,Ong[T] be a splitting
structure for (2,.Z, j). As in Definitions and let us identify F, )
with a submodule of 7} |, via j, (7], and identify ‘97\,[7'] with a submodule of .7 [
via jj i forall A € Z, [r] € T/ ~, and 0 < i < d[;). Then the splitting structure
is uniquely determined by the filtrations defined by {9\}\7[7]}0§i<d[71 on (7, for
all A € Z and [r] € T/ ~, satisfying the additional conditions in Definition [2.3.3]
By the periodicity condition in Definition and by the same explanation
as in [I9] 3.2], it suffices to consider the indices A € £}, as in Choices [2.2.9
Locally over the base scheme S, the filtered pieces 33}\7“] of A} ), which
are Og-module local direct summands by assumption, are parameterized by some

Grassmannians; and the inclusion relations 97\"’[% C ﬂj\ (r] Are given by the vanish-

ing of the canonical morphisms L@}\Jr[i] — I/ 9}\ .1» which are closed conditions.
Similarly, the additional conditions in Definition ﬁ given by the containment
of images of certain morphisms, are also closed conditions. Hence, Spl( .7.5))8 18
locally over S representable by a closed subscheme in the fiber product of Grassman-
nians triply indexed by the finitely many A € &}, [7] € T/ ~, and 0 < i < d[). As
explained in, for example, [6 Sec. 5.1.6], the Grassmannian triply indexed by A, [7],
and ¢ has an ample invertible sheaf whose pullback to Spl s # ;)/s is tautologically
dual to AtoP (L@K[T]), the top exterior power of the locally free sheaf 3‘7\7[7] over
OSpl s 7 ;75 Since each such Atop (97\’“]) is globally defined over Spl 7 j)/s
and since AP (?X,[T]) descends to S because f}a,m = F,[7 does, the scheme
Spl( e, 7 5)/s 1s locally over S projective, with a relatively ample invertible sheaf

w(ﬁjf Z.7)/8 given by 1' for each positive p. ([l

Lemma 2.3.9. Suppose that S is a scheme over Spec(K), and that (A,.7,j) is
an £-set of polarized O @ Os-modules as in Definition [2.1.12] Then the structural
Z

morphism Spl(i,z,j)/s — S is an isomorphism. FEquivalently, for each scheme T

over S, there is up to isomorphism a unique splitting structure for the pullback of

(L,Z,7) toT. Moreover, the condition in Definition is redundant.



COMPACTIFICATIONS OF SPLITTING MODELS 15

Proof. Let us proceed as in the proof of Proposition 2.3.7 with the addition as-

sumption that T = Spec(R) is affine; it suffices to show that there uniquely exist

filtrations {yj\,[r]}OSKd[r] on J} [, satisfying the additional conditions in Def-

inition [2.3.3] for all A € £ and [r] € T/ ~. Since F[T]gK ~ I K, =
P TE[T]

11 K+, ., where F" acts on K, = K via the homomorphism 7 : F — K,
0<i<dp

we have canonical decompositions Fy ;) & @&  Fp 4
0<i<d|

a VvV ~ a VvV o~ _ 1
FRw ) = oggdm TNt of Op, %))R = F[T](%R modules, which are (up to

permutation) independent of the ordering 7(,1,0, 7[;]1, ... of elements in [7]. Hence,
the desired filtration {.Z} [T]}0§i<dm on #, (-] uniquely exists and is given by

gt ~ a : : g 1L/ g ~ gV
T = iSk€<Bd[T] F N> Which satisfies (‘/A#,[r]) [ Fn ) = 0§%<iJA#’T[T]vk for

all 0 <@ < df). In particular, the condition in Definition is redundant. O

and %,[T]/‘g‘\/&,[r] =

7],

Proposition 2.3.10. Consider also the functor Spl’(%,z,j)/s defined by assigning
to each scheme T over S the set of isomorphism classes of splittings structures for
the pullback of (J,.Z,j) to T, but without the last condition . By the proof
of Proposition Spll(ﬁ,z,j)/s is representable by a scheme over S, which is
locally over S projective, and the canonical forgetful morphism

is a closed immersion, under which the invertible sheaf w(ﬁ%yj)/s defined over
SPl e, z.5ys (see ) is the pullback of a similarly defined invertible sheaf

w&7£71)/5 over Spl'(l,z@/s, which is also relatively ample over S, for each pos-

itive L.
Suppose moreover that S ® Q is reduced. By Lemma @ the morphisms
Z

(2.3.12) Spliez.0/s Q= SPlir 2,5)/s ©Q = S©Q
canonically induced by (2.3.11) are both isomorphisms. Therefore, if we denote
by Spl?‘z7z@/s (resp. Spll(’zéil)/s) the normalization of the (necessarily reduced)
schematic closure ofS%)@ n Spl(ﬁ’z@/s (resp. Spll(i’iyl-)/s) via such canonical
isomorphisms, then (2.3.11)) canonically induces an isomorphism

+ ~ Qi
(2.3.13) Spl(ﬁ,ﬁ,z)/s — Spl(ﬁ7z@/s .

!
We shall denote the pullback of w(ﬁi7z@/s (or w(ﬁz,z@/s) to Spl@7z7i)/s by

My . . . . . .
We.F )8 which is relatively ample over S because the canonical normalization

morphism Spl@wz’j)/s — Spliye,# 4y 1S finite, for each positive .
Proof. The statements are self-explanatory. O
2.4. Splitting models for PEL moduli. Let H and H? be as in Choices [2.2.10

Definition 2.4.1 (cf. [I7, the end of Sec. 15]). Let HP be an open compact subgroup
of G(A®P). The moduli problem M;_PZ,]D over Spec(Ok) is defined as the category
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fibered in groupoids over (Sch /Spec(Ok)) whose fiber over each scheme S is the
groupoid Mi_‘t’,l,(S) described as follows: The objects of M;_IZ;,(S) are tuples

(A; Aa @-7 QHPa {(zfr]71{7])}[T]€T/~,O§i<d[7] )a
where (A, \,i,qy.) is an object of MBAVe(S) as in Definition and where

{(ifr]»ZfT])}[T]GT/N,OSKd[T] is a splitting structure (as in Definition |2.3.3|) for

the L-set (H,.Z,7) of polarized O @ Os-modules associated with (A, \,1) as in
= Z

Lemma m The morphisms of I\/I;_‘Z,IJ(S) are the naive ones induced by isomor-

phisms in the category AVg)(S) (given by Z(Xp)—z'sogemes between abelian schemes

with O @ Zy,)-structures) and by the isomorphisms between splitting structures as
z

in Definition [2.3.5]
Then Proposition implies the following;:

Lemma 2.4.2. The canonical morphism
(2.4.3) MDD — MEsve @ O
Fo,v
defined by forgetting splitting structures is relatively representable and projective.
If we abusively denote by (A, \,i) the pullback to M3 @ Ok of (part of) the
OFo,v
tautological object over M?_ﬁi"e, and denote by (J,.Z, j) the associated £ -set of po-
larized O @ Os-modules as in Lemma then we have a canonical isomorphism
zZ

spl ~
(2.4.4) M;.pr — Spl(ﬁ,g,z)/(mgﬂ,veo@ Ok)*

FO,’U

Definition 2.4.5. Let (A, \,i) abusively denote the pullback to M’H ® Ok of
Ory, (0
the tautological object over M?_ﬁ}"e under the morphism (2.2.13)), and let (€, .7, j)
denote the associated £ -set of polarized O @ Os-modules as in Lemma , Then
z

we define (as in Proposition [2.3.10))
(2.4.6) M= Splt

Lemma 2.4.7. The canonical morphism l\_/l'i_lt’l%@ — MH ® K = MH%@K
0

Ory.(p)

induced by the structural morphism l\_/l’ﬁfl’l — MH o ® Ok is an isomorphism.
Fo.(p)

Proof. This follows from Lemma [2.3.9 (]

Corollary 2.4.8. Let lel‘; denote the schematic image of the canonical morphism
I\/I;IZ; — M;lfpi"e induced by 1) Then.the morphism (2.2.13)) factors through the
structural closed immersion M35 — M35V and induces a canonical finite morphism
(249) I\_/]'H ® OFO,U — M%f’lf;
Ory,(r)

over Spec(Op, ,), extending the finite étale morphism (2.2.12)) over Spec(Fy,,). If
(2.2.12) is an open and closed immersion, and if Mlﬁ‘; is known to be flat over
Spec(Or, ) and normal, then (2.4.9) is an open and closed immersion.
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Corollary 2.4.10. Suppose that the morphism (2.4.9)) induced by (2.2.13)) is an

open and closed immersion, and that M;_I[; is known to be flat over Spec(Ok) and
normal. Then we have a canonical isomorphism

(2.4.11) M S My ® Og,,) x M,
Fo.(p) M2pYe
inducing an open and closed immersion
(2.4.12) M5P! s M3P)
compatible with . If is an isomorphism, then so is (2.4.12)).

Remark 2.4.13. To summarize, we have a commutative diagram:

(2.4.14) My @ KC ,\7@51 Mif;},
Fo l L
My © Fos My © O, —— Mis s My
Fo OF(L(p) '

By Proposition and Lemma and by their definitions, the vertical mor-
phisms are all projective and surjective—the left-most one is finite étale (and is
just the base change morphism). The two horizontal arrows at the left-hand side
are open immersions with schematically dense images, by definition. By Corollaries
[2.4.8]and |2.4.10} if (2.2.12)) is an open and closed immersion (which is the case when
H = HPU, (L), by Proposition , and if MYS and M;f}, are known to be flat
over Spec(Op, ) and Spec(Ok), respectively, and are both known to be normal,
then the horizontal arrows between the two middle columns are open and closed
immersions. By definition, the bottom-right arrow is a closed immersion.

Remark 2.4.15. The Mjf}u, My, and M3IVe in are what were denoted ﬂg‘;l,
ko, and @BaVe in [I7, (15.4)], respectively, where the latter three objects have
the same singularities as the splitting model .#, the local model M'¢, and the
naive local model M™Ve respectively, defined and studied there. While they will
play no role in the remaining constructions of this article, they are important for
practical applications of the results in this article.

Remark 2.4.16. The normality of M5 and M;‘Z}?, and their flatness over Spec(OF, , )
and Spec(Ok), respectively, are known in many cases. See, for example, [I7].

Proposition 2.4.17 (cf. [13, Prop. 13.1 and 13.15]). Suppose that H and H' are
two open compact subgroups of G(Z) such that their images under the canonical
homomorphism G(Z) — G(Z,) are contained in Uy,(Z) as in Definition '
that g € G(A™) is an element such that the multiplication by the image g, of g
under the canonical homomorphism G(A>) — G(Q),) preserves the multichain £ ;
and that H C gH'g~'. Then we have a canonical projective morphism

(2.4.18) lg] : My — My

extending the canonical finite morphism My = Mg-19,g — My defined by g, whose
pullback from Opg, ) to Ox lifts to a canonical projective morphism

— spl — -
(2.4.19) 91" MR s MEsE
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Proof. In this proof, as in [I3] Sec. 13] and [I5] Sec. 7], for the sake of clarity, let us
temporarily (and abusively) denote all objects constructed using {(1, Lj, (-, - )j) }ieJ
(see Choices and by an additional subscript J. Since multiplication by
gp preserves the multichain ., by [I3} (2.1)] (or rather by its proof based on [12]
Prop. 1.4.3.4 and Cor. 1.4.3.8]), the tautological objects over I\7IH){0’1} « 3 (asin [I3]
Ex. 13.14]) differ from those over '\7'7.(7‘] by repeating some of the latter by Hecke
twists by the image ¢? of g under the canonical homomorphism G(A>*) — G(A%P),
realized by Z(Xp)—isogenies7 up to shifting the indices. Therefore, we have MH, 7=

—

I\_/'IH,{OJ} % 3 = Mg-134 5, and the composition of these with the canonical morphism

Mg-1919.0 = MH’J gives the desired (2.4.18]). Moreover, the pullback under (2.4.18))
of the tautological .Z-set of polarized O ® 0g-modules over My 5 can be identified
z

(up to shifting the indices) with the one over I\_/'IH, j via an isomorphism canonically
induced by ¢, and so (2.4.18)) induces the desired (2.4.19)), because the two sides of
(2.4.19) are the respective normalizations of relative moduli for splitting structures

over the base changes of the two sides of (2.4.18) from Op, (,) to Ok (and by
Zariski’s main theorem; see [7, ITI-1, 4.4.3, 4.4.11]). ([l

3. TOROIDAL COMPACTIFICATIONS

3.1. Splitting models for toroidal compactifications. Let H be as in Choices
2.2.10, and let My — M'qj_‘zfz be any toroidal compactification as in either [I3|
(7.10)] or [I5, Thm. 6.1]. Let (A, A,4) abusively denote the pullback to My, of the
tautological object over MJAVe, under the morphism (2.2.13), and let (J#,.Z, 7)
denote the associated Z-set of polarized O ® ﬁmﬂ—moc ules as in Lemma [2.2.7]

7

Lemma 3.1.1. For each A € &, the abelian scheme Ay (resp. AY) over My
(necessarily uniquely) extends to a semi-abelian scheme A (resp. AT over
I\_/'Ig_‘zrE (¢f. [12] Thm. 3.4.3.2 and Prop. 3.3.1.5]). Consequently, by [12], Prop. 3.3.1.5],
for each inclusion A C A" in L, the Q*-isogeny fa.a : Ax — Apr over My, which
s a Z(Xp)-multiple of an isogeny, (necessarily uniquely) extends to a Q*-isogeny

ext . Aext ext \/jjtor b g X ; ;
anr P AR = AR over Myl which s also a Z(,, -multiple of an isogeny.

Proof. By [12 Lem. 3.4.3.1 and Prop. 3.3.1.5], any Z(Xp)—isogeny of abelian schemes

over My (uniquely) extends to a Z(Xp)—isogeny of semi-abelian schemes over I\_/'IggrZ as

soon as the source extends. Hence, the assertion of the lemma does not depend on
the choice of Ay in its Z(Xp)—isogeny class. Therefore, as in the proof of Proposition
for each A € £ such that Aj;) = p"Ir1A; ;) for some integers (r(;))(rjer/~
and j € J, for all [7] € T/ ~, as in Choices[2.2.9} and for r € Z such that r > r(;), for
all [1] € T/ ~, we can take Ay to be A;/K, where =[] (4; [p"~"171]) (7). Since
[rlex/~
f_l‘j extends to a semi-abelian scheme /Iie"t with additional structures over Mg_‘zrz by
[13, Thm. 11.2] and [I5], Thm. 6.1], K also extends to the closed subgroup scheme
Kext = [ }H/ (A}*Xt [p" ")) of /_1}3“, which is quasi-finite and flat over |\7|§3rE
T]eY/~
Thus, we can define A" to be f_l?"t/lCe"t, by [12, Lem. 3.4.3.1, Prop. 3.3.1.5, and
the same local argument as in the proof of Thm. 3.4.3.2]. g
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Proposition 3.1.2. The L-set (J,.F,j) of polarized O ® O, -modules intro-
= z

duced above (necessarily uniquely) extends to an £ -set (7, F, i) of polar-

ized O @ O -modules inducing compatible isomorphisms F<* = Lie" v o or
7 M3s AT /M,

and A FEE = mAixt/mggfz (of O% ﬁﬁ'%.‘[fg -modules) extending the canonical
isomorphisms Fy = mXX/MH and F0 | Fp = mAA/M’H (of O% ﬁMH -modules),
respectively, for all A € Z.

Proof. In the proof of Lemma the quotient fff"t — A = ffj?"t /Kt

where K= =[] (A?“[pr_”fl])m, induces morphisms (Lie fex,v IRt )] —
[rleY/~ ) s
@Xixw JRiser and Lie et /Rt — Lie Age i that can be canonically identified

ZYjc’(t’v/ Mg
for each [r] € T/ ~. Thus, by decomposing everything into factors indexed by
[7] € T/ ~ as in Section the proposition follows from [I5, Prop. 7.15] (which
was based on a reduction first to the case where ¥ is induced by auxiliary choices
as in [I3} Sec. 7], and then to the good reduction case as in [I1, Prop. 6.9]). O

with multiplication by p" =771 on (Lie )ir) and Lie g INiter_> respectively,
= j H,Z

Definition 3.1.3. Let (2, ieXt,l'eXt) be as in Proposition . Then we define

\aspl,tor | +
(314) M’H,E T Spl(ﬁexc’zext’jext)/(l\]§$rz ® Ok)’
- " OFy.(p)
+ . . ey
where Spl(zm,ze"",fxt)/(l\ﬁggfz Lo 0n) is defined as in Proposition [2.3.10}
Fo,(p)

By comparing the universal properties (see Definitions and , we have

a canonical morphism

(3.1.5) Spl(zzg)/(ﬁm ® Ox) Spl(zcxt,zcxtgcxt)/(ﬁl;gfz ® Ok)

©Fy.(p) OFo,(p)
over Spec(Of). By Proposition [2.3.10} (3.1.5)) induces a canonical morphism
(3.1.6) Mip! — Mipe

over Spec(O ), which covers the canonical morphism My, < I\_/'IglefZ (see [13], (7.10)]
and [I5, Thm. 6.1]).

Remark 3.1.7. We would like to view Milzlgor as the toroidal compactification of

I\_/Ii_rzl associated with the compatible collection ¥ of cone decompositions. However,
to justify this, we need to show that it satisfies some reasonable properties as in
[12, Thm. 6.4.1.1] (and in the corresponding theorems in [I3] and [15]).

Definition 3.1.8. For each (locally closed) stratum Z[(qm,g%g)] of M%‘ZYZ as in [13]

Thm. 9.13] and [I5, Thm. 6.1(3)], we denote by Z?(pql%&“’g)] the reduced subscheme

of the preimage of Z[(¢H)5H7U)] under the canonical morphism Mi‘f}gor — |\7|5:er
Then I\_/’Iffz}’ztor is a disjoint union of locally closed subschemes

aspl,tor Zspl
(3.1.9) Mys = H (@350,

[(®3¢,09¢,0)]
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as in [I3} Thm. 9.13] and [I5], Thm. 6.1(3)], except that we still have to show that
it is a stratification. (As in [I2] Thm. 6.4.1.1(2)], the notation “[[” only means a
set-theoretic disjoint union. The algebro-geometric structure is still that of M;_legor.)

T(pql)H 53,07 and the formal completion

s for each [(Py,09,0)]. (As in

Our next goal will be to understand Z

\5PL b 7spl,t Zspl
(Mg-?,zor)/z\?g - of M%’Eor along Z?(pqmﬁu-ﬁ
H 03T

[12, Thm. 6.4.1.1(5)], to form the formal completion along a given locally closed
subscheme, we first remove the complement of it in its closure in the total space,

and then form the formal completion of the remaining space along this stratum.)

3.2. Toroidal boundary charts and formal completions. Suppose we have a
representative (®qy, 04, 0) of [(Py, oy, 0)] as in [12] Def. 6.2.6.1], where the under-
lying (Zy, Py, %) is a representative of cusp label for My as in [12] Def. 5.4.2.4]
(where Zy; is often suppressed in the notation, by [I2, Conv. 5.4.2.5]), and where
o0 € Yo, € X is a cone such that o C P;ﬁn. Consider the schemes I\ﬁ?j‘, I\_/Ig“,
Clpry5rys Bbry.bngs S5y, (0), and Ea,, 5,,.0, and the formal scheme Xg., 5,0, de-
fined as in [I3} Prop. 7.4 and Sec. 8] and [15], Constr. 4.5].

Definition 3.2.1. As in Definition let us set

\Z#-spl +
(3.2.2) M3 = Spl(uzjg, 85) /(M2 08 Ox)
Fo,(p)

where we denote by (!¢, 4.7, ”1) the analogue of (,.7, j) associated with the
tautological tuple (B, Aps gﬁ) over I\_/'Igi“, as in Lemma and abusively denote

by the same symbols its pullbacks to schemes and formal schemes over l\_/l'g_tH , such as

l\_/l’zj‘ o ® Ogk. (Note that the splitting structures here are defined by Lie algebra
Fo.(p)

conditions and rank sizes adjusted to the tautological tuple (B, Ag,ig) over l\_/l’gf,
using the boundary PEL-type O-lattice (L%, (-, -)2* hi") as in [12} Def. 5.4.2.6].)

Definition 3.2.3. With the same setting as above, we define |\7I;{_>L”’Spl, C_"(SI',I;L(;H,

—=spl —=spl —=spl yspl
TP, 007 TPy 0n (0)’ T ®y,69,07 and x‘b%énﬁ

Sdy A = = = 2

the fiber products of M3™, Ca,, 512 Edy60s 204,60 (0)s sy 50,00 oA Xy, 5500
. -7 1 — . . .

with M37*°P" over M?_[“, via the canonical structural morphisms.

to be the respective normalizations of

Lemma 3.2.4. We have the following canonical isomorphisms:

(3.2.5) My ! = Spl(ﬁz, L 15) /(N 0., )om’
(3.2.6) P s, = Splj% 2,130/ (o, ol O’
(3.2.7) SHIRSE T Y 0,2, O’
(3.2.8) Sy

~ Qg
“%M(U)_Spl(ﬁz,ﬁz,ﬂl')/(é(p,{,sﬂ(a) @ Ox)’
OFo.(p)



COMPACTIFICATIONS OF SPLITTING MODELS 21

(3.2.9) éfbpqliﬁﬂﬁ = Spl?_uz’ AL GO F®( )OK)7
0.(p
and
(3.2.10) izp;,éwo = Splﬁ%uz 9/ Rag 3. op®< >OK)7
0.(p
where
Spljn%7 $2,5)/Rapio | ®  O)

Fo,(p)

is a relative scheme over Xa,, 5,0 © Ok (see [8]), which compatibly assigns
Fo,(p)

to affine open formal subschemes Spf(R) of iqm,gH’J ® Og the corresponding
o

Fo,(p)

schemes Spl(ﬁi’ ¢ 7, 45)/ Spec(R) OVET Spec(R).

Proof. Since Spl represents the functor assigning to each

(A IF /MG ®  Ox)
OFo,(p)
scheme the isomorphism classes of splitting structures for pullbacks of (*22, *.Z, #5)
(see Proposition , and since the various objects on the right-hand sides are
defined by taking normalizations (see Proposition , these follow from the

definitions of the various objects on the left-hand sides (see Definition [3.2.3). O

Proposition 3.2.11 (cf. [I2, Prop. 6.2.4.7 and (6.2.4.8); see also the erratal,
[13, Prop. 8.7, 8.14, and 8.20], and [I5, Constr. 4.5]). The canonical morphism

=spl ~spl . . .
S e C’q)%é% is a torsor under the split torus Es,, with character group Se,,,

the canonical morphism ég’i?é%a — C_";I;i’h 15 a torsor under the split torus Ep,, »
with character group o := {{ € S¢,, : ({,y) = 0Vy € o} (see [12] Def. 6.1.2.5]),

. . —=spl —=spl ~spl . .
and the canonical morphism Zg, 5. — Zg, 5. (o) over Cs,, s, is an open immer-
sion defining an affine toroidal embedding associated with the cone o € Xg,, € 3.

Moreover, the canonical morphisms

Zspl = ~spl
(3.2.12) Sdy, 0y T =Pudn | X C‘I)H75H’
Cayy o
=spl = ~spl

(3.2.13) Sday 0 (0) = Eay6x(0) e C<I>H-,5H’
Cagyom

and

=spl = ~spl

(3.2.14) S br0 S . X Cgl s,

D69

are Fg,, -equivariant isomorphisms over C_’Efi 52y which are compatible with each
other. Consequently, the pullback of [13], (8.10)] gives a canonical homomorphism

(3.2.15) S, — Pic(C 5 )i L= TP o (0),
giving for each £ € Sg,, an invertible sheaf \f/f;l{ﬁ” (£) over C”;ri’&% (up to isomor-
phism), together with isomorphisms

X spl, . Fspl = spl ~ Tspl

A;PH:%H%W : \:[1237-175% (6) P ® \ijgnﬁu (6/) - \Ijibpnytsn ([ + gl)

spl
LSV
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for all £,0' € Sa,,, satisfying the necessary compatibilities with each other making
& ‘I’féi,g,{ (€) an ﬁ@;pl ) -algebra, such that
HOH

eES<1>H
=spl ~ T spl
(3.2.16) = = Spec,, (Zegi v (5)),
(I”H*‘S’H H
—spl ~ T spl
(3.2.17) :;pnﬁﬂ (0) = Specﬁgspl (éegv \Ijz’pﬂﬁﬂ (6))7
Py 0

where 0¥ :={l € Sg,, : ((,y) > 0Vy € o} as usual (see [12], Def. 6.1.1.8]), and
Tspl
O ~spl (KEGS-L lIIqFH"S“ <£)) '
S

Proof. These follow from [I3| Prop. 8.7, 8.14, and 8.20] and the arguments there,
because the pullback of the Eg,, -torsor 2o, 5,, = Ca,,,s5,, under C;I;i,éﬂ — Co,, .64

(3.2.18) Sy =~ Spec

—®34,09,0

. . . . Zspl . . .
is necessarily normal, and hence is isomorphic to :ZPH 5y, Via the canonical morphism
(3-2.12)), not just as a scheme but also as an Eg,,-torsor. (Il

Remark 3.2.19 (cf. Remark|2.4.13)). To summarize, we have a commutative diagram

- =spl =
(3.2.20) Edgy o0 @ K——EF 5, 0 =P Ety e  ® Ok
N Fo N f\Fo,(p)

—enl =
:{¢H,5H70§K xflfﬂ » Xy ono © Ok
0

Fo,(p)

0H,0

E‘I)H15H (U) @ K éfi?l s (J) — éq)ﬂﬁn (J) ® Ok
Fo e OFy.(p)

“ A

A o l =
= ® K¢ y =SP 5 = ®
=Py 09 =Py ,0n =®q,09 Ok

Fo Fo.(p)

Cq)'vas'H ;_,8 K é(%pl On 6‘1)7-1’57-1 ® OK
0

Hs
Fo,(p)

MER o K e it o o
Fo

Org.(p)

MEE & KO N i @ O
Fo

Ory.(m)
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in which all squares not involving Mi” ® Ok and I\7I§{H ® Of are Cartesian.
Fo.(p) OFo.(»)
The horizontal arrows at the left-hand sides are open immersions with schematically

dense images, because the bottom one is so by definition. The horizontal arrows at
the right-hand sides are projective (which are the Splt over the respective bases,
as in Proposition and surjective, whose pre-composition with the horizon-
tal arrows at the left-hand sides in the same rows are still open immersions with
schematically dense images. The (vertical) arrows between the top two rows are
closed immersions, while the arrows between the second and third rows are formal
completions. The arrows between the third and fourth rows are given by affine
toroidal embeddings associated with the cone o. The arrows between the fourth
and fifth rows are (smooth) torsors under the same split torus Eg,,. The arrows
between the fifth and sixth rows are all proper and surjective with the left-most one
being an abelian scheme torsor. The arrows between the bottom two rows are all
finite and surjective with the left-most one being étale. The commutative diagram
can be further expanded by adding vertical arrows from the first row to the fifth
row, which are (smooth) torsors under the same split torus Eg,, -

By [13, Thm. 10.13] and [I5, Thm. 6.1(4)], there is a canonical isomorphism

3.2.21 ML, )2 5% Y.
( ) ( H,E)Z[(%‘LY&HY”)] Xy 00,

Lemma 3.2.22. For each A € £, there exist split tori T and T) , with character
groups some O-lattices X and Yp, such that we have short exact sequences

(3.2.23) 1= Ty — A — By — 1

and

(3.2.24) 1Ty - A - BY =1

of (relative) group schemes over (I\/Ig_‘ifz)%\[(q)%é%u)], where AS® and AS™Y abusively
denote (by the same symbols) the pullbacks to (l\_;lg_(zrz)ﬁ of the semi-abelian

. Z((®3,.69.0)]

v Y . .
schemes A" and AT over MY, respectively. Moreover, we have a commutative
diagram

(3.2.25) 1 Ty Acxt Ba 1
A
1 TV, ALY BY, 1

in which the left-most vertical arrow is dual to a canonical isomorphism Yaz = Xa;

the middle vertical arrow is the pullback to (M%_‘l’rz)/z\ of the unique extension
’ [(®3¢,89¢,0)]

over the noetherian normal scheme MY of the isomorphism Ay = AY 4 over My

(see [12], Prop. 3.3.1.5]), which is part of the data of (A, A\, 1) over My, ; and where the

right-most vertical arrow is the pullback to (Mggrz)ﬁ
L@y 830.0)

By, 5 BY, over |\7|§_L”, which is part of the data of (B, Ap,ip) over |\7|§_LH

of the isomorphism

Proof. First consider the special case where A = p"L; ® Z,, for some r € Z and
Z

j € J. By the construction of A" = A}”‘t and AT = /Yje X6V over Mg_‘zfz, which
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was based on [I3] Lem. 11.1 and Thm. 11.2] and [I5, Thm. 6.1] (or more precisely
[15, Lem. 5.19 and Prop. 5.20]), their pullbacks to (M%"s;)2 are isomorphic

’ Z[(‘?Hﬁn;ﬂ')]
to the pullbacks of the Mumford families YG; and Q7(}’}/ over Xa,, 5,0 (see [12
Def. 6.2.5.28] and [13] (8.29)]), respectively. Then it follows from the constructions
of the Mumford families there that we have canonical short exact sequences

(3.2.26) 1T, — “Gy — B — 1
and
(3.2.27) 1-TY - “GY - BY —»1

for the split tori 7 and T, with character groups Xj and Yj, respectively, where Xj
and Yj are part of the torus argument &4, = (Xj,Yj,qu,go,gﬂj,@oﬂj) associated
with @4 as in [I3, (3.8)]. In this special case, T}, T;", (3.2.26), and (3.2.27) give

up to (compatible) Z(Xp)—isogenies the Ta, TY, (3.2.23)), and (3.2.24)) we want. For
i

general A € £, as in the proof of Lemma [3.1.1, we have an isogeny fff"t — A

of semi-abelian schemes over |\7|§§’f2, for some j € J, which induces isogenies of
Raynaud extensions and of dual Raynaud extensions, by the constructions in [12]
Sec. 3.3.3, 3.4.1, and 3.4.4], which give the desired Ty, Ty, (3.2.23)), and (3.2.24)
over (ML, )4

MA2)Z 0 s

note that, in the proof of Proposition [2.2.11] the polarization Ax, : Ar, — AXO

in Lemma [2.2.2[ is defined to be (f;/—TOAjO,AD)il o Aj, © fp_—lroAjo,Ao over My, for
any jo € .2 (satisfying Aj, C p™Ag as in Choices [2.2.9)), which (uniquely) extends
to (f;)ftrvajo,AU)A 0 Ao ( ;”_‘ioAijo)*l (with the superscript “ext” denoting the
unique extensions of homomorphisms of semi-abelian schemes) over the noetherian

normal scheme l\7|§_‘fE (by [I2] Prop. 3.3.1.5]), and we have a commutative diagram

As for the commutative diagram (3.2.25)), it suffices to

(3.2.28) 1—— T, — Gy, —— Bj, —— 1

J)\Tjo l v)\jo J{)\Bjo

1 — Ty — OG%HBJ-\QHI
canonically associated with the Mumford family (Q?C_jjo, (?ij O%O, Q?O_ZHJ.D), which
induces (3.2.25) for all other A € £ by using the Q*-isogenies fX%, : AZ' — AT
associated with all the inclusions A’ C A” in £ (see Lemma [3.1.1]). O

3.3. Comparison of formal completions.

Theorem 3.3.1. There is a canonical isomorphism

\2spl,tory A ~  Aispl

(3.3.2) (M35 ) Fem = X, 520
[(@9¢,6%:9)]
where (M;fl’ztor)%pl is defined as in the end of Section covering the
’ [(®4¢,59¢,0)]
canonical isomorphism (3.2.21). Then (3.3.2) induces a canonical isomorphism
Zspl ~ =spl

(3.3.3) Z[@H,é%(’)] =" S

—

covering the isomorphism Z[@H’(;H,O.)] 5 E,,.60.0 (see [13, Cor. 10.15] and [15,
Thm. 6.1(5)]).
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Remark 3.3.4. Since both sides of (3.3.2]) are separated and have schematically
dense characteristic zero fibers isomorphic to those of (3.2.21]) by Lemma the

condition that (3.3.2) covers (3.2.21]) forces (3.3.2)) to be unique if it exists. Any
isomorphism as in (3.3.2) then canonically induces an isomorphism as in (3.3.3]).

The remainder of this section will be devoted to the proof of Theorem [3.:3.1] By

Remark it suffices to construct an isomorphism (3.3.2)) covering (3.2.21)).

For simplicity of notation, in the remainder of this section, let us write

3.3.5 X = (M54 1)
( ) ( H,E)Z[(dn{,éq{wa)] 0F§(p) K

and

spl .__ /nASPLtory A
(3.3.6) = (MR
As in Definition [B:2.1] let us denote by the same symbols the pullback to X
of the (!¢, *.Z, ﬁl) over I\_/I'%” under the composition X — I\_/IE{” of and
the structural morphism £¢H75H70 — I\_/I,Z}_L” (see 3.2.20: ); and let us denote by
("2, %7, %j) the pullback to X of the (0, F ,J") as in Proposition

under the canonical morphism X — M%_‘Zfz. Then we can abusively write

spl ~ +
(3.3.7) X =8Pl v,55) /%

(cf. Proposition [2.3.10| and Remark |3.2.19)) and

—

spl ~
(3.3.8) X3 b0 =P e 22 1y

(cf. (3.2.10)), where the right-hand sides of (3.3.7) and (3.3.8]) are relative schemes
over X (see [8]; cf. the explanation in Lemma [3.2.4)).

Lemma 3.3.9. For all A € £ and [7] € T/ ~, we have canonical short exact
sequences

(3.3.10) 0— ’jng’[T] — u<Q\A’[.,-] — bng’[T] —0
of O ® Ox-modules, where ﬁf,\,[ﬂ, hgf,\y[f], and byA,[T] can be identified with the
Z

Ox-module local direct summands (@\éx/x)m, (@Xixc,v/x)[ﬂ, and (@%Y/%)[T] of

@\E/;X/x} @Xixt,v/x, and @%AV/%, respectively, defined as in 1'

Proof. Since Zg 2 Lie ey /ivor s
Ay /MH,Z

duals of relative Lie algebras induced by ([3.2.24)). O

this follows from the short exact sequence for

Lemma 3.3.11. Consider any object
{(*Z1,, hifT])}[r]eT/N,ongw

parameterized by Splz " 6F, )% (cf. ), without condition in Definition
2.3.3, For all A € £ and [t] € Y/ ~, and for all integers i satisfying 0 < i < dj5,
let

(3312) ﬁy}\’[T] = hy}\ah] N ﬁyA’[T]
and

(3.3.13) "Trm = A TR -
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Then the graded pieces ﬁff\ym/ uﬁf\‘ﬁ] and bﬁkm/ bﬂfﬁi} are annihilated by

b@1—1®731,4(b) for allb € OF,,. Moreover, for each unit b of O @ Q, which nor-
Z

induces the periodicity iso-

yi

malizes O Q Zy, the periodicity isomorphism 91;
Z Alr]

~

morphisms 91;97};.[T] : (ﬁﬁf\’m)b 5 ﬁgzbi/\’m and 0° : (bﬁf\’m)b — bfbimm

: " TRt
of O ® Ox-modules.
Z

Proof. Since (3.3.10) is an exact sequence of (9% Ox-modules, these follow from
the very definitions of ﬁﬁfwﬂ and bﬁi’m. O

Lemma 3.3.14. Let M be any OF,-lattice, let S be any scheme or formal scheme
over Spec(Ok), and let M := M @ Og. Then there exists a unique filtration
ZP

(3.3.15) 0= c =t c...catca=.ua

of coherent Og-submodules of A such that, for each integer i satisfying 0 < i < d|),

the quotient ') ' is annihilated by b®1 — 1 @7} ;(b) for allb € Or,,- The

graded pieces M) M T are automatically locally free Og-modules of finite rank,

and hence both .#* and M | #* are locally free Os-modules of finite rank. More-

over, M is the Og-submodule of .M spanned by the images of the endomorphism
[I (bh®1=1® 7 k(br)) of A, for all elements bo, by, ... ,b;_1 € Op,,; it is also

0<k<i

the intersection of the kernels of the endomorphisms — [[  (bx ® 1 —1® 7 1 (br))

i§k<d[7]
of A, for all elements b;,b;11,..., bdm,l S OF[T]-

Proof. Let K, denote the maximal unramified extension of @, in K, so that
Fi @ Ko = []F, for some totally ramified field extensions F, of Ky. Since
Qp «

Ok, is finite étale over Z,, the canonical morphism Op_ , ® Ok, — [[OF, is
Z, o

an isomorphism, because both sides are normal and have the same total ring
of fractions Fj;) ® Ko. Accordingly, the OF[T] ® Og,-module M ® Ok, and the
QF ZP Z

D

sheaf # = (M ® Ok,) ® Os compatibly decompose into direct sums, where

Zp OKO

OF[T] ® Ok, acts on each summand via some factor O, . Thus, in order to prove
Z

the lemma, we may and we shall replace O, with some factor OF,, and replace M
with the corresponding summand of M ® Ok,. Now that F,, is a totally ramified

P
(separable) extension of Ky, the lemma follows by writing each .#*% as both the

image of some Q*(T) and the kernel of some Q;(T) as in [17, (2.4)], whose forma-
tion is compatible with arbitrary base changes, and hence must be &s-module local
direct summands of .Z, as desired. ([

Corollary 3.3.16. The sub-O ® Ox-modules bfjx ] of byA’[T] in Lemma (3.3.11
N ;

are locally free and independent of the filtrations {hy}\,[T]}OSKd[T] on ”321\’[7].

Proof. By Lemma [3.2.22] the character group of the split torus 7} is an O-lattice
Y, and so @%X/x > YA ® Ox = (Y ®7Z,) ® Ox, where the O ® Z,-lattice YA ® Z,
z z Z, z zZ

is an O ® Z,-lattice because O is maximal at p, by Assumption Let us write
Z
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YA®Z, >~ @& Yy asin (2.1.5). Then °.Zp 1 = (Liety x)i] 2 YA @ O
2@Ly= & Yapasin n °Fp - = (Liery x)pr] Al 2 Ox
by Lemma [3.3.9] and the corollary follows from Lemma [3.3.14] as desired. ]

Proposition 3.3.17. The sub-O ® Ox-modules ﬁf}\ (7] of ting’[T] in Lemma|3.3.11
2 ;

are locally free Ox-modules. Together with the canonical embeddings
g A M

defined by composing the canonical embeddings ﬁf}'\,m — ﬁﬁ"‘/\,m and ﬁﬁA,[T] —
ﬁ%’j\’[ﬂ, we obtain a splitting structure

{(ﬁifT]’ ﬁl‘fT])}[T]ET/N,OSi<d[T]
for (822, ' Z, ﬁl) over X, parameterized by Splaﬁ’ L Z,45)/ %" By repeating the same
construction over affine formal schemes over X, we obtain a canonical morphism
(3.3.18) SPl e, 02, 1)/x = SPUese, 12, 1)/
over X, which induces a canonical morphism

+ +
(3.3.19) SPliese, ez, 25/ = SPl(esp, 2,22
over X, by Lemma [2.3.9| and by the second paragraph of Proposition |2.3.10]
Proof. Since we have a short exact sequence
(3.3.20) 0= “Zh 1 = "Fhir = " Fhim = 0
by definition (see Lemma [3.3.11), and since *.7} . and bf}'\,m are locally free
Ox-modules by definition and by Corollary [3.3.16 ﬁf}\ 7] is also a locally free
Ox-module. Hence, by Lemma|3.3.11] the collection {( ﬁz%, ﬁZfT])}[TleT/N,OSi<d[T]
satisfies all but the last condition (4)) in Definition as a splitting structure for
(¢, ' 7, ﬁi), and defines an object parameterized by the Splz et 1)/ 8 in
Proposition Since the same construction works for splittings structures

of pullbacks of (#22, '.%, J) to any affine formal schemes over X, we obtain the
canonical morphism (3.3.18)) over X, as desired. O

Proposition 3.3.21. The canonical morphism (3.3.19)) is an isomorphism.

Proof. By Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]) and by [7, V-4,
18.12.6], it suffices to show that the morphism is a monomorphism. Hence,
it suffices to show that, for each affine formal scheme Spf(R) over X such that R is
noetherian and local, the induced morphism

(3.3.22) SPlis e, 02, 55)/ spectr) — SPL(s 2,52 45)/ Spec(r)

induces an injection between points over R.
For each A € &, since @:\FX/ spec(r) = (Ya % Zy) % R as in the proof of Corollary

3.3.16 @%X/Spec(m is a projective (’)FézéR-module. Since R is noetherian and

local, for all A € . and [r] € T/ ~, there are (noncanonical) splittings
(3.3.23) h<?1\,[T] = ﬁf/\/\,m <5 i737\,[7]
of the short exact sequences (3.3.10)) of Opm %) R-modules.
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, on “ﬁ,\m induces the filtrations

{ﬁfiy[f]}ogkdm and {bﬂ’f\ [T]}0§i<dm on ﬁgfmm and bﬁAy[T], respectively, by
the assignments as in (3.3.12) and (3.3.13)). By the last assertion in Lemma |3.3.14]
bﬁf\ (7] is the R-submodule of *.Z, A,[r] spanned by the images of the endomorphisms

[I (bk®1 = 1®@7pk(b)), for all elements bg,b1,...,b;—1 € Op,,. Since the
0<k<i

splitting (3.3.23)) is Op,, ® R-equivariant, by condition of Definition W it
Z

canonically induces a splitting hﬂfx (7] = “ﬂi (] @ bﬁ‘/( ] Hence, by Corollary

3.3.16 hﬂf\ (r] I uniquely determined by uﬁi (] Since this holds for all [7] and 4,

the morphism (3.3.22)) induces an injection between points over R, as desired. [

Proof of Theorem [3.3.1] By Remark it suffices to take ([3.3.2) to be the com-
position of the isomorphisms (3.3.7), (3.3.19)), and the inverse of (3.3.8). O
3.4. Main theorem for toroidal compactifications.

Theorem 3.4.1 (cf. [I12 Thm. 6.4.1.1]). For each H as in Choices and
for each compatible collection ¥ = {Ea,, }(0,,5,,)) 0f admissible rational polyhedral
cone decomposition data that is projective as in [I5l Def. 2.1 and 2.7] (satisfying
[12, Cond. 6.2.5.25] by assumption; which includes the ones induced by auziliary
choices as in [13], Sec. 7], as explained in [I5, Rem. 2.3 and 2.9]), there is a normal
scheme l\_/lgflgor projective and flat over Spec(Of), containing the scheme M;fl in
Definition as an open fiberwise dense subscheme, together with:

e q tautological degenerating family

(éj7xjaa7&ﬂj)

Suppose that the filtration { .7} i Jo<i<d;,

of type My, over l\_/ljffgor (see [12, Def. 5.3.2.1)), for each j € J, where dy,

is defined only over the open dense subscheme My ? K of M;E}’Ztor,'
0

e q tautological £ -set

(%ext (gzext jext)

of polarized O @ Oyjep1 ror-modules extending the L -set (J,.F, j) of polar-
7 H,Z <

ized O ® Opgep-modules associated with the tautological (A A i, ayp) over
7 H

,\‘/];51 (see Definition and Lemma i that induces compatible iso-
morphisms F Xt = @ixt,v/mngz and X | TRt = @Aiﬁ/mgﬁ extend-
ing the canonical isomorphisms Fp = @XX/M’H and Ay | Fp = @AA/M’H ,
respectively, for all A € £ (see Proposition [3.1.2)); and
e a tautological splitting structure
xt,i  ext,i
{(Z57 30 Nmer/mozicd

-
]

for (4, F, j) over Mjf}’ztor, which extends the tautological splitting
structure {(zz[r]’JET])}[T]GT/N,OSKd[T] for (A, .Z,37) over l\_/lﬁ_lzl (see Defini-

tion |2.4.1));

such that we have the following:



(1)

(3.4.2)

(3.4.3)
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We have a commutative diagram

My ® K€ MEP! l\_/]f;.[ ® Ok
Fy

[ Ory,(p)

oot .
ME's; g? K PMEET — MYy ® Ok
0

Fo,(p)

of noetherian normal schemes flat over Spec(Ok) and of canonical mor-
phisms (over Spec(Ok)), in which all squares are Cartesian, all vertical
arrows are open immersions with fiberwise dense image over Spec(Ok),
the two horizontal arrows at the left-hand side are open immersions with
schematically dense images, the two horizontal arrows at the right-hand side
are projective and surjective, and the compositions of horizontal arrows in
the same Tows are also open immersions with schematically dense images.

M;f}gor has a stratification by locally closed subschemes

\aspl,tor Zspl
Ms" = T Zaswon
[(@3,6%¢,0)]

with [(Py, Iy, 0)] running through a complete set of equivalence classes of
(Py, 09, 0) (as in [12, Def. 6.2.6.1]) with o C P;ﬁﬂ and 0 € L, € X (see
(3.1.9)). (Here Z is suppressed in the notation by [12, Conv. 5.4.2.5].) In
this stratification, the [(®%,, 8%, 0")]-stratum Z(31, 54,0 is contained in the
closure of the [(Py, 03, 0)]-stratum Zj(w,, 5,0y if and only if [(Py, 634, 0)]
is a face of [(®Yy,04;,0")] as in [12, Thm. 6.3.2.14 and Rem. 6.3.2.15]. The
analogous assertion holds after pullback to fibers over Spec(Ok).

The [(Py, 0x, 0)]-stratum Z?(pé%é%a)] is flat over Spec(Ok) and normal,

and is isomorphic to the support of the formal scheme }t’;p;’é%g for any
representative (Py,dy,0) of [(Py,d2,0)]. The formal scheme f{;pi S0
admits a canonical structure as the completion of an affine toroidal embed-

- =2spl : Zspl Zspl
ding =3, 5,/ (0) (along its o-stratum ZF 5 ) of a torus torsor EF s

over a normal scheme 632,691 flat over SpecSOK). The scheme Cﬂzfiﬁn
is proper (and surjective) over a finite cover l\/I”’Spl of the boundary ver-
sion M’?_z{,spl of l\_/l'zft’1 (cf. Definitions and [3.2.1, and the summary in
Remark 3.2.19). (Note that Zy and the isomorphism class of M?f’Spl de-
pend only on the cusp label [(Zy, Py, d%)], but not on the choice of the
representative (Zq, Py, 0%).)

In particular, I\/Iz_lf1 = 2?8,07{0})] s an open fiberwise dense stratum in
this stratification.

The stratification 1' is compatible with the stratification of I\/IgfE

as in [13, Thm. 9.13] and [15, Thm. 6.1(3)], and we have a commutative
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diagram

—_ —spl —_
(3'4'4) SPqy,0%,0 ;,8) K——— SO0 7 TR0 ® Ok
0 Fog,(p)

2 t 2

Z[<<1>H,6H,o>]®KC—> 2 sy — Loy © Ok

75 )
. Ory.(p)

Mgy & K——— ML ——— Mgy, ® Ok

Fo,(p)

of canonical morphisms, in which all squares not involving l\/ItOr ® Ok
Fo,(p)
are Cartesian, the vertical arrows in the upper-half are isomorphisms, the

vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

(3) The formal completion (l\/lbpl tor)Zspl of the scheme I\/Ibpl " along
[(®9¢, 574, 0)]

its (locally closed) [(Pyy, 03, 0)]-stratum Z[(<I>H 5y, 18 canonically isomor-

phic to the formal scheme Z%‘i,ﬂ a0 for any representative (Py,09,0) of

[(®Py, dn,0)]. (See the isomorpﬂisﬁ@ in Theorem |3.3.1].)

For any open immersion Spf(R,I) — %gpl - inducing morphisms
Spec(R) — éfﬁim (o) and Spec(R) — qul o (m'a the structural mor-
phisms and the inverse of the above- mentzoned isomorphism (3.3.2), the
preimage of Hfif)l 5, under Spec(R) — :fifi 55, (0) coincides with the preim-
age of MH under Spec(R) — l\/ISP1 or

For each j € J, the pullback to (MSpl o)A of the degenerating

Fspl
. N [(@4¢,694,0)]
family (Gj, Ay, i5, day; ) over l\/Ii_lzl’Etor is canonically isomorphic to the pullback
Zspl g (0. OX. 07 O 2
to Xg,, 5.0 0f the Mumford family (¥ Gy, ¥ Aj, Yij, ¥ 0n;) over Xay, 6:,0

(see [12, Def. 6.2.5.28] and [13] (8.29)]), after we identify the bases using
the above-mentioned canonical isomorphism (3.3.2]).
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Then we have a commutative diagram

(3.4.5)
Zspl o
Xoy,00,0 O K ’ x(bﬂ,é;{,a » Xoy,00,0 @ Ok
Fo Fg,(p)
? t !
Aspl,tor 7
(Mtor )/\ ®K (MEP, )/_} (Mtor )é\ ® O
H,s)Z . > (May s )Zem —» My s i K
[(®30.091.)] Fy Z(@9.590.0)] Z1(@34.63.9)] Oy ()

(3.4.6)

(3.4.7)

(3.4.8)

t aspl,tor 7t
Mg @ K M ——————» My @ Ok
0

Fo,(p)

of canonical morphisms compatibly extending those in , in which all
squares are Cartesian, the vertical arrows in the upper-half are isomor-
phisms, the vertical arrows in the bottom-half are formal completions along
locally closed subschemes, the horizontal arrows at the left-hand sides are
open immersions with schematically dense images, the horizontal arrows at
the right-hand sides are projective and surjective, and the compositions of
horizontal arrows in the same rows are also open immersions with schemat-
ically dense images. This commutative diagram 18 compatible with
the commutative diagrams (3.2.20) and (3.4.4)) along their common arrows.
Let S be an irreducible noetherian normal scheme over Spec(Ok), with
generic point 1, which is equipped with a morphism

Fo

Let (Ay, Ay, i, ) denote the pullback of the tautological object of My to
n under (3.4.6). Suppose that, for each j € J, we have a degenerating family
(G}L,)\}L,ij ,aHj) of type My, over S, whose pullback (Gj ), Ny 5., 03 )
to n defines a morphism

U—)Mﬂng

0

by the universal property of My, , which we assume to coincide with the com-
position of with the canonical isomorphism My = My, given by [13)
(2.1)]. Suppose moreover that there exists an £ -set (%T,ZTJT) of polar-
ized O (%) Os-modules extending the pullback (‘%ﬂn’zﬁ’in) of the (A, F, 7)

over I\_/’Iifzl (see Definition and Lemma j and inducing compati-

ble isomorphisms ﬁ;{j o @éw/s and %/ﬂm &~ @GT/S extending the
j i

canonical isomorphisms Fa,, = Liedy Jy and A/ Fayn = Lieg,

m/n’
respectively, where A; is as in Choices @ for all j € J; and that there

exists a splitting structure {(2?‘;’?7Zg-;i)}[T]eT/N7OSi<d[T] for (1T’$T7ZT)'
Then (3.4.6) (necessarily uniquely) extends to a morphism

spl,tor
S = My 5
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(over Spec(Ok)), under which the above two tuples, (7, ZT,]T) and
{( fEL ?vj[T])}[T]ET/MOSKd[T])’ are isomorphic to the pullbacks of the tauto-

lOg’LC(ll tuples (ﬁCXta zCXtaieXt) and {(g?j—(}t Zaj‘[s:_(]t Z)}[T]ET/N,0§i<d[T]) over

, respectively, if and only if the following condition is satisfied at
each geometric point s of S:

Consider any dominant morphism Spec(V) — S centered at 5, where
V' is a complete discrete valuation ring with fraction field I?, algebraically
closed residue field k, and discrete valuation v. By the semistable reduc-
tion theorem (see, for example, [B, Ch. I, Thm. 2.6] or [12, Thm. 3.3.2.4]),
up to replacing K with a finite extension field and replacing V accord-
ingly, we may assume that the pullback of A, to Spec(f() extends to a
semi-abelian scheme G* over Spec(V). By the theory of Néron models
(see [Bl; of. [20, IX, 1.4], [B, Ch. I, Prop. 2.7], or [12} Prop. 3.3.1.5]), the
pullback of (Ay, Ay, in, ) to Spec(l?) extends to a degenerating family

(Gi,)\i,ii,aiﬂ) of type My over Spec(V'), where ai 1s defined only over

\71Spl,tor
M £

Spec(f(), which defines an object of DEGpg1,m,, (V) corresponding to a
tuple
(Bi7 >\B¢7iBI,XI,XI, ¢i’ Ci7cv7i77.i7 [ah;f])
in DDpgrL.M,, (V) under [12, Thm. 5.3.1.19]. Then [ag_ﬂ determines a fully
symplectic-liftable admissible filtration Zg_l. Moreover, the étale sheaves X*
and Y¥ are necessarily constant, because the base ring V is strict local.
Hence, it makes sense to say we also have a uniquely determined torus ar-
gument <I>j*;_[ at level H for Z%_L. On the other hand, we have objects ®4,(G*),
Ss,, (a1, and B(G*) (see [12, Constr. 6.3.1.1]), which define objects q)i,
Sdﬁ{’
voBt: Sq): — Z defines an element of SVJr , where v : Inv(V) — Z is the
homomorphzsm induced by the discrete Ualuatwn of V.
Then the condition is that, for each Spec(V) — S as above (centered
at 5), and for some (and hence every) choice of 5%{, there is a cone o*
i the cone decomposition Eq):;{ of Pq):;{ such that & contains all v o Bt
obtained in this way. (As explained in the proof of [12], Prop. 6.3.3.11], we
may assume that ot is minimal among such choices; also, it follows from
the positivity of ¢ that ot C P+ . Then the extended morphism (3.4.8

and in particular B* : Sq)i — Inv(V) over the special fiber. Then

maps 5§ to a geometric point over Z : conversely, this property

[(¢¢ 33,01
also characterizes the stratum Z[(pql)i oo of MSpl 200

In particular, since this condztzon mvolves only H, X, and the linear
algebraic data in Section (such as £) and Choices the scheme
M;_Il’}gor depends (up to canonical isomorphism) only on these, but not on
any auziliary choices made in [I3 Sec. 7] or any compatible collection pol
of polarization function as in [I5, Sec. 2].

Proof. By its very construction in Definition we know M%lgor as a normal

tor

scheme flat over Spec(Of) and projective over M3's:, with the tautological struc-
tures as described in the beginning of this theorem, which satisfies assertion .



COMPACTIFICATIONS OF SPLITTING MODELS 33

The assertions (2)) and (3) then follow from [I3, Prop. 7.4, 8.1, 8.4, 8.7, 8.14, and
8.20; Thm. 9.13, 10.13, and 11.2; and Cor. 10.16, 10.18, and 11.9], [I5, Thm. 6.1
(3) and (4)], the constructions summarized in Remark and Theorem
It remains to justify assertion (). By [13, Thm. 11.4] and [I5, Thm. 6.1(6)], the
condition there is necessary and sufficient for to extend to a morphism

(3.4.9) S— MYy ® Ok.

Fo,(p)

By Proposition , the tautological tuple (£, . Z", ;) over I\7I§_‘Z}§°r canon-

ically descends to Mg_‘zfg ® Ok, whose pullback under (3.4.9) must be isomor-
Fo,(p)

phic to the (ﬁtzt,f) over S, by the density of 1 in S, and by the assump-
tion that (%, .Z" j%) induces compatible isomorphisms .Z };j ~ @éw /s
= i

and ,%ﬂATJ/y);J = mc’;/s extending the canonical isomorphisms %, , = @éj{,,/n

and Hy; n/ Fp;m = me/m respectively, for all j € J. Thus, the morphism
() lifts to a morphism S — Mi_f}gor as in (3.4.8) by the universal property of
szlgor = Splt (see (3.1.4)), as desired. O

(iextyzext’icxt)/(m,t;z’rz ® Ok)
OFp,(p)

Proposition 3.4.10 (cf. [I3| Prop. 13.7, 13.9, and 13.15] and [I5 Prop. 7.3 and
7.5]). With the same setting as in Proposition suppose moreover that X
and X' are compatible collections of projective admissible rational polyhedral cone
decomposition data for My and My, respectively, as in [15, Def. 2.1 and 2.7], such
that 3 is a g-refinement of ¥ as in [12], Def. 6.4.3.3]. Then the morphism
extends to a canonical projective morphism

—_tor

(3.4.11) [g]  : MY% — My,
whose pullback from Op, () to Ok lifts to a canonical projective morphism

—_spl,tor

\7Spl, spl,tor
(3.4.12) (9] MBS — M

extending the morphism (2.4.19). The morphism (3.4.11)) (resp. (3.4.12)) maps the
(P, 03, 0)]-stratum Z(a,, s,,,0)] (TeSD. Z?ﬁ;%&%g)}) of ME"s; (resp. M;i”lgor) to the
= Zspl 7tor spl,tor
(@, O3, 0")]-stratum Zyay, , 5,01 (resp. Z[&;‘/ﬁw,a/)]) of M 5, (resp. ML)
if and only if there are (Pyy, 69,0) and (P, 0%, 0") representing [(Py, 64, 0)] and
(DY, 05, 0")], respectively, such that (P, 63, 0) is a g-refinement of (P4, 04;/,0")
as in [12, Def. 6.4.3.1]. Also, the analogues of [I5 Prop. 7.5] for (3.4.11) and (3.4.12)

are true.

Proof. The existence of the canonical morphisms (3.4.11) and (3.4.12)) (with the
desired properties) follows from Proposition [2.4.17|and its proof, and from compar-

isons of the universal properties of objects involved, using [13, Thm. 11.4] and [I5]
Thm. 6.1(6)], and using of Theorem As for the last statement, it follows
from the same argument as in the proof of [I5, Prop. 7.5], by showing that the
formal completions of the toroidal compactifications along the pullbacks of strata
of the corresponding minimal compactifications have the desired forms, using [I3]
Thm. 7.14 and 11.4], [15, Thm. 6.1], and Theorem [3.4.1] O
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By the same arguments as in the proofs of [I3, Prop. 14.1 and 14.2], using the fact
that the squares in the commutative diagrams (3.2.20) and (3.4.5)) are all Cartesian,
we obtain the following two propositions:

Proposition 3.4.13 (cf. [I3] Prop. 14.1]). Suppose ¥ is smooth as in [12, Def.
6.3.3.4]. Then M;_‘Zl is reqular if and only if M;_?}’Etor is.

Proposition 3.4.14 (cf. [13, Prop. 14.2]). Let P be the property of being one of the
following: reduced, geometrically reduced, normal, geometrically normal, Cohen—
Macaulay, (Ro), geometric (Ro), (R1), geometric (R1), and (S;), one property for
each i > 0 (see [7, TV-2, 5.7.2 and 5.8.2]). Then the fiber of M;_‘Z}gor — Spec(Ok)
over some point s of Spec(Ok) satisfies property P if and only if the corresponding
fiber of the open subscheme Mj}fl — Spec(Ok) over s does. If ¥ is smooth as in [12]
Def. 6.3.3.4], then P can also be the property of being one of the following: regular,
geometrically regular, (R;), and geometrically (R;), one property for each i > 0.

Corollary 3.4.15 (cf. [I3 Cor. 14.4]). Suppose that the geometric fibers of I\_/'Iifzl —
Spec(Ok) are reduced (resp. have integral local rings). Then all geometric fibers
of I\/Iz_lzl’ztor — Spec(Ok) have the same number of connected (resp. irreducible)

components, and the same is true for I\_/szl — Spec(Ok).

Proof. By Proposition [3.4.14, the proper flat morphism M;‘;}g‘“ — Spec(Ok) has
geometric fibers with reduced (resp. integral) local rings. So, by [6], Prop. 8.5.16],
in its Stein factorization M%’}gor — (Mﬁf}’;or)“ — Spec(Ok) (see [7, III-1, 4.3.3
and 4.3.4]), the second morphism is étale, while the first has connected and hence
reduced (resp. integral) geometric fibers. Thus, the assertions for M;f}gor follow.

The assertion for E/'Ifle corlcerning irreducible components then follows from the
fiberwise density of M;fl in Mi_‘;}gm over Spec(Ox) (see of Theorem .

The assertion for Mgfl concerning connected components does not follow as eas-
ily, because an open dense subset of a connected set is not necessarily connected.
Nevertheless, we have the following subtler argument: By and of Theorem
and by Artin’s approximation (see [I, Thm. 1.12 and the proof of the corollar-
ies in Sec. 2]), for each geometric point § — Spec(Of ), and for each z € (Mi_‘t’}gor)g,
there exist an étale neighborhood z — U — (M/S}_]Z}gor)g and an étale morphism
U — (é;pi,én (0))s (see Proposition , for some (®y,d%,0), such that (by
also approximating closed subschemes defining the boundary) the (open) preim-
ages of (M;_I[)l)g and (ég’:héﬂ)g in U coincide with each other, and such that (up to
replacing U with an open neighborhood of z) these étale morphisms have connected

; . 2spl Zspl . .
geometric fibers. Since = 5 — ZF 5 (o) is fiberwise dense between schemes
HHOH HHOH

with geometrically irreducible fibers over C_";Ii 55+ Since the formation of closures
commutes with any flat base change (see [7, IV-2, 2.3.10]), and since z is arbitrary,

the connected components of (M;fl’ztor) s are exactly the closures of those of (|\7|§$1) 5
Since 5 is also arbitrary, the desired assertion still follows. [
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4. MINIMAL COMPACTIFICATIONS

4.1. Variants of Hodge invertible sheaves. Unless otherwise specified, all ten-
sor products of quasi-coherent sheaves in this section will be over their respective
base schemes.

Definition 4.1.1. The invertible sheafwmifl’J over I\_/Iz_ﬁ’l is the pullback of the ample
invertible sheaf wy 5 over My (see [I3, Prop. 6.1)) under the canonical morphism
|\7|3_IL31 — MH- Similarly, the invertible sheafwM;s}goer over M;E}gor is the pullback of
the invertible sheaf Wy, 5 over I\7IP,,_‘L”E (¢f. [13l Prop. 7.11] and [I5, Thm. 6.1(2)])

H, 5 ’

. . \spl,tor \Ator
under the canonical morphism My, 57 — M5,

Remark 4.1.2. Since Wyjo 5 and wygeptor 5 are (by definition) the pullbacks of the
H, D H,E 0

ample invertible sheaf Wijmin j OVET M%in (see [13, Prop. 6.4]), they are semiample

in the sense that both w&Y  and w®X,..  are generated by their global sections
Mtor J M pl, J
H,2 H,E

(over their respective base schemes) for all sufficiently large N.

Definition 4.1.3. Consider the invertible sheaf

pot
(7%= =W o
Ve (2,.Z.5)/(Mn _ ® Ok)
OFg,(p)

(4.1.4)

over Mz_ﬂ’l, which extends to the invertible sheaf

K Hyt
4.1.5 w= =w .
( ) Mgper (o Foxt jext) [(MELT @  Ok)
: J E

Fo.(p)

over l\_/lzfl’gtor, defined as in 1) and Proposition [2.3.10| (see also Definitions
and D for each positive pi. For each integer k, consider the invertible sheaf

®(k,p) Rk

I
W =sp1 ‘= Wespl =
M3, J MY

(4.1.6) :

w
,J®

spl
H
over |\7|§_121, which extends to the invertible sheaf

®(k,p) ®k w
(4.1.7) wmﬁ,}gﬁ)‘] = e ® wﬁiﬁ}‘g""
over Mj_lfl’gtor. For simplicity, for each integer N, we shall abusively denote the N-th
®(k,p)N and w®(k)g)N
spl Sspl, tor
M3 M3YE° J7

tensor powers of (4.1.6)) and (4.1.7)) by w respectively.

Lemma 4.1.8. For each positive i, there exists some constant ko(p) > 0 such that
w®(k,g)
ViR

No(p) > 0 such that w

is ample for all k > ko(p). Consequently, there also exists some constant

®(k,u) N
Sispl
M

is very ample for all k > ko(p) and N > No(p) .

Proof. This is because w%spl is relatively ample over M;_Izl (see Proposition [2.3.10)),

H
and because wgjser ; is (by definition) the pullback of the ample invertible sheaf
o
Wi,,.7 Over My (see Definition and [13, Prop. 6.1]). O
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Definition 4.1.9. For each cusp label [(Px,d3)], and for integers k and N, we

. L . . © ®(k,p)
define as in Definition [4.1.3| the invertible sheaves wgz];“gpl 37 Wigtroent wmz(H;pl 7
(k )N H ? H H ?
(k1 \1Z,Spl +
and w~,. -  over M77*"P" = Spl _ see (3.2.2).
MZ{,SPIJ H p (b T, ”1)/('\"2{ ® Ok) ( )
Fo.(p)

For each triple (P4, d3;, 0) such that its equivalence class [(Py, 034, 0)] defines a
stratum ZT(%H 53,00 Of Mi_f}gor7 consider the structural morphisms

(4.1.10) X 50— Mo

and

(4.1.11) B 5 — Mo

(see Definition and Remark , which are compatible with the structural
morphism éfbp?l{’ Sr0 f;pL P

Lemma 4.1.12. For each A € £, each [t] € T/ ~, and each integer i satisfying
0 <i < d[y, consider the invertible sheaf

= /\top (ﬁff{‘:]@'/gext,i—i—l)

(4.1.13) i

i
YA Wi

over MEPRE"where
agrext,i -ext,i
UZm ™ 10 Dmer/~osi<dry,

is the tautological splitting structure over M;‘Zlgor (see Theorem D ; and consider
the invertible sheaf

(4.1.14) = AP (PR 0/ T

K2

A7 MEsP!
over I\Zi”’Sp], where

{(*Z1,, ﬁZET])}[T]GT/N,0§i<d[T]

. ‘ L 1234 ,5pl
is the tautological splitting structure over M7}*°" = Splt

(ﬁi’ﬁ$7 nl)/(mﬁz{ ® OK)
) OFg,(p)
(see Definition |3.2.1). Then the pullback of wj\ [ Pl tor under the canonical mor-
il T b ’).LE

phism ff}p:‘ S M?f}gor induced by the inverse of (3.3.2)) is isomorphic to the

pullback of wA,[T],lVliﬁ’spl under the morphism (4.1.10]).

Proof. Consider the pullback h‘?/i\,[ﬂ of ﬁf\xﬁ to XP! = (M%}gor)/\ , as in

il 50
Section By assigning ﬁﬁi’m and bﬂf\,[r] to “ﬁj&ym as in q3.3.1;[)7;nzl (];’1.3.13[),
we have a short exact sequence 0 — nﬂf\’m — hﬁ‘}\’m — bﬁ};)m — 0 of locally
free Oxspi-modules as in , which induces an isomorphism AP (hf}\ ) =
AtoP (ﬁjj\y[f]) ® AP (bﬂ\};,m) of invertible sheaves over XP!. By Corollary 3-3.16

and its proof, AP (bﬁi’m) x> ptop (YA7[T]£® Oxsor) = (/\tZ(;p (YA7[T]))§§> Oxsp s

P P
trivial. Then it suffices to note that, by the construction of (3.3.2]) (see the proof
of Theorem , the ﬁfjx [r] over X°P! is canonically isomorphic to the pullback

of the ﬁﬁk[ﬂ over l\_/‘lg_z“"Sp1 under the composition of |D and (4.1.10)). O
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Corollary 4.1.15. For each p, and for any integers k and N, the pullback of

®(k,p) ®(k,g)N> ‘o

the invertible sheaf wﬂqpl tor 3 (resp. wﬁqpl o, TESP. W

NP M;Sl tor 3 resp. w'\‘/’lz_;zlgor7J
}Jj’bpi 5.0 Via the canomcal morphism X;f:l{ PR M;Elzmr induced by the inverse
o . I3 ®(k,p)
of (3.3.2)) is isomorphic to the pullback ofwgzljwpl : (resp. Wiz spts TESP- Wiz ol s
H ’ H H ’
®(k,p) N .
resp. wMZH‘Spl,J) under the morphism (4.1.10)).

Proof. The case for w® follows from [12] Lem. 7.1.2.1, and the proof of Thm.

Mbpl tor J
7.2.4.1], and from the deﬁmtlons (see Definitions and 4.1.9). The case for
w“mbpl co, Tollows from Lemma|4.1.12} and from the definition of wspl cor (se€ (2.3.8)).
H =
The remaining cases then follow from these two cases, by definition. O

Corollary 4.1.16. For each positive pu, and for each cusp label [(®3,,%)], there
exists some constcmt E(®y.5,) (1) > 0 such that, for each triple [(®yy, 03, 0)] defin-

[((I)H sy.0) OF MSpl tor gbove the stratum Z[@H 5, of I\_/'Imin (see
®(k ©)

Definition |3.1.8|, [13] Thm. 12.1], and [15, Thm. 6.1]), the pullback of w . vor 5t
’H

ing a stratum zs

ZT(%H P is semiample for all k > ks, s5,,) (1), and is isomorphic to the pullback
&(k,p)

-‘Z»H spl
M7 ,J

of an ample invertible sheaf w under the structural morphism (4.1.11). Con-

sequently, there also exists some constant N(a,, s,,)(jt) > 0 such that the pullback of
®(k,u)N
M?fl;;’J to Z?(p,il,%éﬂ,a)] is generated by its global sections for all k > k(a,, s5,,)(1t)
and N > N, s5,,) (1) (see Remark |4.1.2), and is isomorphic to the pullback of a
®(k,u)N

—»zH spl J

very ample invertible sheaf w under the structural morphism (4.1.11

Proof. This follows from Corollary [£.1.15] and from the same argument as in the
proof of Lemma O

Lemma 4.1.17. For each A € £, each [7] € T/ ~, and each integer i satisfying
0 <i < djy, the pullback wA 7] Mg, ® K of w' see (4.1.13)) to M&s, @ K
7 Fy

A [ ] Mspl ,tor (

(see (3.4.2)) descends to an mvertzble sheaf wA7[T]7M%in o Kk OVeT Mimin g% K.
Fo

Proof. As in the proof of [12, Thm. 7.2.4.1], it suffices to note that the pullback of
t0 X,,5,,0 @ K descends to M%* ® K, by Lemma |4.1.12 g
Fo Fy

w’; 3y
MEE'or, A, (7]

®(k,u) N

Corollary 4.1.18. For each p, and for all k and N, the pullback wMtor ® K.J
Fo

®(k,u)N

of Wggpior, to M's, ® K (see (3.4.2)) descends to an invertible sheaf w SN

Mmm ®KJ

over M,‘Qi“ ® K. Consequently, for all sufficiently large integer k (depending on ),
Fo -

®(k,p)N

the invertible sheaf wymin ® K.J over M%i“ ® K is ample, and so that its pullback
w2 Fo

®(k,p)N

to M¥%, @ K is semiample.
Megry ] K,J Hy P
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Proof. By Definitions|4.1.1land 4.1.3, and by the definition of w.,, . (see (2.3.8)),
H,E
this follows from Lemma O

Corollary 4.1.19. For each positive u, there exist integers ki(p) > ko(p) and
Ni(p) > No(p) such that, for all integers k > ky(pu) and N > Ni(u), the pullback
of the invertible sheafwnff}tgr I\/Islo1 (I\/Islo1 or ® Q) = I\_/'Iif1 UMY @ K) (glued
S
over their common open subscheme Mijl RQ = I\/IH ® K) is generated by its global
Z Fo

sections and descends to a very ample invertible sheaf over |\7|§_IL)1 U(M%in ;@ K).
0

Proof. This follows from Corollary [4.1.18] and the same argument as in the proof
of Lemma 1.8 O

Remark 4.1.20. The constants in Lemma [4.1.8 and in Corollaries [4.1.16] and [£.1.19]
depend on the integral PEL datum (O,x, (-, -), hg), on the choices of J and %

(see Choices |2 , on the level H (see Choices [2.2.10), on the choices of the
integers {a/j}JeJ as in [I3] Lem. 5.30], on the choices of K and the ordering of

(21,05 T 1s - - - Tlrludyy —1 10 [7] for all [7] € T/ ~ (see Choices [2.3.1), and on p.

Lemma 4.1.21. The canonical restriction map

r(M;Ig}gm,wfjff;i‘jﬁ ) = T(MSE! UMY

s

&3
MCP
N@
e
<y
g
g
~

is bijective for all p, k, and N.

Proof. Since MSpl '°" is noetherian and normal by construction, which is (S5) at all
points of codlmenslon at least two by Serre’s criterion (see [7, IV-2, 5.8.6]), and
since the complement of M3 (MSID1 tOr@(@) in M;flztor has codimension at least

two (because M;_IL’I is fiberwise dense in M;f}ztor7 by Theorem , this follows
from [9 Prop. 1.11 and Thm. 3.8]. O

Proposition 4.1.22. For each positive 14, given any integers k> Kk (H) and N >
Ni(u), the canonical morphism

7S s or \7spl,tor ®(k,p) N
(4.1.23) M3E U(M3PS ®Q) = Ppec(os) (DM ,wmz,lfm’J))
induces a canonical open immersion
spl min 1,tor ®(k,p) N
(4.1.24) M UMY @ K) < Pspec(or) (T (sz Lo W or D)
0 =

whose pre-composition with the canonical morphism

(4.1.25) M;glu(msp“or@@)awpl U( mm@K)

is (4.1.23). Let us define Mjflizli;‘)N to be the normalization of the closure of the

aspl,tor ®(k,p) N
M » Wigispl, tor J))
H,E

image of (4.1.24) in Pgpec(o) (I'( Then we have a canonical

open immersion

(4.1.26) M3) UM QK) = M
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with schematically dense image (by definition of M?f[l(zﬂiw), whose pre-composition

with (4.1.25)) defines a canonical morphism

—spl,pre

. naspl \aspl,tor 1spl,min
(4127) f?—[,(k,ﬁ)N . M?-I[) U(M?-Ii),EO %Q) - MS}Z(’%H)N

with schematically dense image. The pullback of O BN ), (1) to

Cispl,tor
PSPeC(@K)(F(MH,E YW sl tor
Ma s Y

spl,mi . . ®(k,p) N . @ (k,p)
M%’,EZBN’ which we abusively denote by wmgpli;,in) J (before defining me&;in) 1)
= H,(k,u)N” H,(k,u)N”

is an ample tnvertible sheaf, whose further pullback to l\_}lifIU(Mﬁin ® K) under
Fo

(4.1.26) is the very ample invertible sheaf in Corollary |4.1.19|

Proof. The existence of the canonical morphism (4.1.23) and the induced open
immersion (4.1.24) follows from Lemma [4.1.8} Corollaries [4.1.18| and [4.1.19} and
Lemma, The rest of the assertions are self-explanatory. O

Choices 4.1.28. From now on, for each positive p, we shall fix the choices of some
integers ka(p) > ki(p) and Na(p) > Ni(p) such that ka(p) > k@,,.5,)(p) and
Na(p) > Nwy, 5,,) (1) for all cusp labels [(®4,0%)] (see Corollary [4.1.16)).

We will show in the next section that, when k > ko(p) and N > Na(u), the

—spl = - .
morphism (4.1.27) extends to a morphism §,, : M?_‘Z’lgor — M,S]_IZl’mm, whose target
is (up to unique isomorphism) independent of the choices of k and N.

4.2. Semiampleness and projective spectra. Throughout this section, we shall
fix the choice of a positive y, and assume that k& > ko(p) and N > Na(u), where

ko(p) and Na(p) are as in Choices

—spl,pre
Let Graph(f,:(

p —spl,pre
k,g)N)

denote the graph of the canonical morphism f?—t (k)N in

4.1.27)), which we view as a locally closed subscheme of |\7|§§1§°r X M;fl(?z) N

’ Spec(Ok)
A .. . spl spl,tor aspl,tor _ .
which is isomorphic to the open dense subscheme My; U(I\/IH’E Qzé Q) of My s via

the first projection, and has schematically dense image via the second projection
(see Proposition [4.1.22)). Let us denote by

\7Spl,tor
MHE,(/C,E)N

—spl,pre
the normalization of the necessarily reduced schematic closure of Graph(§,, (k)N

. yhspl i spl,mi s Jispl i spl,mi
in MSPLEOT e MEPR™IR L Then the projections from M3 x  MEPLmn

T2 Spec(0g) LN "B gpec(0x) TN
to its two factors induce canonical proper surjections
Aspl . naspltor \7spl,tor
(4.2.1) 8%(,%)]\, : M%E,(kﬂ)N =My
and
—spl = opl - .
. pl,tor spl,min
(4.2.2) $r0. e MILS n = M (v

Lemma 4.2.3. The canonical morphisms

Aspl
(424) ﬁmizl,ztor — (a?_?(k)ﬁ)N)* ﬁﬁlspl,tor

H, S, (k,u) N
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and

—spl
(4.2.5) ﬁmjin,min)N — (fH’(k’ﬁ)N)*ﬁ'\‘/‘lspl,tor

NGNS H,2,(k,pu)N

induced by (4.2.1) and (4.2.2), respectively, are isomorphisms. Consequently, the
morphisms (4.2.1) and (4.2.2) are their own Stein factorizations (see [7, III-1, 4.3.3
and 4.3.4]), by abuse of language, and their geometric fibers are all connected.

Proof. Since (4.2.1) is proper, it induces a Stein factorization

\1spl,tor Aspl \1spl,tor
426) MY — Spec (@ Ogispor ) = NS
( ) H,E, (k) N piﬁm?;lgm_ (O3, (ki) )5 (Vo e HE
. . . . . \71spl,tor
and we need the second (finite) morphism to be an isomorphism. Since Mis, (k) N

is normal, the second scheme in (4.2.6)) is normal. Since (4.2.1)) induces the identity
morphism over the open dense subscheme Mj_‘?l, the second morphism in l) is
an isomorphism by Zariski’s main theorem (see [7} I1I-1, 4.4.3, 4.4.11]). This shows

that (4.2.4) is an isomorphism. The argument for (4.2.5)) is similar. O

For each (locally closed) stratum ZT(%% 530,00 OF I\_;sz’lgor as in |D consider
the locally closed subscheme

Zspl . /aspl —1/7spl
(4.2.7) Z@s 00 k)N = Ok i)n) ™ Li(a500,001)
of M;flgc’(z N with its canonical reduced subscheme structure. Then we have a
disjoint union
“1spl,tor _ Zspl
(4.2.8) My s ton = I Ziewsmontepn

[(®3¢,09¢,0)]

compatible with (3.1.9), [I3, Thm. 9.13], and [I5, Thm. 6.1].

For each stratum Z°7 we have an induced proper morphism

[(®#,0%,0)]°
(4.2.9)
Aspl A \71Spl,tor A \7spl,tory A
(07 )5ep1 :(M )5ep1 - (M )5
s . s » spl
Mok )NIZI L 000 HE RN ZI0 sy o], (R N H, (@ 20,520,0)]

between the formal completions. By Lemma and [7, ITI-1, 4.1.5], the isomor-
phism (4.2.4) induces a canonical isomorphism
(4.2.10)

~ Aspl
ﬁ(l\'/‘lspl,tor A — ((aSp )%\spl )*ﬁ(ﬁlspl,tor )/\

H,(k,n) N )
H, S /zspl B, Dy ,09,0 H, 3, (k,p) N/ 78pl
[(®2¢,574:0)] [(®2¢:02¢,)] (@690, (kW) N

= &(k,p) N v .
So, the pullback of amy f € D(M35, wo (2™ ) to (M )2, is
H,s = [(®3,03,0)], (k,p) N

determined by its pullback to (Mir}lalgor)/z\spl , which defines the Fourier-Jacobi
’ Dqy,594,0)]

[(Pyy
expansions of f as in [I2] Sec. 7.1.2] and [I3], Sec. 12]. By the same arguments there,
we obtain the following:

Proposition 4.2.11 (cf. [12] Prop. 7.1.2.13] and [13], Prop. 12.10]). The pullback of

spl,tor ®(kvﬁ)N Zspl \7spl,tor
each f € T(My5 ’“M:ﬂg“,J) to the subscheme Z[(éw,éu,a)},(k,g)N of MH’Z,(,C’H)N

is constant along the fibers of the structural morphism
restriction of (333)~*

—Zspl (4.2.1) —Zspl ~ —=spl \1Z# 5Pl
(4-2.12)  ZiG,, 50000 (kg N e (@) 7 s M
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Corollary 4.2.13. The restriction of (4.2.2)) to Z?(pql)%é%a)],(kvﬁ)]v induces a canon-

ical morphism Z?(‘;H’SM)],(,C’E)N — Mjfl(?;N, which factors through a morphism
M%“’SPI — M;f}&g:’;w. Consequently, the stratum Zf(pql)%,é%)] = Z{(®p.00)] 1@ K of
— 0

spl

(@2.62.0)], (k) N under (4.2.2)).

M;‘f” ® K is dense in the schematic image on
Fo

Proof. The first assertion follows from Proposition [4.2.11} By [I3, Thm. 12.1] and
[15, Thm. 6.1 (3) and (5)], the restriction of (4.2.2) to the stratum

spl — o 75pl
Zi(@norso)) = Z@rtnol) D= Loy 5 o, 00pn § O

of M¥"y ® K & l\_/'lz_‘zlgo(rk oy ©Q (see Definition [3.1.8 and (4.2.7)) induces a canon-
= Fo 2l N g

ical Surjectign Zf(pqg%(s%g)] — ZT(%%&H)]. Hence, the last assertion follows from the
flatness of M%7 over Spec(Ok). O

For each stratum Z:P'

(®20,52)] of M?_}i“%K as in Corollary [4.2.13] consider its

=spl . . . —spl . = opl,mi
closure Zyg,, 5,y in M%™" % K and its closure Zj(g,, 5,.)),(k,p)n i M;_?(I;Z’)N under

the open immersion (4.1.26) with schematically dense image. Then we define a
locally closed subscheme
—=spl —spl

Zspl ._
(42.14) Zig, 5,00 0N = Zl@nsr)l(ba)N ™ U (@4, 54)], (k) N
(@530 & [(®4,,85,)]

of m;‘g}&;;jzw (cf. [13, (6.8)]).

Proposition 4.2.15 (cf. [13] Thm. 12.1] and [I5, Thm. 6.1 (3) and (5)]). The

locally closed subschemes Z?gg%ém]’(kﬂw of M;EI(?E)N form a stratification
\7spl,min 7spl
(4.2.16) Mt demnr = LTI Zio s 00

[(P¢,0%)]
with incidence relations similar to those in [12, Thm. 7.2.4.1 (4) and (5)], [13}
Thm. 12.1], and [I5, Thm. 6.1(3)]. For each representative (P, d%,0) such that

(P, 034, 0)] labels a stratum nggﬂ 530.0)] of I\_/Iif}gor as in |) the restriction of

the canonical morphism (4.2.2)) to the corresponding stratum Z?(péu,éu,a)]y(k,g)N of

isplt , . "
M3} Eo(rk N induces a canonical surjection

Zspl Zspl
(4.2.17) Z{(@ 30,65, (k)N ™ Li(@3,530)], (k) N

which is proper when o is top-dimensional in Xa,, .

Proof. By Corollary 4.2.13| and its proof, the restriction of 1D to Z?(pqi%é%g)]

. . . . spl spl spl .
induces a canonical surjection Z[((I,%&H’U)] —» Z[(qm,éa)]’ and Z[(<I>H,5n)] is dense

in the schematic image of ZT%H’M’U)]’(&E)N under (4.2.2). Since the morphism
(4.2.2) is proper and surjective, and since the disjoint union (4.2.8) is the pull-

. . . spl ~ Fspl
back of the stratification (3.1.9), it follows that Z[(pq>H,5H)] o Z[(pq)%éﬂ)}’(kﬂw (%Q
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as subschemes of MM ® K M;fl(g”:) ~©®Q, and that ZT(pql)H 5,y 15 dense in
Fo (R | 7 b

Zspl
Z{(@1,50)), (k)N

Mj_}zlﬁgli;ﬂv. As for the properness of (4.2.17) when o is top-dimensional in Yg,,, it

Hence, the union in (4.2.16)) defines the desired stratification of

follows from that of (4.2.2)), because then z?;)%&%a”,(k’ﬁm is closed in the preimage

—spl .
( ;(k M)N)*I(Z?(pql)ﬂ 531 (kpynv) DY the other assertions we have proved. O

Corollary 4.2.18 (cf. [12, Cor. 7.2.3.12] and [I3| Cor. 12.12]). The morphism
(4.2.17) factors through (4.2.12)) and defines a canonical surjection

1Z 7 ,spl ~spl
(4.2.19) MR ™ = L1 000, ()

Under the running assumption that k > ka(p) > Kj@,, 6, (1) and N > Na(p) >
Ni(@y0,5,01 (1) (see Choices 4.1.28)), this surjection is finite and induces a canonical

isomorphism from M?_L”’Spl to the normalization of ZT(%H 530)], (k) N

Proof. The first assertion follows from Corollary Since the morphisms
, for all possible o, all factor through the same induced morphism
(by the same argument of relating every two cones by a sequences of inclusions
of closures, as in the paragraph following [I2, Rem. 7.1.2.5]), by taking o to be
top-dimensional in Xg,,, which necessarily satisfies o C Pgﬂ, it follows from
Proposition [£.2.15] that the induced morphism is proper. Since (by Corol-

lary |4.1.15)) the pullback of wg(ky’ﬁ)N to Z’?F‘Il,%éwa)]’(kﬂ)]v descends to M;’*’Spl (via

1.2.12)), the pullback of w’ Y
MH,(k,g)N "
. . . . ®(k7ﬁ)N 12 ,Spl . .

morphic to the invertible sheaf Wicizp oo | OVET M37¢""", which is ample (by Corollary

spl

AR
4.1.16) under the assumption that k& > ka(p) > Kj@,,.5,) (1) and N > Na(p) >
N(®,,,6)](#t). This shows that the proper morphism (4.2.19) is finite, by [7, II,
5.1.6, and III-1, 4.4.2]. Since (4.2.19) induces in characteristic zero the canonical

spl,tor
e

(see Proposition [4.1.22) under (4.2.19) is iso-

isomorphism M3}* oK S R 60 = Zl(@r.550) @ K (see [12} Cor. 7:2.3.18)), the
second assertion follows from Zariski’s main theorem (see [7 I1I-1, 4.4.3, 4.4.11]),
as desired. (]
Proposition 4.2.20 (cf. [12] Prop. 7.2.3.16] and [13, Prop. 12.14]). Let T be a
geometric point of M%}(?BN over the [(Py,d3)]-stratum Z?(%H,ﬁn)],(k,g)N' Let
MEPLmin. YA genote the completion of the strict localization of MPV™D  at 7,
H,(k,p)N/T H,(kyp) N

let

Zspl A ._ Fspl \7spl,min A

@00 N7 = L@ san,emn % Mag i)z

M’H.,(k,ﬂ)N
and let
TZ30,SPIVA . 1 Za¢,spl =spl
(M )5 = My X (0 3001, b )N )

[(®qy,09)],(k,p) N

N —_spl, (¥
For each £ € Sg,,, let \IIZPL(SH (0) be as in (3.2.15)), and let (ﬂqifﬁl)g denote the

pullback of

Sspl = 750,8ply [ Pspl
= (C;l;,aﬂ - M?f P )*(‘I’;pﬁ,éﬁ €))
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, , 122 ,5p] 122 ,5p] ,
under the canonical morphism (M3]**P)2 — M3**P". Then we have a canonical

isomorphism

~ *Splv(é) A Fq)’H
(4.2.21) Ogispmin o = ( 11 (@%5?{)%) ,
T tePy

where Py = {{ € Sa,, : ({,y) > 0Vy € Ps, } as usual, which is adic if we
interpret the product on the right-hand side as the completion of the elements

that are finite sums with respect to the ideal generated by the elements with zero

— spl,(0
constant terms (i.e., with zero projection to (ﬂ?ﬂ;j{)g).

. . +spl,(0) I'q
4.2.21)) induces a homomorphism ((FJCI>H 571):%) THoy ﬁ(mspl,mm )As whose source
’ H,(k,u)N’T

18 canonically isomorphic to ﬁ(mzﬂ,spl)A (by Corollary [E.2.18| and Zariski’s main
H x |
theorem; see [0, 11I-1, 4.4.3, 4.4.11]). This homomorphism defines a structural

morphism (Mjfl(r;f)N)/j\ — (MZ-*PYA whose pre-composition with the canonical

Then the isomorphism

) =apl \7spl,min
morphism (Z?(I)@H75H)]7(k,ﬁ)N):/i\ - (M?Iz,(kﬁ)N)?”

Zspl
(Z{(@1,000) 1,k NV

pre-composition with the formal completion (M?_L”7Spl)§ — (Z?éwéﬂ)]’(kﬂ)]v)g of
(4.2.19) is the identity morphism on (M%“’Spl)g. Consequently, this last completion
of (4.2.19) is also an isomorphism.

Proof. Using the canonical isomorphisms (4.2.10f), the same argument as in the
proof of [I2, Prop. 7.2.3.16] works here. O

defines a canonical morphism

e = (M?_L”’Spl)/\ which is then an isomorphism because its

T

Remark 4.2.22. As remarked in the proof of [13, Prop. 12.14], we do not need to
know a priori that induces a bijection on geometric points. Also, by the
same argument as in the proof of Corollary [£.2.18] we may remove the dependence
on the second assertion of [I3, Lem. 12.9] from the proof of [13| Prop. 12.14].

Corollary 4.2.23 (cf. [I3] Thm. 12.16] and [I5] Thm. 6.1(5)]). In (4.2.16), each

Zspl . . . . —Z4,5pl .
stratum Z:P is canonically isomorphic to M57°®". The canonical sur-
[(3¢,820)], (ko) N y P H

jection [A.2.17) can be identified with the composition of the canonical morphism

. . . . \1Z7,spl ~ Fspl
4.2.12)) with the above-mentioned isomorphism M3/*°P" = Z[(p@u,éw)],(k,g)N'

Proof. As in the proof of [I3] Thm. 12.16], it suffices to show that (4.2.19)) is an
isomorphism. Since this can be verified over formal completions of strict local rings,
this follows from Proposition [£:2:20] as desired. O

Corollary 4.2.24. With the same setting as in Proposition let

\7spl,tor A aspl,tor A \ 127 ,SP1\ A
(VP 8= (M Vi ) x (Wi
M2 (ko) N/ HERWINIZG 5y o) e N Vi e

and

(Mo o= (S0 ) x (MG,
[(®3¢,631,0)] M?H’Hvsf’l

The canonical morphism
—spl

—splt = spl, mi
(Fae,epmn)a = (MEET on)e = (M0 N2
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induced by (4.2.2)) factors as the composition of the canonical morphism
spl Ghspl,t ispl,t
(82-2(]@&)]\{)9 : (Mzzz:?(rk,ﬁ)]v)g - (Mjf,zor)g
induced by (4.2.9) with a canonical morphism
Y

= spl,t = spl, mi
(M?L),Eor)g - (M;Izy(?zl)zv)g-

Proof. By treating all objects as formal schemes over (M%’Spl)’i\, this follows from

the explicit description (4.2.21)) of ﬁ(mspl,mm )a- a
H,(k,p)N )T

Proposition 4.2.25. The proper morphism (4.2.1) is an isomorphism, and hence
the morphism (4.2.2)) descends to a canonical morphism

spLt spl,mi
(4.2.26) MY — Mjf,(gl,z)N
. . k,p) N i .o .
extending (4.1.27)), under which wgﬁplﬂ ; (see Definition |4.1.3|) is isomorphic to
H,E
the pullback of wsffli),iv ; (see Proposition |4.1.22]).
H,(k,p) N

Proof. Since I\_/'ijlgo(rk .o is by definition the normalization of the schematic closure

—spl,pre . = spl. ¢ = spl, mi
of Graph(f%(k’ﬁ)]v) in M3} 5% Spcc>(<(9K) MZ)’(?IE)N’ Corollary |4.2.24) shows that the
proper morphism (4.2.1)) is an isomorphism after pullback to an fpgc covering of

I\_/Iif}gor, which then forces 1) itself to be an isomorphism. O

(k,p)

spl,tor
H,Z »J

Corollary 4.2.27. The invertible sheaf wg over Mj};}gor is semiample.

. . . ®(k,p) N - i . .
Proof. Since the invertible sheaf wmjs’l&%:w”] over Mj_lzl(zﬂz)  1s ample, this follows
from Proposition B O
Corollary 4.2.28 (cf. [I3, Cor. 12.5)). I\_/I'%’l%)lﬁ‘p is dense in M?fl(?im %)IFP,
Proof. Since |\7|§$1<§>]Fp is dense in M;f}’zt?(rkﬂ)N %)]Fp by of Theorem [3.4.1} this
follows from Proposition [
Lemma 4.2.29. For each A € L, each 7] € T/ ~, and each integer i satisfying
0<i< d[T], the invertible sheafwj\ (7], fspltor (see (4.1.13)) descends to an invertible

SITHV g 5
i \7spl,min . . .

sheaf wA,[T]Miff;‘;’f;’)N over MH,U%&)N via the canonical morphism (4.2.26)).

Proof. By Lemma and Corollary [4.2.28] and by the same argument as in the
proof of [12, Thm. 7.2.4.1], it suffices to note that the pullback of each of these

sheaves to each X5P descends to M%**P' by Lemma [4.1.12 O
D3,,09,0 H ’

Corollary 4.2.30. For all positive ' and all integers k' and N', the invertible

y p 23 g s

! ’ ’ !’ ’ 4
QK I ®(k",u") ® (k" 1" )N . ..

sheaf Wiispl.tor (resp. Wigspltors €SP Wospiior 15 T€SP- Weplior 5 S€€ Definitions

HE H,Z H,E H,E 0

. . ' u
4.1.1| and |4.1.3) descends to an invertible sheaf wﬁ%s’fﬂ,mm ; (resp. Wiispl,min 5 TESP-
H,(k,p)N° H,(k,p)N
®(k 7ﬁ/) ®(k/vlj,)N/ \Aspl,min . .

Wigeplmin 17 TSP Wigiept min J) over M%(kﬂ)N via the morphism (4.2.26]).

H, (k)N H, (k)N
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Proof. This follows from Lemma [£:2.29] as in the proof of Corollary [£.1.18] O

Proposition 4.2.31. For each positive i’ and each integer k' > k(y'), we have
canonical isomorphisms

I, min I, min (k,nu )N’
Mfr’-ll) (k,p)N — PI‘OJ( ® (M;_IL) (k,p)N? wMépl min J)>

N’>0 5
(4.2.32) = - ;’;V o
gPI‘O.( o T Mspl,tor, " 7%( )

J NS0 ( H, 2 M?-}L),I’Et J

This shows that MSpl(Z“n)N is (up to canonical isomorphism) independent of the
choices of 1 and the integers k > ka(p) and N > No(p). We shall henceforth drop
the subscript (k, p)N from the notation of Mj_lzl(’?i;)N ete, and rewrite the morphism
(4.2.26)) as a canonical morphism ;

—spl = - .

(4.2.33) $a P MR — MR
K)o .

Proof. By Corollary |4.2.27] wgfpl t/ir)J is also semiample. By Corollary [4.2.30
H,E

k', k', . .
w®£p1 f:r) descends to the invertible sheaf w®£p1 ,ffn) . Since the canonical mor-
MEpLter g M e
phism (4.2.26f) is proper and surjective, the emptiness of the base locus of wmipl Ll:r)J
) k", . .
forces that of MS(P‘ n’:n) 7 and hence w(%fpl n’fm) ;I8 also semiample. Therefore,
H,(k,u)N? H,(k,p)N’

the canonical morphism MSpl tor _, MSPI(EITL ) factors as the composition of (4.2.26

1 1 .
with a canonical morphism MSP (211:) N M;lz (1’:12) By a symmetric argument,
we also obtain a canonical morphism MSpl(m,m,) MSpl(g“n) -+ Whose pre- and post-

compositions with the previous canonical morphism are identity morphisms by con-
struction. This shows that MsPl(g”;) v and MSPI(E‘Z ) are canonically isomorphic, and

that we have the canonical isomorphisms in (4.2.32)), as desired. O

Proposition 4.2.34. There is a commutative diagram

(4.2.35) Nigpster 2259 MspLmin
Can.J o
- M Oky ()
Mt[;_([)rz ® OK s Mmm ® OK
" OFy.(p) OFo.(»)

where the dotted morphism is induced by the composition of canonical morphisms

spl,min . spl,min - @k \aspl,itor  ®k
M3P — Pro ( T(M3P war ) Proj ( M w? )
H J EZBO ( H > M;;[l,m)n7J) J 20 ( HY Mizl,ztorJ)
o PI‘OJ( F(I\/Igfzrz7 Sf}r J)) ® Ok = Mmm ® Ok
12"/ Org,(p) OFo, )

(see Corollary [4.2.30, Definition £.1.1], [13, Prop. 7.11], and [I5, Thm. 6.1(2)]),

under which wgsplmin § is isomorphic to the pullback of Wimin I ® Ok.
H ? H F
0:(p)
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4.3. Main theorem for minimal compactifications.

Theorem 4.3.1 (cf. [I12] Thm. 7.2.4.1]). For each H as in Choices there is a
normal scheme NP ™ projective and flat over Spec(Ok), containing the scheme
|\7|3_1zl in Definition as an open fiberwise dense subscheme, such that:

(1) We have a commutative diagram

(4.3.2) My @ K€ NPt My ® Ok
0

j OFy,(»)

M @ K MPI™ o Mm@ O
Fo OFy, )

of noetherian normal schemes flat over Spec(Ok) and of canonical mor-

phisms (over Spec(Ok)), in which all squares are Cartesian, all vertical

arrows are open immersions with fiberwise dense image over Spec(Ok),

the two horizontal arrows at the left-hand side are open immersions with

schematically dense images, the two horizontal arrows at the right-hand side

are projective and surjective, and the compositions of horizontal arrows in

the same rows are also open immersions with schematically dense images.
(2) For each ¥ as in Theorem the commutative diagrams and

are compatible with each other and form a commutative diagram

(4.3.3) My © K€ Mzzl My © O
0

~ Fo(,\(p)

S -
M’y @ K » MY » Mgy, ® Ok
T F ' " Ory.(p)

=spl

K 5 Fo

Mz @ KC—s MMMy Nimin @ Ok
Fy

Ory.(p)

in which all squares not involving l\_)lﬁin ® Ok are Cartesian, the ar-
Fo.(p)
rows already showed up in (3.4.2) and (4.3.2)) are as before, the new arrows

between the bottom two rows are all proper and surjective with geometri-
cally connected fibers, and the compositions of vertical arrows in the same
columns are open immersions with fiberwise dense images.
\spl \7spl,tor \7spl,min . . . .
(3) Over M3} (resp. M35, resp. M} ), there is a canonical invertible

sheaf w' (resp. wt soltor, TESP. Wi ), for each A € Z,
B>

A [r] M5! A7) N A,[r] Nizplomin
each [t] € T/ ~, and each integer i satisfying 0 < i < dp; and there

®Qk ®k
(resp. Wieptior 10 TESP- Wioptmin ;)
H,E H s

are canonical invertible sheaves w®F

spl
NPT

®(k,p) (res w®(k’ﬁ) res w®(k,ﬁ)
D- szl,ztorJ; D. Mzi)l,min’l]

triply indexed collection of integers u = {I&,[T]}Aezj,[r]eT/~,0§i<d[T] that

), for each integer k and each

is positive in the sense that ,ui\_l] > ph (7 for all A€ Zy, [r] € T/ ~,

[T
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and 0 < i < d;, so that (cf. (2.3.8) and (4.1.13))

®kp) o, QFk i ® pt
Wom— Zwsl @ ® ® ® (w o) © HALT]
M3 M3 T\ Ae2y \[r]eX /~ 0<i<dyy - MM ))):
®k,p) o ok i ® pl
ceplior 1 = Woiitor Q@ ® ® ® (w < opor ) AT
M3P5er,d M35 ".d AeZy [T]eT/N(ong[,] AT M S ) ’
and

H ® i ® ph
W =spl,min Weeplmin @ & ( & ® (w ool min ) 7] )
Msphmin g Msphin g (Aec.% [T]ET/~(0§i<d[T] A7), Mg )

Under the canonical morphisms I\/Iz_lzl — Mj};}gor as in Theorem and

—spl N N .
$q M;f}gor — M;_Izl’mm as in (4.3.3), the pullbacks of the sheaves over the

targets are canonical isomorphic to the corresponding sheaves (with similar
. . \15PL,t
indices) over the sources, while the sheaves over M3} descend to the

X — . . . . —spl
corresponding sheaves over I\/I;_It’l’mm via the canonical morphism § ., .
QFk ®k ®k )
J

M;;ZlJ (reSP- WM%EM’J7 resp. wm,’?‘sl,min7

For each integer k, the sheaf w

s canonically isomorphic to the pullback of the sheaf wgk (resp. wgk
H

3 o0’

resp. wSF Y as in [I3, Prop. 6.1 (resp. 7.11, resp. 6.4)] and [I5, Thm.

Mmin
6.1(2)]. %’or all k > 0, it is semiample, and has an ample pullback to the
characteristic zero fiber.
For all positive p, and for all sufficiently large k (depending on p), the
@ (k)  ®(kp) @ (k) . n
i g ( NiEplor 3 resp. ‘”ngmin,J) is ample (resp. semiample,

resp. ample). In particukar, for all positive p and for all sufficiently large

. v min . 7 r k,p) N
k (depending on p), we have szl’ = Proj (NEQOF(M%’}’;O 7w§§51§3r7J))'

sheaf w

(4) |\7|§_lzl’min has a stratification by locally closed subschemes

\Aspl,min __ Zspl
(4.3.4) M =TT Ze s

[(@3,6%)]

with [(Py,0y)] running through a complete set of cusp labels as in [12]
Def. 5.4.2.4], such that the [(®,0%,)]-stratum Zf&l),w%)] is contained in

the closure of the [(Pyy, 63¢)]-stratum Zf(pql)ﬂ 530)] if and only if there is a

surjection from the cusp label [(9,,04,)] to the cusp label [(Py,09)] as in
[12, Def. 5.4.2.13]. The analogous assertion holds after pullback to fibers
over Spec(Ok).

Each [(®yy, 03 )]-stratum Z?(%H,M)] is flat over Spec(Ok) and normal,

and is canonically isomorphic to the boundary version M%-SP! of |\7|3_FZ1 (cf.
Definitions and and the summary in Remark|3.2.19). In partic-

ular, |\7|§_Izl = Z?z)ol 0] is an open fiberwise dense stratum in this stratification.
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This stratification 1| is compatible with the stratification of M%in as
in [13, Thm. 12.1 and 12.16]; and we have a commutative diagram

(4.3.5) MZt @ K MEP s M2 @ Ok
Fo OFq.(»)
l ! i
L .
Zig@ndn) @ K Zita,, 5000 > Li@n000)] o Ok

Migin ® K NPy M @ O
0

Ory.(p)

of canonical morphisms, in which all squares not involving I\/I,n_}in o ® Ok
Fo,(p)

are Cartesian, the vertical arrows in the upper-half are isomorphisms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows

are also open immersions with schematically dense images.
—spl
(5) The restriction of the proper surjection fﬂ in the diagram (4.3.3) to the

spl
. [(®3,09)]
of Miﬁ’l’mm, which can be identified with the composition of the canonical iso-

stratum z?f’éﬂ75%7a)] of l\_}lif’lgor induces a surjection to the stratum Z

morphism ZT(I"II)H,(;H,U) = gerl given by li (whose inverse appeared

“@H,S;{,a
also in the diagram ), the structural morphism éf}i,éa,a — M?{”’Spl,
and the isomorphism M?_[”’Spl = Z?(pql)%(sﬂ)] mentioned above in 1) In par-

ticular, it is proper and surjective if o is top-dimensional in Pg C (Say )p-
Under such surjections, the commutative diagrams (3.2.20)) (expanded
version), (3.4.4), (4.3.5)), and (4.3.3) are all compatible with each others.

Proof. Let us take Mj_lzl’min as in Proposition which is a normal scheme pro-
jective and flat over Spec(Ok) by construction. Then, based on the corresponding
assertions in [I2, Thm. 7.2.4.1], the assertions and follow from [I3 Prop.
6.1, 6.4, and 7.11] and [I5, Thm. 6.1(2)], and from Propositions [4.2.25| and |4.2.34}
the assertion follows from [13, Prop. 6.1, 6.4, and 7.11] and [15, Thm. 6.1(2)]
(again), from the definitions (see Definitions[4.1.1]and [£.1.3|and the references made
from there), and from Corollary 4.2.305 and the assertions and follow from
[13, Thm. 12.1, Cor. 12.14, and Thm. 12.16] and [I5, Thm. 6.1(5)], from Proposi-
tion [£.:2.15 and Corollary [£.2.18] and from the fact that the rather naive definitions
[13, (6.8)] and are necessarily compatible with each other. O

Corollary 4.3.6. The canonical proper morphism

(4.3.7) MEPRET — MV Mg
M%ln
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induced by the diagram (4.3.3) is finite and induces a canonical isomorphism over

the open dense subscheme ,\‘/]351_ Consequently, lb identifies its source with the
normalization of its target, by Zariski’s main theorem (see [, 111-1, 4.4.3, 4.4.11]).

Proof. By (4]) and (5) of Theorem 1} for each stratum Z[(%,M)(,ﬂ of I\7I§$rE which
is mapped to the stratum Z[(% 52)) of Mmln the morphism

spl spl
(4.3.8) o500~ Lilbrin N, X Zi(@r5n.0]
[(4>;-¢,5H)]
induced by the pullback of (4.3.7) can be identified with the canonical morphism
(4.3.9) 3’2175,_‘,0 — M?-[Hyspl Ra '—‘<I’7-¢ 03,0
M3t

for any representative (®y,dy,0) of [(®3, %, 0)], which is finite and induces an
isomorphism from its source to the normalization of its target by Definition |3.2.3
Then (4.3.7)) is quasi-finite, in particular, and hence must be finite because it is

already known to be proper When [(®y,d%,0)] = [(0,0,{0}], (4.3.8)) is just the
identity morphism over I\_/'IS = Zf(po 0.{0})]" Thus, the corollary follows. (]

Corollary 4.3.10 (cf. [13} Cor. 14.4]). If the geometric fibers of M?}fl — Spec(Ok)
are reduced (resp. have integral local rings), then all geometric fibers of l\_/lzfl’mln —
Spec(Ok) have the same number of connected (resp. irreducible) components.

Proof. As in the proof of [I3] Cor. 14.4], this follows from Corollary [3.4.15| from

—spl = . .
the geometric connectedness of the fibers of ¢ " I\/Ibpl’tor l\/IleLmlrl and from the

fiberwise density of M;fl in MSpl o and MSpl min(gee Theoremsand O

Remark 4.3.11. We can improve [I3] Cor. 14.4] and [I5, Prop. 6.10] by assuming
there that the geometric fibers of My, — Sg are reduced (resp. have integral local
rings), by the same arguments as in the proofs of Corollaries [3.4.15[ and |4.3.10}

Proposition 4.3.12 (cf. [13, Prop. 13.4, 13.9, and 13.15]). With the same setting
as in Proposition the morphism (2.4.18|) extends to a canonical projective

morphism

- min

(4.3.13) g Mmin _y pjmin

compatible with any morphism as in (3.4.11)), whose pullback from O, ) to Ok
lifts to a canonical projective morphism

- spl,min

(4.3.14) [g] s MR Mphmin

extending the morphism (2.4.19) and compatible with any morphism as in .
The morphz’sm (4.3.13) (resp. (4.3.14)) maps the [(Dy, 03 )]-stratum Z[@H’(;H)]
(resp. Z[(<1> ) of M (resp. MP™™) to the [(®Y,, dx)]-stratum Z[(qy 53]
(resp. Z[(q>, o)l ) of M in (resp. MSpl miny G and only if there are representatives
(P, 03) ond (D%, 04) of [(Pw,0n)] and (P}, 0%, )], respectively, such that
(P4, 0%,) is g-assigned to (P, 69) as in [12 Def. 5.4.3.9].

Proof. These follow from the same arguments as in the proofs of Propositions

and [3.4.10} and from [I3, Thm. 12.1 and 12.16, and Prop. 13.4], from [I5, Thm. 6.1
(2) and (5)], and from and of Theorem [£.3.1} O
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4.4. Vanishing of higher direct images, and Koecher’s principle. By [I5]
Constr. 3.12 and Def. 5.13; cf. Rem. 2.9 and Cor. 5.11], we have

(4.4.1) M, = NBL>  (M™)

T, dpol
for some compatible collection pol of polarization functions and for some integer
d > 1, for some coherent O min-ideal T dpol-
H

Proposition 4.4.2. Let j;ff}jpol denote the pullback of j'q.[7dpo| to Mj_lzl’min. Then
we have a composition of canonical isomorphisms

\7spl,tor \7spl,min \7spl,min \Amin
(443) MR o NBlyer (M) 5 M NBL, (M),
H

inducing canonical isomorphisms over the common open dense subscheme M;_IL’I,
which can be identified with the canonical morphism , where the first mor-
phism is an isomorphism compatible with (and with the canonical morphisms
n ), and where the second morphism is finite and identifies its source with
the normalization of its target.

Proof. Since the (coherent ideal) pullback of jy7dpo| to I\_/'Ig_‘fZ is invertible, the

=,

pullback of j;filpo, to M;f}gor is also invertible. Hence, the proposition follows from

the universal property of normalizations of blowups, and from Corollary O
Corollary 4.4.4 (cf. [I5, Cor. 6.7]). There exists an effective Carter divisor D’ over
M;f}gor, with D!y = MZE}gor — M2 (with its canonical reduced closed subscheme

structure) such that Ogsp.cor(=D') is relative ample over l\_/'lzfl’l’min, with respect to
H,s

—spl g - .
. . . spl,tor spl,min
the canonical morphism 35’7_[72 My s — My .

Proof. This follows from [I5], Cor. 6.7] and Propositionm |

As in [12, Sec. 7.1.2], let 13’2’;’27{ : Cﬂ%ﬂiﬁy — MZ¢*P! denote the structural
morphism. As in [14], Sec. 6], let Pé’; ={l e Sg, : {{,y) >0,Vy € Pg,, — {0}}.
(We made similar definitions in [I5] Sec. §].)

Lemma 4.4.5 (cf. [I5, Lem. 8.1]). There exist infinitely many integers n prime to
p such that, for each such n, there exists a finite étale commutative group scheme
H,, of order prime to p over I\/Igf’slo1 acting on C’;fiy&ﬂ via morphisms compatible
~  ~spl
i /Hri = Co., 60
over MZ"SPI, whose composition we denote as [n], such that [n]*\IIS,If’iﬁH (0) =
= = 2
\Ilfgi,é” (n%0) = \I'fbpi)&% (O)®"", for each £ € Sg,,. Moreover, for any Ok -algebra
R, the canonical morphism

(4.4.6) TP (0 g R — [n]. (T 5 (n*0) g R)

. —spl . . . . ~spl ~spl
with Pg., 4, inducing canonical morphisms Cdm,éw — Cq)%(SH

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of H,-invariants.

Proof. This follows from [I5, Lem. 8.1] and from repeated applications of Zariski’s
main theorem (see [7, III-1, 4.4.3, 4.4.11]), by considering the action of H, on
C’Z)p; 5,, induced by that on Cs,, s,,, and the canonical morphism [n] : C’;p; P

C’qflfi’aﬁ induced by [n] : C_"@H,(;H — 6@7{,5”. 0
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By Proposition [3.2.11} \I_}fg’?l{,éﬂ (¢) is isomorphic to the pullback of Wg,, s, (¢)
under the structural morphism 6227 52 C’ﬂqm,g%. Therefore, by Lemma
and by the same arguments as in the proofs of [I5l Prop. 8.3 and 8.4], we obtain
the following two propositions:

Proposition 4.4.7 (cf. [15, Prop. 8.3]). Suppose £ € Pé’;. Then
i/ =spl Zspl
RIS )+ (0L 5, (0) 1) =0
for alli > 0 and all Ok -algebra R.
Proposition 4.4.8 (cf. [I5, Prop. 8.4]). Suppose that Se,, = Z, that £ € Sg,, is

negative, and that the morphism f)'fifi z,, has positive-dimensional fibers (which is

the case when the structural morphism Pg,, 4,, : é@HﬁH — |\7|§f does). Then

(B 22 (Farsn ()& R) =0

Py Z
ot Fo,(p)

for all O, (,y-algebra R.

Let R be an Og-algebra. Let us define the formally canonical and subcanonical
quasi-coherent sheaves over I\_/Iz_?}’ztor by the obvious analogue of [15, Def. 8.5]. By
definition, the pullback of a formally canonical (resp. subcanonical) quasi-coherent
sheaf over |\7|§er to Mif}gor is formally canonical (resp. subcanonical). By the same
arguments as in the proofs of [I5, Thm. 8.6 and 8.7], with the references to [15]
Thm. 6.1, and Prop. 8.3 and 8.4] there replaced with the references to Theorem
and Propositions and here, we obtain the following two theorems:

Theorem 4.4.9 (vanishing of higher direct images; cf. [I4, Thm. 3.9] and [I5]
Thm. 8.6]). Suppose R is an Ok-algebra, and suppose that & is a quasi-coherent

sheaf over I\_ilzf}gor that is formally canonical (resp. formally subcanonical) over R
(as above). Let D' be as in Corollary and let

Cga(—nD/) =& ® ﬁmiflgor(—nD/),

wispl tor

for each integer n. Then
i —spl
R (fﬁyz)*é”(—nD') =0
for alli >0 and n > 0 (resp. n > 0).

Theorem 4.4.10 (Koecher’s principle; compare with [I4] Thm. 2.3] and [15] Thm.
8.7]). Suppose O ®Q is a simple algebra over Q. Suppose R is an Ok -algebra, and
Z

suppose that & is a quasi-coherent sheaf over l\_/lzfl’gtor that is formally canonical over

R (as above). For each open subset U™ of l\_/l'zfl’min, consider its preimage U"
- —spl -

in M;f}’ztor under the canonical morphisms §H’Z, and its preimage U in M;fl under

the canonical morphism M;_Izl — M;_Izl’mm. Then the canonical restriction map

(4.4.11) DU, &|gor) — T(U, &|v)

is a bijection, except when dim(My) =1 and U™ — U # ().
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