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Abstract. We construct toroidal and minimal compactifications, with ex-

pected properties concerning stratifications and formal local structures, for all
integral models of PEL-type Shimura varieties defined by taking normaliza-

tions over the splitting models considered by Pappas and Rapoport. (These

include, in particular, all the normal flat splitting models they considered.)
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1. Introduction

In the article [13], we constructed normal flat integral models for all PEL-type
Shimura varieties and their toroidal and minimal compactifications constructed by
taking normalizations over certain auxiliary choices of good reduction models, with
no assumption on the level, ramification, and residue characteristics involved, and
showed that such integral models still enjoy many features of the good reduction
theory studied as in [5] and [12]. In the article [15], we extended the construction
of toroidal compactifications in [13] to allow general projective cone decomposi-
tions which are not necessarily induced by the auxiliary choices. When the local
model M loc for the PEL-type Shimura variety in question is known to be flat over
Spec(Z(p)) and normal, the integral model constructed in [13] coincide with the

A loc
Cp as in [17, (15.4)], which can be interpreted as being constructed by taking

normalizations over certain naive models. Thus, the constructions in [13] and [15]
provide good toroidal and minimal compactifications for all such integral models.

One naturally also considers the moduli problem A spl
Cp in the same diagram [17,

(15.4)], which corresponds to the splitting model M spl = M introduced in earlier
sections of [17], which are built over A loc

Cp (over some more naive models) as the rel-
ative moduli of certain filtrations on the first de Rham homology of multichains of
abelian schemes. For simplicity, let us also call such moduli problems the splitting
models of the PEL-type Shimura variety. Although they are defined over base rings
that are often more ramified, their local properties are often nicer—they do not
admit singularities due to restrictions of scalars from ramified extensions. Already
in the Hilbert modular case—where the constructions are simple-minded because
the splitting models and naive models coincide over the Rapoport loci (see [18] and
[4]), which are all that are needed for the gluing of boundary charts—the compacti-
fications for splitting models are known to have useful arithmetic applications (see,
for example, [22] and [21]).

Our goal is to give a uniform construction, based on [12], [11], [13], and [15], of
toroidal and minimal compactifications of all integral models of PEL-type Shimura
varieties defined by taking normalizations over such splitting models. These in-
clude, in particular, all the normal flat splitting models considered in [17]. But we
shall also allow the levels at p to be arbitrarily higher than the stabilizers of the
multichains of p-adic lattices used in the definitions of the splitting models.

For the construction of toroidal compactifications of splitting models, the idea
is to realize them as splitting models of toroidal compactifications. We consider
certain filtrations on the canonical extensions (over toroidal compactifications of
naive models) of the first de Rham homology of multichains of abelian schemes,
extending the ones over splitting models. We can show that, over the boundary
strata, the normalizations of the relative moduli of such filtrations depend only on
the abelian parts of the semi-abelian degenerations, and that their formal boundary
charts can be directly built over the formal toroidal boundary charts of the naive
models. This allows us to prove a long list of nice properties of such normalizations,
including precise descriptions of their stratifications and formal local structures,
which allows us to call them toroidal compactifications of splitting models.

For the construction of minimal compactifications of splitting models, the con-
ventional approach would be to introduce some variants of the Hodge invertible
sheaves, and to consider the projective spectra of the graded algebra formed by
sections of their powers. However, there is some subtlety in the choices of such
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variants. For the projective spectra to define compactifications of our splitting
models and admit canonical morphisms from the toroidal compactifications, we
need the variants to be ample over the splitting models and (at least) semiample
over the toroidal compactifications; yet we have no a priori knowledge of such vari-
ants, except in very special cases. Rather, we will obtain the existence of them as
a byproduct of our argument, which is based on a tricky analysis over the formal
boundary charts. We will also obtain a long list of nice properties of the corre-
sponding projective spectra, with precise descriptions of their stratifications and of
their relation with toroidal compactifications, which allows us to call them minimal
compactifications of splitting models.

Here is an outline of this article.
Section 2 is devoted to the construction of splitting models of our PEL-type

Shimura varieties. In Section 2.1, we review the linear algebraic data for defining
multichains of lattices, which are required for the remainder of the article. In
Section 2.2, we review the notion of multichains of isogenies of abelian schemes
with additional structures; we also introduce their moduli, and relate them to the
integral models of PEL-type Shimura varieties constructed by taking normalizations
(over certain naive moduli) as in [13]. In Section 2.3, we define the notion of splitting
structures, and introduce the relative moduli problems for them. In Section 2.4, we
study the splitting structures over the naive moduli and over the integral models of
PEL-type Shimura defined by taking normalizations, and introduce their splitting
models.

Section 3 is devoted to the construction of toroidal compactifications of the
splitting models constructed in Section 2. In Section 3.1, we introduce the splitting
models over the toroidal compactifications constructed by taking normalizations
as in [13] and by normalizations of blowups as in [15], and define the boundary
stratification on them. We will consider these the toroidal compactifications of the
splitting models. In Sections 3.2 and 3.3, we introduce splitting models over simpler
objects over integral models of smaller PEL-type moduli problems associated with
the boundary strata, and use them to describe the formal completions of the toroidal
compactifications of splitting models along their boundary strata. Theorem 3.3.1
can be considered the technical heart of this article. In Section 3.4, we summarize
our main results for toroidal compactifications in Theorem 3.4.1, in a format similar
to the one of [12, Thm. 6.4.1.1]. The theorem is rather long, but has the advantage of
collecting all relevant information at a single place. We also record some byproducts
concerning local properties along the boundary.

Section 4 is devoted to the construction of minimal compactifications of the
splitting models constructed in Section 2. In Sections 4.1 and 4.2, we construct them
as certain birational contractions of the toroidal compactifications constructed in
Section 3, overcoming the difficulty mentioned above. In Section 4.3, we summarize
our main results for minimal compactifications in Theorem 4.3.1, in a format similar
to the one of [12, Thm. 7.2.4.1].

We shall follow [12, Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from [12], we recommend
the reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. It is not necessary to have completely
mastered the techniques in [12], [13], and [15] before reading this article. (Readers
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who are willing to work with less precise collections of cone decompositions induced
by certain auxiliary ones, as in [13, Sec. 7], can ignore most references to [15].)

2. Splitting models

2.1. Multichains of p-adic lattices. Suppose we have an integral PEL datum
(O, ?, L, 〈 · , · 〉, h0), where O is an order in a semisimple algebra finite-dimensional
over Q, together with a positive involution ?, and where (L, 〈 · , · 〉, h0) is a PEL-type
O-lattice as in [12, Def. 1.2.1.3], which defines a group functor G over Spec(Z) as
in [12, Def. 1.2.1.6]. Let us denote the center of O⊗

Z
Q by F , and denote by F+

the subalgebra of F consisting of elements invariant under ?. Suppose that L
satisfies [12, Cond. 1.4.3.10]. (This is harmless in practice, as explained in [12,
Rem. 1.4.3.9].)

Let F0 denote the reflex field defined by (O⊗
Z
R, 〈 · , · 〉, h0) as in [12, Def. 1.2.5.4],

which is a subfield of C. Let V0 (resp. V c0 ) denote the maximal sub-O⊗
Z
C-module of

L⊗
Z
C on which h0(z) acts as 1⊗ z (resp. 1⊗ zc), where c denotes the complex con-

jugation. Then V0 and V c0 are maximal totally isotropic with respect to the pairing
〈 · , · 〉⊗

Z
C, and we have the Hodge decomposition L⊗

Z
C ∼= V0⊕V c0 ∼= V0⊕V ∨0 .

By [12, Def. 1.4.1.4] (with 2 = ∅ there), for each open compact subgroup H of

G(Ẑ), we have a moduli problem MH over S0 = Spec(F0), defined as the category
fibered in groupoids over (Sch /S0) whose fiber over each scheme S is the groupoid
MH(S) described as follows: The objects of MH(S) are tuples (A, λ, i, αH), where:

(1) A→ S is an abelian scheme.
(2) λ : A→ A∨ is a polarization.
(3) i : O → EndS(A) is an O-endomorphism structure for (A, λ) as in [12, Def.

1.3.3.1].
(4) LieA/S with its O⊗

Z
Q-module structure given naturally by i satisfies the

determinantal condition in [12, Def. 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0).

(5) αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑ, 〈 · , · 〉) as in

[12, Def. 1.3.7.6].

The morphisms of MH(S) are the naive ones induced by isomorphisms between
abelian schemes, respecting all the additional structures.

Let p > 0 be a rational prime number. For simplicity, and for consistency with
[17, Sec. 15], we shall make the following:

Assumption 2.1.1. The order O is maximal at p (see [12, Def. 1.1.1.11]).

Let v denote a place of F0 above p, and let F0,v denote the v-adic completion of
F0. Let Q̄ denote the algebraic closure of F0 in C, and let Q̄p denote an algebraic
closure of F0,v, with a lifting Q̄ → Q̄p of the canonical morphism F0 → F0,v. Let
Υ denote the set of homomorphisms τ : F → Q̄p. For each τ ∈ Υ, let Fτ (resp.
F+
τ ) denote the composite of Qp and τ(F ) (resp. τ(F+)) in Q̄p. We define two
τ : F → Fτ and τ ′ : F → Fτ ′ to be equivalent, denoted τ ∼ τ ′, if there exists an
isomorphism σ : F+

τ
∼→ F+

τ ′ over Qp such that τ ′|F+ = σ ◦ (τ |F+). In other words,
they are equivalent if their restrictions to F+ are in the same Gal(Q̄p/Qp)-orbit.
For each equivalence class [τ ] ∈ Υ/ ∼, let us fix the choice of some representative
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τ of [τ ], and abusively write [τ ] : F → F[τ ] and [τ ] : F+ → F+
[τ ], where F+

[τ ] := F+
τ

and F[τ ] := F ⊗
F+

F+
τ . Then we have a factorization

(2.1.2) F ⊗
Q
Qp ∼=

∏
[τ ]∈Υ/∼

F[τ ],

which induces and is induced by a factorization

(2.1.3) F+⊗
Q
Qp ∼=

∏
[τ ]∈Υ/∼

F+
[τ ]

(cf. [12, Sec. 1.1.2]). These factorizations induce the corresponding factorizations of
rings of integers. Since O is maximal at p by Assumption 2.1.1, it contains the ring
OF (resp. OF+) of integers in F (resp. F+). (We shall always denote by O? the
ring of integers in any ? that is a product of local or global fields.) Consequently,
the identity elements of the rings OF[τ]

define idempotent elements of O⊗
Z
Zp, and

we have a factorization

(2.1.4) O⊗
Z
Zp ∼=

∏
[τ ]∈Υ/∼

O[τ ],

inducing for each O⊗
Z
Zp-module M a canonical decomposition

(2.1.5) M ∼= ⊕
[τ ]∈Υ/∼

M[τ ],

where each M[τ ] is the maximal submodule of M on which the action of O⊗
Z
Zp

(resp. OF ) factors through O[τ ] (resp. OF[τ]
). In particular, we have a canonical

decomposition

(2.1.6) L⊗
Z
Zp ∼= ⊕

[τ ]∈Υ/∼
L[τ ],

Let L be a set of O⊗
Z
Qp-lattices in L⊗

Z
Qp that is a product of sets L[τ ] of

O[τ ]-lattices in L[τ ]⊗
Z
Q in the sense that, for each Λ ∈ L , there exist Λ[τ ] ∈ L[τ ],

for all [τ ] ∈ Υ/ ∼, such that

(2.1.7) Λ = ⊕
[τ ]∈Υ/∼

Λ[τ ]

as subsets of

(2.1.8) L⊗
Z
Qp ∼= ⊕

[τ ]∈Υ/∼
(L[τ ]⊗

Z
Q).

For simplicity, we shall assume that Λ0 = L⊗
Z
Zp ∈ L .

We shall assume moreover that each L[τ ] is a chain in that it satisfies the fol-
lowing two conditions, as in [19, Def. 3.1]:

(1) If Λ[τ ] and Λ′[τ ] are two distinct elements in L[τ ], then either Λ[τ ] ( Λ′[τ ] or

Λ′[τ ] ( Λ[τ ].

(2) If b is a unit of O⊗
Z
Qp which normalizes O⊗

Z
Zp, then bΛ[τ ] ∈ L[τ ] for each

Λ[τ ] ∈ L[τ ].
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Then L is a multichain as in [19, Def. 3.4]. We shall assume that L is self-dual in
the sense that, for each Λ ∈ L , the dual lattice

(2.1.9) Λ# := {x ∈ L⊗
Z
Qp : 〈x, y〉 ∈ Zp(1), ∀y ∈ Λ}

is also contained in L (see [19, Def. 3.13]). As in [19], we shall consider L as a
category with morphisms given by inclusions of lattices.

Definition 2.1.10. Up(L ) is the subgroup of G(Qp) consisting of elements stabi-
lizing all lattices Λ in L .

Remark 2.1.11. By the explanation in [19, 3.2], under the assumption that Λ0 =
L⊗

Z
Zp ∈ L , we have Up(p) := ker(G(Zp) → G(Fp)) ⊂ Up(L ) ⊂ G(Zp). In

particular, Up(L ) is an open compact subgroup of G(Zp). (The assumption that
Λ0 = L⊗

Z
Zp ∈ L is only made for the sake of simplicity. It is practically harmless

for our purpose, thanks to [12, Cor. 1.4.3.8].)

Definition 2.1.12. Suppose S is a scheme over Spec(OF0,v
). An L -set of po-

larized O⊗
Z

OS-modules is a triple (H ,F , j), where:

(1) H : Λ 7→ HΛ and F : Λ 7→ FΛ are functors from the category L (with
morphisms being inclusions of lattices) to the category of O⊗

Z
OS-modules.

(2) j : F →H is an injective morphism, whose value at each Λ is denoted by
jΛ : FΛ →HΛ (which is a morphism of O⊗

Z
OS-modules).

(3) For each Λ ∈ L , let us identify FΛ with an O⊗
Z

OS-submodule of HΛ,

which is its image under the injective morphism jΛ. Then we require
that both FΛ and HΛ/FΛ are finite locally free OS-modules, and that
HΛ/FΛ satisfies the determinantal condition in [12, Def. 1.3.4.1] given by
(L⊗

Z
R, 〈 · , · 〉, h0).

(4) For each Λ ∈ L and each unit b of O⊗
Z
Qp which normalizes O⊗

Z
Zp, there

are periodicity isomorphisms θbHΛ
: H b

Λ
∼→ HbΛ and θbFΛ

: F b
Λ
∼→ FbΛ

of O⊗
Z

OS-modules satisfying jbΛ ◦ θbFΛ
= θbHΛ

◦ jΛ, where the superscript

b on any O⊗
Z

OS-module means conjugating the O⊗
Z
Zp-structure by b−1

(i.e., each element a ∈ O⊗
Z
Zp acts by b−1ab).

(5) For each Λ ∈ L , there exists a perfect pairing

(2.1.13) ( · , · )Λ : HΛ×HΛ# → OS(1),

inducing an isomorphism

(2.1.14) ( · , · )∗Λ : HΛ
∼→H ∨

Λ#(1).

Moreover, for each inclusion Λ ⊂ Λ′ in L , we have the natural compatibility

(H ((Λ′)# → Λ#))
∨ ◦ ( · , · )∗Λ = ( · , · )∗Λ′ ◦H (Λ→ Λ′).

(6) For each Λ ∈ L , the orthogonal complement F⊥Λ of FΛ with respect to
the pairing ( · , · )Λ in (2.1.13) coincides with FΛ# as submodules of HΛ# .
Therefore, the isomorphism (2.1.14) canonically induces an isomorphism

(2.1.15) FΛ
∼→ (HΛ#/FΛ#)

∨
(1).
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By definition, we have the following:

Lemma 2.1.16. Suppose S is a scheme over Spec(OF0,v
), and suppose (H ,F , j)

is an L -set of polarized O⊗
Z

OS-modules as in Definition 2.1.12. Then the pullback

of (H ,F , j) to any scheme T over S is an L -set of polarized O⊗
Z

OT -modules.

For any (H ,F , j) as in Definition 2.1.12, we have compatible canonical decom-
positions

(2.1.17) HΛ
∼= ⊕

[τ ]∈Υ/∼
HΛ,[τ ]

and

(2.1.18) FΛ
∼= ⊕

[τ ]∈Υ/∼
FΛ,[τ ]

of O⊗
Z

OS-modules, as in (2.1.5), which induces a collection

(2.1.19) {(H [τ ] : Λ 7→HΛ,[τ ],F [τ ] : Λ 7→ FΛ,[τ ])}[τ ]∈Υ/∼

of functors from the category L to the category of O⊗
Z

OS-modules.

2.2. Multichains of isogenies. For each scheme S, let AV
(p)
O (S) denote the cat-

egory of abelian schemes A over S equipped with homomorphisms i : O⊗
Z
Z(p) →

EndS(A)⊗
Z

(Z(p))S , whose morphisms are generated by the homomorphisms and

all Z×(p)-isogenies (see [12, Def. 1.3.1.17] and [19, 6.3]) that are compatible with the

O⊗
Z
Z(p)-structures. As usual, for each abelian scheme A in AV

(p)
O (S), we consider

the dual abelian scheme A∨ as an object of AV
(p)
O (S), equipped with the homomor-

phism i∨ : O⊗
Z
Z(p) → EndS(A∨)⊗

Z
(Z(p))S defined by b 7→ i(b?)

∨
.

Definition 2.2.1. Given any multichain L as in Section 2.1, an L -set of

abelian schemes A over S is a functor A : L → AV
(p)
O (S) : Λ 7→ AΛ, equipped

with a Q×-isogeny fΛ,Λ′ : AΛ → AΛ′ for each inclusion Λ ⊂ Λ′, which is a
(Z×(p))S-multiple of an isogeny, compatible with the O⊗

Z
Z(p)-structures, satisfying

the following two conditions (see [19, Def. 6.5]):

(1) For each inclusion Λ ⊂ Λ′ in L , consider ker(fΛ,Λ′ [p
∞]) ⊂ AΛ[p∞] (where

fΛ,Λ′ [p
∞] : AΛ[p∞] → AΛ′ [p

∞] is defined because fΛ,Λ′ : AΛ → AΛ′ is a
(Z×(p))S-multiple of an isogeny), which admits an action of O⊗

Z
Zp induced

by the action of O⊗
Z
Z(p) on AΛ, and factorizes as a fiber product

ker(fΛ,Λ′ [p
∞]) ∼=

∏
[τ ]∈Υ/∼

(ker(fΛ,Λ′ [p
∞]))[τ ]

of finite locally free group schemes over S. On the other hand, the inclusion
Λ ⊂ Λ′ induces an inclusion Λ[τ ] ⊂ Λ′[τ ]. Then the condition is that

rkOS ((ker(fΛ,Λ′ [p
∞]))[τ ]) = [Λ′[τ ] : Λ[τ ]].
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(2) For each O⊗
Z
Z(p)-structure iΛ on AΛ, and for each unit b of O⊗

Z
Q which

normalizes O⊗
Z
Z(p), we define a twisted structure ibΛ by ibΛ(a) = iΛ(b−1ab)

for all a ∈ O⊗
Z
Z(p), and we denote abusively AbΛ for AΛ with such a twisted

O⊗
Z
Z(p)-structure, so that iΛ(b) induces a Q×-isogeny [b] : AbΛ → AΛ in

AV
(p)
O (S). Then the condition is that, for each b ∈ (O⊗

Z
Q)
× ∩(O⊗

Z
Z(p))

that normalizes O⊗
Z
Z(p), there are periodicity isomorphisms θbAΛ

: AbΛ
∼→

AbΛ such that [b] = fΛ,bΛ ◦ θbAΛ
.

Lemma 2.2.2. For any such A, to define a Q-homogeneous principal polarization
λ as in [19, Def. 6.6 and 6.7], it suffices to give the following (less canonical) data:

(1) A lattice Λ0 ∈ L such that Λ0 is contained in its dual lattice Λ#
0 (with

respect to 〈 · , · 〉⊗
Z
Qp). (Such a Λ0 ∈ L always exists, by scaling any

Λ ∈ L by a sufficiently large power of p.) We may and we shall just take
Λ0 to be the same Λ0 = L⊗

Z
Zp introduced above.

(2) A polarization λΛ0
: AΛ0

→ A∨Λ0
respecting the O⊗

Z
Z(p)-structures of AΛ0

and A∨Λ0
such that, for each Λ ⊂ Λ0, so that Λ0 ⊂ Λ#

0 ⊂ Λ#, we have

ker(fΛ0,Λ# [p∞]) = ker((f∨Λ,Λ0
◦ λΛ0

)[p∞])

in AΛ0 [p∞] (where fΛ0,Λ# [p∞] and (f∨Λ,Λ0
◦ λΛ0)[p∞] are defined because

fΛ0,Λ# and f∨Λ,Λ0
are (Z×(p))S-multiples of isogenies), so that

(2.2.3) f∨Λ,Λ0
◦ λΛ0

◦ f−1
Λ0,Λ# : AΛ# → A∨Λ

is a Z×(p)-isogeny (i.e., an isomorphism in the category AV
(p)
O (S)).

Remark 2.2.4. The notation system in Lemma 2.2.2 slightly differs from that in
[19, Def. 6.6 and 6.7]—we reserve the symbol λ for the polarizations, rather than
for the induced Z×(p)-isogenies such as AΛ → A∨Λ# .

Definition 2.2.5. Let Hp be an open compact subgroup of G(A∞,p). The mod-
uli problem Mnaive

Hp over Spec(OF0,v
) is defined as the category fibered in groupoids

over (Sch / Spec(OF0,v )) whose fiber over each scheme S is the groupoid Mnaive
Hp (S)

described as follows: The objects of Mnaive
Hp (S) are tuples (A, λ, i, αHp), where:

(1) A is an L -set of abelian schemes over S as in Definition 2.2.1.
(2) λ is a Q-homogeneous principal polarization as in [19, Def. 6.6 and 6.7],

which can be less canonically defined as in Lemma 2.2.2.
(3) i = {iΛ}Λ∈L is a collection of O⊗

Z
Q-structures such that each iΛ gives the

O⊗
Z
Z(p)-structure on AΛ (as an object of AV

(p)
O (S)), so that iΛ satisfies the

Rosati condition defined by the Q×-polarization f∨prΛ,Λ0
◦ λΛ0

◦ fprΛ,Λ0
(cf.

[12, Def. 1.3.3.1]) whenever prΛ ⊂ Λ0 in L for some r ∈ Z.
(4) For each Λ ∈ L , LieAΛ/S

with its O⊗
Z
Z(p)-module structure given by

iΛ satisfies the determinantal condition as in [12, Def. 1.3.4.1] given by
(L⊗

Z
R, 〈 · , · 〉, h0).
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(5) αHp is a rational level-Hp structure for (A, λ, i), which can be defined by a
rational level-H structure [α̂Λ0 ]Hp for (AΛ0 , λΛ0 , iΛ0) as in [12, Def. 1.3.8.7]
(with 2 = {p} there, ignoring the requirement of self-duality of pairings at
p). (Since the Q×-isogenies fΛ,Λ′ : AΛ → AΛ′ induces canonical isomor-

phisms VpAΛ,s̄
∼→ VpAΛ′,s̄ of π1(S, s̄)-modules at every geometric point s̄,

we might as well define αHp as a collection {[α̂Λ]Hp}Λ∈L whose members
are all canonically identified with each other.)

The morphisms of Mnaive
Hp (S) are the naive ones induced by isomorphisms in the

category AV
(p)
S (which are induced by Z×(p)-isogenies between abelian schemes).

Remark 2.2.6. The moduli problem Mnaive
Hp is the same as the ones in [19, Ch. 6]

and [17, Sec. 15], although the formulations are slightly different. It generalizes the
moduli problem Mrat

Hp in [12, Def. 1.4.2.1], or rather the one in [10, Sec. 5] (which was
in the good reduction case, without the consideration of multichains of isogenies).

Lemma 2.2.7. Let S be any scheme over Spec(OK), and let (A, λ, i, αHp) be an
object of Mnaive

Hp (S). Consider the assignments

H : Λ 7→HΛ := HdR
1 (AΛ/S)

and

F : Λ 7→ FΛ := Lie∨A∨Λ/S ,

and the morphism j : F → H whose value at each Λ ∈ L is the canonical

embedding jΛ : Lie∨A∨Λ/S → HdR
1 (AΛ/S) dual to the last morphism in the canonical

short exact sequence 0 → Lie∨AΛ/S
→ H1

dR(AΛ/S) → LieA∨Λ/S → 0 (see [2, Lem.

2.5.3]). Then (H ,F , j) is an L -set of polarized O⊗
Z

OS-modules as in Definition

2.1.12. (The level structure αHp is not used in the construction of (H ,F , j).)

Proof. For each Λ ∈ L , the desired perfect pairing as in (2.1.13) is induced by

the canonical perfect pairing HdR
1 (AΛ/S)×HdR

1 (A∨Λ/S) → OS(1) (see [4, 1.5]),

and by the canonical isomorphism HdR
1 (AΛ#/S)

∼→ HdR
1 (A∨Λ/S) induced by λ (or,

concretely, by (2.2.3)). The other conditions in Definition 2.1.12 then follow from
the various conditions in Definitions 2.2.1 and 2.2.5. �

Remark 2.2.8. Since HdR
1 (AΛ/S) is canonically isomorphic to the relative Lie al-

gebra of the universal vectorial extension of AΛ over S (see [16, Ch. 1, Sec. 4]), the
HΛ and FΛ in Lemma 2.2.7 are the MΛ and FΛ in [17, Sec. 15], respectively.

Choices 2.2.9. By the explanation in [19, 3.2], there exists a finite subset LJ =
{Λj}j∈J of L such that an O⊗

Z
Zp-lattice Λ in L⊗

Z
Qp belongs to L if and only if

there exist some integers (r[τ ])[τ ]∈Υ/∼ and j ∈ J such that Λ[τ ] = pr[τ]Λj,[τ ], for all
[τ ] ∈ Υ/ ∼, where Λ[τ ] and Λj,[τ ] are the direct factors of Λ and Λj, respectively, as
in (2.1.7). Take any r0 ∈ Z such that Λj ⊂ pr0Λ0 for all j ∈ J. Then there exists
a set {Lj}j∈J of O-lattices in L⊗

Z
Q such that Lj ⊂ pr0L, such that the canonical

morphism (pr0L)/Lj → (pr0L⊗
Z
Zp)/(Lj⊗

Z
Zp) is an isomorphism of O-modules,

and such that Lj⊗
Z
Zp = Λj in L⊗

Z
Qp, for all j ∈ J. Let gj = 1, and let 〈 · , · 〉j

be the restriction of p−2r0〈 · , · 〉 to Lj, for each j ∈ J. For each j ∈ J, since O
is maximal at p by Assumption 2.1.1, and since Lj⊗

Z
Ẑp = L⊗

Z
Ẑp, the lattice Lj
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satisfies [12, Cond. 1.4.3.10] as L does. Moreover, if Hp is any subgroup of G(Ẑp),
whose action stabilizes L⊗

Z
Ẑp by definition, then it also stabilizes Lj⊗

Z
Ẑp. From

now on, we shall fix the choices of J and LJ = {Λj}j∈J.

Choices 2.2.10. Let us takeH to be any open compact subgroup of G(A∞) such that

its image Hp under the canonical homomorphism G(Ẑ)→ G(Ẑp) is a neat (see [12,

Def. 1.4.1.8]) open compact subgroup of G(Ẑp), in which case H is also neat, and

such that the image Hp of H under the canonical homomorphism G(Ẑ) → G(Zp)
is contained in Up(L ) as in Definition 2.1.10 (see also Remark 2.1.11). Then the
collection {(1, Lj, 〈 · , · 〉j)}j∈J satisfies the requirements in [13, Sec. 2], and we can

define ~MH as in [13, Prop. 6.1] (by taking normalization over a product of minimal
compactifications of auxiliary good reduction integral models indexed by j).

Proposition 2.2.11. Let H and Hp be as in Choices 2.2.10. Then there is a
canonical finite étale morphism

(2.2.12) MH ⊗
F0

F0,v → Mnaive
Hp ⊗

Z
Q

over Spec(F0,v), which is an open and closed immersion when H is of the form
HpUp(L ), which extends to a canonical finite morphism

(2.2.13) ~MH ⊗
OF0,(p)

OF0,v
→ Mnaive

Hp

over Spec(OF0,v ).

Proof. Since the canonical morphism MH → MHpUp(L ) is finite étale, and since the

induced canonical morphism ~MH → ~MHpUp(L ) is finite (essentially by definition),
we may and we shall assume that H = HpUp(L ) in the remainder of the proof.

Consider the pullback to S := MH ⊗
F0

F0,v of the tautological tuple over MH,

which we abusively denote by (A, λ, i, αH). For each j ∈ J, we also have the
pullback to S of the tautological tuple over MHj

, via the canonical isomorphism

MH
∼→ MHj

given by [13, (2.1)], which we abusively denote by (Aj, λj, ij, αHj
).

By [13, Prop. 6.1], for each j ∈ J, the triple (Aj, λj, ij) over S extends to a triple

( ~Aj, ~λj,~ij) over ~S := ~MH ⊗
OF0,(p)

OF0,v . By [7, IV-2, 6.8.2 and 7.8.3], ~S is noetherian

normal, because ~MH is of finite type over Spec(OF0,(p)) and normal. By the proof
of [13, (2.1)] based on [12, Prop. 1.4.3.4 and Cor. 1.4.3.8], for any two j, j′ ∈ J, there
canonically exists a Q×-isogeny fj,j′ : Aj → Aj′ over S. By [12, Prop. 3.3.1.5] and the

noetherian normality of ~S, it (uniquely) extends to a Q×-isogeny ~fj,j′ : ~Aj → ~Aj′

over ~S. Hence, for any j ∈ J, with Λj = Lj⊗
Z
Zp in L⊗

Z
Qp, and for any r ∈ Z,

we can define AprΛj
to be the abelian scheme ~Aj over ~S. In general, for each

Λ ∈ L such that Λ[τ ] = pr[τ]Λj,[τ ] for some integers (r[τ ])[τ ]∈Υ/∼ and j ∈ J, for
all [τ ] ∈ Υ/ ∼, as in Choices 2.2.9, there exists some r ∈ Z such that r ≥ r[τ ],
for all [τ ] ∈ Υ/ ∼, in which case we have a finite locally free subgroup scheme

K :=
∏

[τ ]∈Υ/∼
( ~Aj[p

r−r[τ] ])[τ ] of ~Aj over ~S, and we can define AΛ to be the abelian

scheme ~Aj/K over ~S, with a canonically induced isogeny fprΛj,Λ : AprΛj
→ AΛ. For

any Λ′ ∈ L such that Λ ⊂ Λ′ and Λ′[τ ] = pr
′
[τ]Λj′,[τ ] for some integers (r′[τ ])[τ ]∈Υ/∼
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and j′ ∈ J, for all [τ ] ∈ Υ/ ∼, as in Choices 2.2.9, so that we have a similarly defined
isogeny fpr′Λj′ ,Λ

′ : Apr′Λj′
→ AΛ′ , we define fΛ,Λ′ : AΛ → AΛ′ to be the Q×-isogeny

given by the composition of fpr′Λj′ ,Λ
′ ◦ ~fj,j′ ◦ f−1

prΛj,Λ
with multiplication by pr−r

′
on

AΛ′ . At any geometric point s̄→ S, the level structures αHj and αHj′ compatibly

induce isomorphisms matching the submodules (Lj⊗
Z
Ẑp)×Λ and (Lj′ ⊗

Z
Ẑp)×Λ′ of

L⊗
Z
A∞ ∼= (L⊗

Z
A∞,p)× (L⊗

Z
Qp) with the submodules TAΛ,s̄ and TAΛ′,s̄ of VAs̄,

respectively, so that the conditions in Definition 2.2.1 holds over the open dense

subscheme S of ~S, and therefore also over the whole ~S. Thus, the assignments

above define an L -set A of abelian schemes over ~S, as in Definition 2.2.1.
For any j0 ∈ J, since Λj0 ⊂ pr0Λ0 (see Choices 2.2.9), we have an isogeny

fp−r0Λj0
,Λ0

: Ap−r0Λj0
= ~Aj0 → AΛ0 , as in the previous paragraph, and we can define

the Q×-polarization λΛ0 : AΛ0 → A∨Λ0
to be (f∨

p−r0Λj0
,Λ0

)−1 ◦~λj0 ◦f−1
p−r0Λj0

,Λ0
. Since

the level structure αHj0
matches the submodules (L⊗

Z
Ẑp)×Λ0 and (L#⊗

Z
Ẑp)×Λ#

0

of L⊗
Z
A∞ ∼= (L⊗

Z
A∞,p) × (L⊗

Z
Qp) with the submodules TAΛ0,s̄ and TA∨Λ0,s̄

of

VAs̄, respectively, for each geometric point s̄→ S, and since Λ0 ⊂ Λ#
0 (see Lemma

2.2.2), the Q×-isogeny λΛ0
defined above is a Z×(p)-multiple of an isogeny over S,

and hence is also a Z×(p)-multiple of an isogeny over ~S, again by [12, Prop. 3.3.1.5]

and the noetherian normality of ~S. By Lemma 2.2.2, we have also obtained a
Q-homogeneous principal polarization λ for A as in [19, Def. 6.6 and 6.7].

The O⊗
Z
Z(p)-structure i = {iΛ}Λ∈L for (A, λ) is compatibly induced by the

O-endomorphism structures ~ij for ( ~Aj, ~λj), for all j ∈ J.
For each Λ ∈ L , the O⊗

Z
O~S-module LieAΛ/~S

satisfies the determinantal con-

dition as in [12, Def. 1.3.4.1] defined by the data (L⊗
Z
R, 〈 · , · 〉, h0) because the

O⊗
Z

OS-modules LieAj/S
do, for all j ∈ J, over the open dense subscheme S of ~S,

and because the determinantal condition is a closed condition by definition.
Finally, by forgetting the factors at p, the level structures αHj

over S compat-
ibly induce the level structures αHpj away from p, realized by compatible collec-

tions of subschemes αj,n of HomS((Lj/nLj)S , Aj[n])×
S

HomS(((Z/nZ)(1))S ,µn,S)

finite étale over S, which are étale-locally-defined orbits of symplectic isomor-

phisms, for sufficiently divisible integers n prime to p. Since ~S is noetherian
and normal, they uniquely extend to compatible collections of subschemes ~αj,n

of Hom~S((Lj/nLj)~S ,
~Aj[n])×

~S

Hom~S(((Z/nZ)(1))~S ,µn,~S) finite étale over ~S, which

define level structures ~αHpj away from p and induce the desired level-Hp structure

αHp for (A, λ, i) (by the same argument as in [12, Constr. 1.3.8.4 and Rem. 1.3.8.9]).

Thus we have obtained a tuple (G,λ, i, αHp) over ~S which is parameterized by

Mnaive
Hp , which induces a morphism ~S → Mnaive

Hp as in (2.2.13). Since the construction

of the canonical finite morphism ~S →
∏
j∈J

MHj,aux
given by [13, (6.3)] only uses

level structures away from p, by rewriting the objects of Mnaive
Hp represented by

Z×(p)-isogeny classes in terms of isomorphism classes by the same argument as in
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the proof of [12, Prop. 1.4.3.3], it factors as a composition ~S → Mnaive
Hp →

∏
j∈J

MHj,aux
,

where the first morphism ~S → Mnaive
Hp is (2.2.13). This shows that (2.2.13) is also

finite.
By restriction to S, we obtain a finite morphism S → Mnaive

Hp ⊗Z
Q as in (2.2.12).

By comparing their universal properties, both sides of (2.2.12) admit compatible
morphisms to Sp := MHp ⊗

OF0,(p)

F0,v. By assumption, Up(L ) (see Definition 2.1.10)

is the subgroup of G(Qp) consisting of elements stabilizing all lattices Λ in L , which
is also the subgroup of G(Qp) consisting of elements stabilizing all the submodules
Lj of pr0L⊗

Z
Zp, for all j ∈ J (see Choices 2.2.9). Take any r1 ∈ Z such that

pr1L⊗
Z
Zp ⊂ Lj⊗

Z
Zp ⊂ pr0L⊗

Z
Zp for all j ∈ J. Since the morphism S → Sp is

the pullback of the canonical morphism MH → MHp ⊗
OF0,(p)

F0, which is defined by

forgetting the level structures at p, it parameterizes étale-locally-defined orbits of
symplectic isomorphisms of the form ((pr0L)/(pr1L))S

∼→ A[pr1−r0 ] over S, under
which the images of (Lj/(p

r1L⊗
Z
Zp))S determine some isogenies A → Aj, satisfy-

ing some additional conditions which are open and closed. On the other hand, the
morphism Mnaive

Hp ⊗Z
Q→ Sp parameterizes exactly such isogenies A→ Aj satisfying

some other closed conditions. Hence, by comparing the relative universal proper-
ties, the morphism (2.2.12) is an open and closed immersion (under the simplified
assumption that H = HpUp(L )), as desired. �

2.3. Splitting structures and their relative moduli.

Choices 2.3.1. For each equivalence class [τ ] ∈ Υ/ ∼, let us order the elements
τ[τ ],0, τ[τ ],1, . . . , τ[τ ],i, . . . in [τ ], where the index i satisfies 0 ≤ i < d[τ ] := [F[τ ] : Qp],
in a way such that any two elements with the same restriction to F+ are successive.
Let K be any finite extension of Qp in Q̄p that contains the composite of Fτ in Q̄p
for all τ ∈ Υ, namely the composite of Qp and the Galois closure of F in Q̄p. Then
F0,v ⊂ K (cf. the proof of [12, Cor. 1.2.5.7]). We shall fix the choices of K and of
the orderings τ[τ ],0, τ[τ ],1, . . . , τ[τ ],i, . . ., from now on.

Let {rτ}τ∈Υ be integers such that, for every b ∈ F , we have

(2.3.2) det(T − b · IdV ∨0 |V
∨
0 ) =

∏
τ∈Υ

(T − τ(b))rτ

in Q̄p[T ], as in [17, Sec. 14]. (As explained in [17, Sec. 14], for every τ ∈ Υ, the
F[τ ]-module L[τ ]⊗

Z
Q is necessarily free of rank rτ + rτ◦?.)

Definition 2.3.3. Suppose that S is a scheme over Spec(OK), and that (H ,F , j)
is an L -set of polarized O⊗

Z
OS-modules as in Definition 2.1.12, which induces

as in (2.1.19) the collection {(H [τ ],F [τ ])}[τ ]∈Υ/∼. A splitting structure for

(H ,F , j) is a collection

(2.3.4) {(F i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
,

where each F i
[τ ] : Λ 7→ F i

Λ,[τ ] is a functor from the category L to the category

of O⊗
Z

OS-modules, and where each ji
[τ ]

: F i
[τ ] → H [τ ] is an injective morphism,
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whose value at each Λ is denoted by jiΛ,[τ ] : F i
Λ,[τ ] → HΛ,[τ ], which satisfies the

following conditions:

(1) For each Λ ∈ L , let us identify F i
Λ,[τ ] with an O⊗

Z
OS-submodule of HΛ,[τ ],

which is its image under the injective morphism jiΛ,[τ ]. Then we require that

both F i
Λ,[τ ] and HΛ,[τ ]/F

i
Λ,[τ ] are finite locally free OS-modules.

(2) For each Λ ∈ L , we have

0 = F
d[τ]

Λ,[τ ] ⊂ F
d[τ]−1

Λ,[τ ] ⊂ · · · ⊂ F 1
Λ,[τ ] ⊂ F 0

Λ,[τ ] = FΛ,[τ ]

as O⊗
Z

OS-submodule of HΛ,[τ ], where FΛ,[τ ] is as in (2.1.18). For each

integer i satisfying 0 ≤ i < d[τ ], the quotient F i
Λ,[τ ]/F

i+1
Λ,[τ ] is a locally free

OS-module of rank rτ[τ],i
annihilated by b⊗ 1−1⊗ τ[τ ],i(b) for all b ∈ OF[τ]

.

(3) For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, each integer i satisfying 0 ≤ i < d[τ ],
and each unit b of O⊗

Z
Qp which normalizes O⊗

Z
Zp, there are periodicity

isomorphisms θb
F i

Λ,[τ]

: (F i
Λ,[τ ])

b ∼→ F i
bΛ,[τ ] of O⊗

Z
OS-modules satisfying

ji[τ ],bΛ◦θ
b
F i

Λ,[τ]

= θbHΛ,[τ]
◦jiΛ,[τ ] (where the superscript b on an O⊗

Z
OS-module

means conjugating the O⊗
Z
Zp-structure by b−1, as in Definition 2.1.12).

(4) For each Λ ∈ L and each integer i satisfying 0 ≤ i < d[τ ], let (F i
Λ,[τ ])

⊥

denote the orthogonal complement of F i
Λ,[τ ] in HΛ#,[τ ] with respect to the

perfect pairing HΛ,[τ ]×HΛ#,[τ ] → OS(1) induced by the perfect pairing

(2.1.13), which satisfies F i
Λ#,[τ ] ⊂ FΛ#,[τ ] = F⊥Λ,[τ ] ⊂ (F i

Λ,[τ ])
⊥. Then∏

0≤k<i

(b⊗ 1− 1⊗ τ[τ ],k(b))((F i
Λ,[τ ])

⊥) ⊂ F i
Λ#,[τ ]

for all b ∈ OF[τ]
, for every 0 < i ≤ d[τ ] divisible by [F[τ ] : F+

[τ ]].

Definition 2.3.5. Two splitting structures

{(F i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

and

{(F i,′
[τ ], j

i,′
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

as in Definition 2.3.3 are isomorphic to each other if there exist isomorphisms
ρi[τ ] : F i

[τ ]
∼→ F i,′

[τ ] such that ji,′
[τ ]
◦ ρi[τ ] = ji

[τ ]
for all [τ ] ∈ Υ/ ∼ and 0 ≤ i < d[τ ].

By definition, we have the following:

Lemma 2.3.6. Suppose that S is a scheme over Spec(OK), that (H ,F , j) is an
L -set of polarized O⊗

Z
OS-modules as in Definition 2.1.12, and that

{(F i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

is a splitting structure for (H ,F , j) as in Definition 2.3.3. Then the pullback of

{(F i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
to any scheme T over S is a splitting structure for the

pullback of (H ,F , j) to T (cf. Lemma 2.1.16).
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Proposition 2.3.7. Consider the (contravariant) functor

Spl(H ,F ,j)/S : (Sch /S)→ (Sets)

defined by assigning to each scheme T over S the set of isomorphism classes of split-
tings structures for the pullback of (H ,F , j) to T . Then the functor Spl(H ,F ,j)/S

is representable by a scheme over S, which we abusively denote by the same sym-
bols. This scheme is locally over S projective, with a relatively ample invertible
sheaf given by the relative Hodge invertible sheaf

(2.3.8) ω
µ

(H ,F ,j)/S := ⊗
Λ∈LJ

(
⊗

[τ ]∈Υ/∼

(
⊗

0≤i<d[τ]

(
∧top (F i

Λ,[τ ])
)⊗(µiΛ,[τ]−µ

i−1
Λ,[τ]

)
))

(with the convention that µ−1
Λ,[τ ] = 0), where LJ is the subset of L as in Choices

2.2.9, and where the tensor and exterior products are over OSpl(H ,F,j)/S
, for each

triply indexed collection of integers µ = {µiΛ,[τ ]}Λ∈LJ,[τ ]∈Υ/∼,0≤i<d[τ]
that is posi-

tive in the sense that µi−1
Λ,[τ ] > µiΛ,[τ ] for all Λ ∈ LJ, [τ ] ∈ Υ/ ∼, and 0 < i < d[τ ].

Proof. For simplicity, let us abusively denote by the same symbols the pullback of
(H ,F , j) to any scheme T over S. Let {(F i

[τ ], j
i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
be a splitting

structure for (H ,F , j). As in Definitions 2.1.12 and 2.3.3, let us identify FΛ,[τ ]

with a submodule of HΛ,[τ ] via jΛ,[τ ], and identify F i
Λ,[τ ] with a submodule of FΛ,[τ ]

via jiΛ,[τ ], for all Λ ∈ L , [τ ] ∈ Υ/ ∼, and 0 ≤ i < d[τ ]. Then the splitting structure

is uniquely determined by the filtrations defined by {F i
Λ,[τ ]}0≤i<d[τ]

on HΛ,[τ ], for

all Λ ∈ L and [τ ] ∈ Υ/ ∼, satisfying the additional conditions in Definition 2.3.3.
By the periodicity condition (3) in Definition 2.3.3, and by the same explanation
as in [19, 3.2], it suffices to consider the indices Λ ∈ LJ, as in Choices 2.2.9.

Locally over the base scheme S, the filtered pieces F i
Λ,[τ ] of HΛ,[τ ], which

are OS-module local direct summands by assumption, are parameterized by some
Grassmannians; and the inclusion relations F i+1

Λ,[τ ] ⊂ F i
Λ,[τ ] are given by the vanish-

ing of the canonical morphisms F i+1
Λ,[τ ] → FΛ,[τ ]/F

i
Λ,[τ ], which are closed conditions.

Similarly, the additional conditions in Definition 2.3.3, given by the containment
of images of certain morphisms, are also closed conditions. Hence, Spl(H ,F ,j)/S is

locally over S representable by a closed subscheme in the fiber product of Grassman-
nians triply indexed by the finitely many Λ ∈ LJ, [τ ] ∈ Υ/ ∼, and 0 < i < d[τ ]. As
explained in, for example, [6, Sec. 5.1.6], the Grassmannian triply indexed by Λ, [τ ],
and i has an ample invertible sheaf whose pullback to Spl(H ,F ,j)/S is tautologically

dual to ∧top (F i
Λ,[τ ]), the top exterior power of the locally free sheaf F i

Λ,[τ ] over

OSpl(H ,F,j)/S
. Since each such ∧top (F i

Λ,[τ ]) is globally defined over Spl(H ,F ,j)/S ,

and since ∧top (F 0
Λ,[τ ]) descends to S because F 0

Λ,[τ ] = FΛ,[τ ] does, the scheme

Spl(H ,F ,j)/S is locally over S projective, with a relatively ample invertible sheaf

ω
µ

(H ,F ,j)/S given by (2.3.8) for each positive µ. �

Lemma 2.3.9. Suppose that S is a scheme over Spec(K), and that (H ,F , j) is
an L -set of polarized O⊗

Z
OS-modules as in Definition 2.1.12. Then the structural

morphism Spl(H ,F ,j)/S → S is an isomorphism. Equivalently, for each scheme T

over S, there is up to isomorphism a unique splitting structure for the pullback of
(H ,F , j) to T . Moreover, the condition (4) in Definition 2.3.3 is redundant.
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Proof. Let us proceed as in the proof of Proposition 2.3.7, with the addition as-
sumption that T = Spec(R) is affine; it suffices to show that there uniquely exist
filtrations {F i

Λ,[τ ]}0≤i<d[τ]
on HΛ,[τ ] satisfying the additional conditions in Def-

inition 2.3.3, for all Λ ∈ L and [τ ] ∈ Υ/ ∼. Since F[τ ] ⊗
Qp
K ∼=

∏
τ∈[τ ]

Kτ =∏
0≤i<d[τ]

Kτ[τ],i
, where F acts on Kτ = K via the homomorphism τ : F → K,

we have canonical decompositions FΛ,[τ ]
∼= ⊕

0≤i<d[τ]

FΛ,τ[τ],i
and HΛ,[τ ]/FΛ,[τ ]

∼=

F∨Λ#,[τ ]
∼= ⊕

0≤i<d[τ]

F∨Λ#,τ[τ],i
of OF[τ]

⊗
Zp
R ∼= F[τ ] ⊗

Qp
R-modules, which are (up to

permutation) independent of the ordering τ[τ ],0, τ[τ ],1, . . . of elements in [τ ]. Hence,

the desired filtration {F i
Λ,[τ ]}0≤i<d[τ]

on FΛ,[τ ] uniquely exists and is given by

F i
Λ,[τ ]

∼= ⊕
i≤k<d[τ]

FΛ,τ[τ],k
, which satisfies (F i

Λ#,[τ ])
⊥/FΛ,[τ ]

∼= ⊕
0≤k<i

F∨Λ#,τ[τ],k
for

all 0 ≤ i < d[τ ]. In particular, the condition (4) in Definition 2.3.3 is redundant. �

Proposition 2.3.10. Consider also the functor Spl′(H ,F ,j)/S defined by assigning

to each scheme T over S the set of isomorphism classes of splittings structures for
the pullback of (H ,F , j) to T , but without the last condition (4). By the proof

of Proposition 2.3.7, Spl′(H ,F ,j)/S is representable by a scheme over S, which is

locally over S projective, and the canonical forgetful morphism

(2.3.11) Spl(H ,F ,j)/S → Spl′(H ,F ,j)/S

is a closed immersion, under which the invertible sheaf ω
µ

(H ,F ,j)/S defined over

Spl(H ,F ,j)/S (see (2.3.8)) is the pullback of a similarly defined invertible sheaf

ω
µ,′
(H ,F ,j)/S over Spl′(H ,F ,j)/S, which is also relatively ample over S, for each pos-

itive µ.
Suppose moreover that S⊗

Z
Q is reduced. By Lemma 2.3.9, the morphisms

(2.3.12) Spl(H ,F ,j)/S ⊗
Z
Q→ Spl′(H ,F ,j)/S ⊗

Z
Q→ S⊗

Z
Q

canonically induced by (2.3.11) are both isomorphisms. Therefore, if we denote

by Spl+(H ,F ,j)/S (resp. Spl′,+(H ,F ,j)/S) the normalization of the (necessarily reduced)

schematic closure of S⊗
Z
Q in Spl(H ,F ,j)/S (resp. Spl′(H ,F ,j)/S) via such canonical

isomorphisms, then (2.3.11) canonically induces an isomorphism

(2.3.13) Spl+(H ,F ,j)/S

∼→ Spl′,+(H ,F ,j)/S .

We shall denote the pullback of ω
µ

(H ,F ,j)/S (or ω
µ,′
(H ,F ,j)/S) to Spl+(H ,F ,j)/S by

ω
µ,+

(H ,F ,j)/S, which is relatively ample over S because the canonical normalization

morphism Spl+(H ,F ,j)/S → Spl(H ,F ,j)/S is finite, for each positive µ.

Proof. The statements are self-explanatory. �

2.4. Splitting models for PEL moduli. Let H and Hp be as in Choices 2.2.10.

Definition 2.4.1 (cf. [17, the end of Sec. 15]). Let Hp be an open compact subgroup

of G(A∞,p). The moduli problem Mspl
Hp over Spec(OK) is defined as the category
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fibered in groupoids over (Sch / Spec(OK)) whose fiber over each scheme S is the

groupoid Mspl
Hp(S) described as follows: The objects of Mspl

Hp(S) are tuples

(A, λ, i, αHp , {(F
i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
),

where (A, λ, i, αHp) is an object of Mnaive
Hp (S) as in Definition 2.2.5, and where

{(F i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
is a splitting structure (as in Definition 2.3.3) for

the L -set (H ,F , j) of polarized O⊗
Z

OS-modules associated with (A, λ, i) as in

Lemma 2.2.7. The morphisms of Mspl
Hp(S) are the naive ones induced by isomor-

phisms in the category AV
(p)
O (S) (given by Z×(p)-isogenies between abelian schemes

with O⊗
Z
Z(p)-structures) and by the isomorphisms between splitting structures as

in Definition 2.3.5.

Then Proposition 2.3.7 implies the following:

Lemma 2.4.2. The canonical morphism

(2.4.3) Mspl
Hp → Mnaive

Hp ⊗
OF0,v

OK

defined by forgetting splitting structures is relatively representable and projective.
If we abusively denote by (A, λ, i) the pullback to Mnaive

Hp ⊗
OF0,v

OK of (part of) the

tautological object over Mnaive
Hp , and denote by (H ,F , j) the associated L -set of po-

larized O⊗
Z

OS-modules as in Lemma 2.2.7, then we have a canonical isomorphism

(2.4.4) Mspl
Hp

∼→ Spl(H ,F ,j)/(Mnaive
Hp ⊗

OF0,v

OK) .

Definition 2.4.5. Let (A, λ, i) abusively denote the pullback to ~MH ⊗
OF0,(p)

OK of

the tautological object over Mnaive
Hp under the morphism (2.2.13), and let (H ,F , j)

denote the associated L -set of polarized O⊗
Z

OS-modules as in Lemma 2.2.7. Then

we define (as in Proposition 2.3.10)

(2.4.6) ~Mspl
H := Spl+

(H ,F ,j)/(~MH ⊗
OF0,(p)

OK)
.

Lemma 2.4.7. The canonical morphism ~Mspl
H ⊗Z

Q → ~MH ⊗
OF0,(p)

K ∼= MH ⊗
F0

K

induced by the structural morphism ~Mspl
H → ~MH ⊗

OF0,(p)

OK is an isomorphism.

Proof. This follows from Lemma 2.3.9. �

Corollary 2.4.8. Let Mloc
Hp denote the schematic image of the canonical morphism

Mspl
Hp → Mnaive

Hp induced by (2.4.3). Then the morphism (2.2.13) factors through the
structural closed immersion Mloc

Hp ↪→ Mnaive
Hp and induces a canonical finite morphism

(2.4.9) ~MH ⊗
OF0,(p)

OF0,v
→ Mloc

Hp

over Spec(OF0,v
), extending the finite étale morphism (2.2.12) over Spec(F0,v). If

(2.2.12) is an open and closed immersion, and if Mloc
Hp is known to be flat over

Spec(OF0,v
) and normal, then (2.4.9) is an open and closed immersion.
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Corollary 2.4.10. Suppose that the morphism (2.4.9) induced by (2.2.13) is an

open and closed immersion, and that Mspl
Hp is known to be flat over Spec(OK) and

normal. Then we have a canonical isomorphism

(2.4.11) ~Mspl
H
∼→ (~MH ⊗

OF0,(p)

OF0,v
) ×
Mnaive
Hp

Mspl
Hp ,

inducing an open and closed immersion

(2.4.12) ~Mspl
H ↪→ Mspl

Hp

compatible with (2.4.9). If (2.4.9) is an isomorphism, then so is (2.4.12).

Remark 2.4.13. To summarize, we have a commutative diagram:

(2.4.14) MH ⊗
F0

K �
�

//

����

~Mspl
H

//

����

Mspl
Hp

����

MH ⊗
F0

F0,v
� � // ~MH ⊗

OF0,(p)

OF0,v
// Mloc
Hp
� � // Mnaive

Hp

By Proposition 2.3.7 and Lemma 2.4.2, and by their definitions, the vertical mor-
phisms are all projective and surjective—the left-most one is finite étale (and is
just the base change morphism). The two horizontal arrows at the left-hand side
are open immersions with schematically dense images, by definition. By Corollaries
2.4.8 and 2.4.10, if (2.2.12) is an open and closed immersion (which is the case when

H = HpUp(L ), by Proposition 2.2.11), and if Mloc
Hp and Mspl

Hp are known to be flat
over Spec(OF0,v

) and Spec(OK), respectively, and are both known to be normal,
then the horizontal arrows between the two middle columns are open and closed
immersions. By definition, the bottom-right arrow is a closed immersion.

Remark 2.4.15. The Mspl
Hp , Mloc

Hp , and Mnaive
Hp in (2.4.14) are what were denoted A spl

Cp ,
A loc
Cp , and A naive

Cp in [17, (15.4)], respectively, where the latter three objects have
the same singularities as the splitting model M , the local model M loc, and the
naive local model Mnaive, respectively, defined and studied there. While they will
play no role in the remaining constructions of this article, they are important for
practical applications of the results in this article.

Remark 2.4.16. The normality of Mloc
Hp and Mspl

Hp , and their flatness over Spec(OF0,v )
and Spec(OK), respectively, are known in many cases. See, for example, [17].

Proposition 2.4.17 (cf. [13, Prop. 13.1 and 13.15]). Suppose that H and H′ are

two open compact subgroups of G(Ẑ) such that their images under the canonical

homomorphism G(Ẑ) → G(Zp) are contained in Up(L ) as in Definition 2.1.10;
that g ∈ G(A∞) is an element such that the multiplication by the image gp of g
under the canonical homomorphism G(A∞)→ G(Qp) preserves the multichain L ;
and that H ⊂ gH′g−1. Then we have a canonical projective morphism

(2.4.18) ~[g] : ~MH → ~MH′

extending the canonical finite morphism MH
∼→ Mg−1Hg → MH′ defined by g, whose

pullback from OF0,(p) to OK lifts to a canonical projective morphism

(2.4.19) ~[g]
spl

: ~Mspl
H → ~Mspl

H′ .
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Proof. In this proof, as in [13, Sec. 13] and [15, Sec. 7], for the sake of clarity, let us
temporarily (and abusively) denote all objects constructed using {(1, Lj, 〈 · , · 〉j)}j∈J

(see Choices 2.2.9 and 2.2.10) by an additional subscript J. Since multiplication by
gp preserves the multichain L , by [13, (2.1)] (or rather by its proof based on [12,

Prop. 1.4.3.4 and Cor. 1.4.3.8]), the tautological objects over ~MH,{0,1}× J (as in [13,

Ex. 13.14]) differ from those over ~MH,J by repeating some of the latter by Hecke
twists by the image gp of g under the canonical homomorphism G(A∞)→ G(A∞,p),
realized by Z×(p)-isogenies, up to shifting the indices. Therefore, we have ~MH,J ∼=
~MH,{0,1}× J

∼= ~Mg−1Hg,J, and the composition of these with the canonical morphism
~Mg−1Hg,J → ~MH′,J gives the desired (2.4.18). Moreover, the pullback under (2.4.18)

of the tautological L -set of polarized O⊗
Z

OS-modules over ~MH′,J can be identified

(up to shifting the indices) with the one over ~MH,J via an isomorphism canonically
induced by g, and so (2.4.18) induces the desired (2.4.19), because the two sides of
(2.4.19) are the respective normalizations of relative moduli for splitting structures
over the base changes of the two sides of (2.4.18) from OF0,(p) to OK (and by
Zariski’s main theorem; see [7, III-1, 4.4.3, 4.4.11]). �

3. Toroidal compactifications

3.1. Splitting models for toroidal compactifications. Let H be as in Choices

2.2.10, and let ~MH ↪→ ~Mtor
H,Σ be any toroidal compactification as in either [13,

(7.10)] or [15, Thm. 6.1]. Let (A, λ, i) abusively denote the pullback to ~MH of the
tautological object over Mnaive

Hp , under the morphism (2.2.13), and let (H ,F , j)
denote the associated L -set of polarized O⊗

Z
O~MH

-modules as in Lemma 2.2.7.

Lemma 3.1.1. For each Λ ∈ L , the abelian scheme AΛ (resp. A∨Λ) over ~MH
(necessarily uniquely) extends to a semi-abelian scheme Aext

Λ (resp. Aext,∨
Λ ) over

~Mtor
H,Σ (cf. [12, Thm. 3.4.3.2 and Prop. 3.3.1.5]). Consequently, by [12, Prop. 3.3.1.5],

for each inclusion Λ ⊂ Λ′ in L , the Q×-isogeny fΛ,Λ′ : AΛ → AΛ′ over ~MH, which
is a Z×(p)-multiple of an isogeny, (necessarily uniquely) extends to a Q×-isogeny

f ext
Λ,Λ′ : Aext

Λ → Aext
Λ′ over ~Mtor

H,Σ, which is also a Z×(p)-multiple of an isogeny.

Proof. By [12, Lem. 3.4.3.1 and Prop. 3.3.1.5], any Z×(p)-isogeny of abelian schemes

over MH (uniquely) extends to a Z×(p)-isogeny of semi-abelian schemes over ~Mtor
H,Σ as

soon as the source extends. Hence, the assertion of the lemma does not depend on
the choice of AΛ in its Z×(p)-isogeny class. Therefore, as in the proof of Proposition

2.2.11, for each Λ ∈ L such that Λ[τ ] = pr[τ]Λj,[τ ] for some integers (r[τ ])[τ ]∈Υ/∼
and j ∈ J, for all [τ ] ∈ Υ/ ∼, as in Choices 2.2.9, and for r ∈ Z such that r ≥ r[τ ], for

all [τ ] ∈ Υ/ ∼, we can take AΛ to be ~Aj/K, where K =
∏

[τ ]∈Υ/∼
( ~Aj[p

r−r[τ] ])[τ ]. Since

~Aj extends to a semi-abelian scheme ~Aext
j with additional structures over ~Mtor

H,Σ by

[13, Thm. 11.2] and [15, Thm. 6.1], K also extends to the closed subgroup scheme

Kext :=
∏

[τ ]∈Υ/∼
( ~Aext

j [pr−r[τ] ])[τ ] of ~Aext
j , which is quasi-finite and flat over ~Mtor

H,Σ.

Thus, we can define Aext
Λ to be ~Aext

j /Kext, by [12, Lem. 3.4.3.1, Prop. 3.3.1.5, and

the same local argument as in the proof of Thm. 3.4.3.2]. �
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Proposition 3.1.2. The L -set (H ,F , j) of polarized O⊗
Z

O~MH
-modules intro-

duced above (necessarily uniquely) extends to an L -set (H ext,F ext, jext) of polar-

ized O⊗
Z

O~Mtor
H,Σ

-modules inducing compatible isomorphisms F ext
Λ
∼= Lie∨

Aext,∨
Λ /~Mtor

H,Σ

and H ext
Λ /F ext

Λ
∼= LieAext

Λ /~Mtor
H,Σ

(of O⊗
Z

O~Mtor
H,Σ

-modules) extending the canonical

isomorphisms FΛ
∼= Lie∨

A∨Λ/
~MH

and HΛ/FΛ
∼= LieAΛ/~MH

(of O⊗
Z

O~MH
-modules),

respectively, for all Λ ∈ L .

Proof. In the proof of Lemma 3.1.1, the quotient ~Aext
j → Aext

Λ = ~Aext
j /Kext,

where Kext =
∏

[τ ]∈Υ/∼
( ~Aext

j [pr−r[τ] ])[τ ], induces morphisms (Lie∨~Aext,∨
j /~Mtor

H,Σ
)[τ ] →

Lie∨
Aext,∨

Λ /~Mtor
H,Σ

and Lie ~Aext
j /~Mtor

H,Σ
→ LieAext

Λ /~Mtor
H,Σ

that can be canonically identified

with multiplication by pr−r[τ] on (Lie∨~Aext,∨
j /~Mtor

H,Σ
)[τ ] and Lie ~Aext

j /~Mtor
H,Σ

, respectively,

for each [τ ] ∈ Υ/ ∼. Thus, by decomposing everything into factors indexed by
[τ ] ∈ Υ/ ∼ as in Section 2.1, the proposition follows from [15, Prop. 7.15] (which
was based on a reduction first to the case where Σ is induced by auxiliary choices
as in [13, Sec. 7], and then to the good reduction case as in [11, Prop. 6.9]). �

Definition 3.1.3. Let (H ext,F ext, jext) be as in Proposition 3.1.2. Then we define

(3.1.4) ~Mspl,tor
H,Σ := Spl+

(H ext,Fext,jext)/(~Mtor
H,Σ ⊗

OF0,(p)

OK)
,

where Spl+
(H ext,Fext,jext)/(~Mtor

H,Σ ⊗
OF0,(p)

OK)
is defined as in Proposition 2.3.10.

By comparing the universal properties (see Definitions 2.4.5 and 3.1.3), we have
a canonical morphism

(3.1.5) Spl(H ,F ,j)/(~MH ⊗
OF0,(p)

OK) ↪→ Spl(H ext,Fext,jext)/(~Mtor
H,Σ ⊗

OF0,(p)

OK)

over Spec(OK). By Proposition 2.3.10, (3.1.5) induces a canonical morphism

(3.1.6) ~Mspl
H ↪→ ~Mspl,tor

H,Σ

over Spec(OK), which covers the canonical morphism ~MH ↪→ ~Mtor
H,Σ (see [13, (7.10)]

and [15, Thm. 6.1]).

Remark 3.1.7. We would like to view ~Mspl,tor
H,Σ as the toroidal compactification of

~Mspl
H associated with the compatible collection Σ of cone decompositions. However,

to justify this, we need to show that it satisfies some reasonable properties as in
[12, Thm. 6.4.1.1] (and in the corresponding theorems in [13] and [15]).

Definition 3.1.8. For each (locally closed) stratum ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ as in [13,

Thm. 9.13] and [15, Thm. 6.1(3)], we denote by ~Zspl
[(ΦH,δH,σ)] the reduced subscheme

of the preimage of ~Z[(ΦH,δH,σ)] under the canonical morphism ~Mspl,tor
H,Σ → ~Mtor

H,Σ.

Then ~Mspl,tor
H,Σ is a disjoint union of locally closed subschemes

(3.1.9) ~Mspl,tor
H,Σ =

∐
[(ΦH,δH,σ)]

~Zspl
[(ΦH,δH,σ)],
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as in [13, Thm. 9.13] and [15, Thm. 6.1(3)], except that we still have to show that
it is a stratification. (As in [12, Thm. 6.4.1.1(2)], the notation “

∐
” only means a

set-theoretic disjoint union. The algebro-geometric structure is still that of ~Mspl,tor
H,Σ .)

Our next goal will be to understand ~Zspl
[(ΦH,δH,σ)] and the formal completion

(~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

of ~Mspl,tor
H,Σ along ~Zspl

[(ΦH,δH,σ)], for each [(ΦH, δH, σ)]. (As in

[12, Thm. 6.4.1.1(5)], to form the formal completion along a given locally closed
subscheme, we first remove the complement of it in its closure in the total space,
and then form the formal completion of the remaining space along this stratum.)

3.2. Toroidal boundary charts and formal completions. Suppose we have a
representative (ΦH, δH, σ) of [(ΦH, δH, σ)] as in [12, Def. 6.2.6.1], where the under-
lying (ZH,ΦH, δH) is a representative of cusp label for MH as in [12, Def. 5.4.2.4]
(where ZH is often suppressed in the notation, by [12, Conv. 5.4.2.5]), and where

σ ∈ ΣΦH ∈ Σ is a cone such that σ ⊂ P+
ΦH

. Consider the schemes ~MZH
H , ~MΦH

H ,
~CΦH,δH , ~ΞΦH,δH , ~ΞΦH,δH(σ), and ~ΞΦH,δH,σ, and the formal scheme ~XΦH,δH,σ, de-
fined as in [13, Prop. 7.4 and Sec. 8] and [15, Constr. 4.5].

Definition 3.2.1. As in Definition 2.4.5, let us set

(3.2.2) ~MZH,spl
H := Spl+

( ]H , ]F , ]j)/(~M
ZH
H ⊗
OF0,(p)

OK)
,

where we denote by ( ]H , ]F , ]j) the analogue of (H ,F , j) associated with the

tautological tuple (B, λB , iB) over ~MZH
H , as in Lemma 2.2.7, and abusively denote

by the same symbols its pullbacks to schemes and formal schemes over ~MZH
H , such as

~MZH
H ⊗
OF0,(p)

OK . (Note that the splitting structures here are defined by Lie algebra

conditions and rank sizes adjusted to the tautological tuple (B, λB , iB) over ~MZH
H ,

using the boundary PEL-type O-lattice (LZH , 〈 · , · 〉ZH , hZH0 ) as in [12, Def. 5.4.2.6].)

Definition 3.2.3. With the same setting as above, we define ~MΦH,spl
H , ~Cspl

ΦH,δH
,

~Ξspl
ΦH,δH

, ~Ξspl
ΦH,δH

(σ), ~Ξspl
ΦH,δH,σ

, and ~Xspl
ΦH,δH,σ

to be the respective normalizations of

the fiber products of ~MΦH
H , ~CΦH,δH , ~ΞΦH,δH , ~ΞΦH,δH(σ), ~ΞΦH,δH,σ, and ~XΦH,δH,σ

with ~MZH,spl
H over ~MZH

H , via the canonical structural morphisms.

Lemma 3.2.4. We have the following canonical isomorphisms:

(3.2.5) ~MΦH,spl
H

∼= Spl+
( ]H , ]F , ]j)/(~M

ΦH
H ⊗
OF0,(p)

OK)
,

(3.2.6) ~Cspl
ΦH,δH

∼= Spl+
( ]H , ]F , ]j)/(~CΦH,δH ⊗

OF0,(p)

OK)
,

(3.2.7) ~Ξspl
ΦH,δH

∼= Spl+
( ]H , ]F , ]j)/(~ΞΦH,δH ⊗

OF0,(p)

OK)
,

(3.2.8) ~Ξspl
ΦH,δH

(σ) ∼= Spl+
( ]H , ]F , ]j)/(~ΞΦH,δH (σ) ⊗

OF0,(p)

OK)
,
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(3.2.9) ~Ξspl
ΦH,δH,σ

∼= Spl+
( ]H , ]F , ]j)/(~ΞΦH,δH,σ ⊗

OF0,(p)

OK)
,

and

(3.2.10) ~Xspl
ΦH,δH,σ

∼= Spl+
( ]H , ]F , ]j)/(~XΦH,δH,σ ⊗

OF0,(p)

OK)
,

where

Spl+
( ]H , ]F , ]j)/(~XΦH,δH,σ ⊗

OF0,(p)

OK)

is a relative scheme over ~XΦH,δH,σ ⊗
OF0,(p)

OK (see [8]), which compatibly assigns

to affine open formal subschemes Spf(R) of ~XΦH,δH,σ ⊗
OF0,(p)

OK the corresponding

schemes Spl+( ]H , ]F , ]j)/ Spec(R) over Spec(R).

Proof. Since Spl
( ]H , ]F , ]j)/(~M

ZH
H ⊗
OF0,(p)

OK)
represents the functor assigning to each

scheme the isomorphism classes of splitting structures for pullbacks of ( ]H , ]F , ]j)
(see Proposition 2.3.7), and since the various objects on the right-hand sides are
defined by taking normalizations (see Proposition 2.3.10), these follow from the
definitions of the various objects on the left-hand sides (see Definition 3.2.3). �

Proposition 3.2.11 (cf. [12, Prop. 6.2.4.7 and (6.2.4.8); see also the errata],
[13, Prop. 8.7, 8.14, and 8.20], and [15, Constr. 4.5]). The canonical morphism
~Ξspl

ΦH,δH
→ ~Cspl

ΦH,δH
is a torsor under the split torus EΦH with character group SΦH ,

the canonical morphism ~Ξspl
ΦH,δH,σ

→ ~Cspl
ΦH,δH

is a torsor under the split torus EΦH,σ

with character group σ⊥ := {` ∈ SΦH : 〈`, y〉 = 0 ∀y ∈ σ} (see [12, Def. 6.1.2.5]),

and the canonical morphism ~Ξspl
ΦH,δH

→ ~Ξspl
ΦH,δH

(σ) over ~Cspl
ΦH,δH

is an open immer-
sion defining an affine toroidal embedding associated with the cone σ ∈ ΣΦH ∈ Σ.
Moreover, the canonical morphisms

(3.2.12) ~Ξspl
ΦH,δH

→ ~ΞΦH,δH ×
~CΦH,δH

~Cspl
ΦH,δH

,

(3.2.13) ~Ξspl
ΦH,δH

(σ)→ ~ΞΦH,δH(σ) ×
~CΦH,δH

~Cspl
ΦH,δH

,

and

(3.2.14) ~Ξspl
ΦH,δH,σ

→ ~ΞΦH,δH,σ ×
~CΦH,δH

~Cspl
ΦH,δH

are EΦH-equivariant isomorphisms over ~Cspl
ΦH,δH

, which are compatible with each

other. Consequently, the pullback of [13, (8.10)] gives a canonical homomorphism

(3.2.15) SΦH → Pic(~Cspl
ΦH,δH

) : ` 7→ ~Ψspl
ΦH,δH

(`),

giving for each ` ∈ SΦH an invertible sheaf ~Ψspl
ΦH,δH

(`) over ~Cspl
ΦH,δH

(up to isomor-

phism), together with isomorphisms

~∆spl,∗
ΦH,δH,`,`′

: ~Ψspl
ΦH,δH

(`) ⊗
O~C

spl
ΦH,δH

~Ψspl
ΦH,δH

(`′)
∼→ ~Ψspl

ΦH,δH
(`+ `′)
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for all `, `′ ∈ SΦH , satisfying the necessary compatibilities with each other making

⊕
`∈SΦH

~Ψspl
ΦH,δH

(`) an O~Cspl
ΦH,δH

-algebra, such that

(3.2.16) ~Ξspl
ΦH,δH

∼= Spec
O~C

spl
ΦH,δH

(
⊕

`∈SΦH

~Ψspl
ΦH,δH

(`)
)
,

(3.2.17) ~Ξspl
ΦH,δH

(σ) ∼= Spec
O~C

spl
ΦH,δH

(
⊕

`∈σ∨
~Ψspl

ΦH,δH
(`)
)
,

where σ∨ := {` ∈ SΦH : 〈`, y〉 ≥ 0 ∀y ∈ σ} as usual (see [12, Def. 6.1.1.8]), and

(3.2.18) ~Ξspl
ΦH,δH,σ

∼= Spec
O~C

spl
ΦH,δH

(
⊕

`∈σ⊥
~Ψspl

ΦH,δH
(`)
)
.

Proof. These follow from [13, Prop. 8.7, 8.14, and 8.20] and the arguments there,

because the pullback of the EΦH -torsor ~ΞΦH,δH → ~CΦH,δH under ~Cspl
ΦH,δH

→ ~CΦH,δH

is necessarily normal, and hence is isomorphic to ~Ξspl
ΦH,δH

via the canonical morphism

(3.2.12), not just as a scheme but also as an EΦH -torsor. �

Remark 3.2.19 (cf. Remark 2.4.13). To summarize, we have a commutative diagram

(3.2.20) ΞΦH,δH,σ ⊗
F0

K �
�

//

� _

��

~Ξspl
ΦH,δH,σ

// //
� _

��

~ΞΦH,δH,σ ⊗
OF0,(p)

OK
� _

��

XΦH,δH,σ ⊗
F0

K �
�

//

��

~Xspl
ΦH,δH,σ

// //

��

~XΦH,δH,σ ⊗
OF0,(p)

OK

��

ΞΦH,δH(σ)⊗
F0

K �
�

// ~Ξspl
ΦH,δH

(σ) // // ~ΞΦH,δH(σ) ⊗
OF0,(p)

OK

ΞΦH,δH ⊗
F0

K
� � //

����

?�

OO

~Ξspl
ΦH,δH

// //

����

?�

OO

~ΞΦH,δH ⊗
OF0,(p)

OK

����

?�

OO

CΦH,δH ⊗
F0

K �
�

//

����

~Cspl
ΦH,δH

// //

����

~CΦH,δH ⊗
OF0,(p)

OK

����

MΦH
H ⊗

F0

K �
�

//

����

~MΦH,spl
H

// //

����

~MΦH
H ⊗
OF0,(p)

OK

����

MZH
H ⊗

F0

K
� � // ~MZH,spl

H
// // ~MZH
H ⊗
OF0,(p)

OK
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in which all squares not involving ~MΦH
H ⊗
OF0,(p)

OK and ~MZH
H ⊗
OF0,(p)

OK are Cartesian.

The horizontal arrows at the left-hand sides are open immersions with schematically
dense images, because the bottom one is so by definition. The horizontal arrows at
the right-hand sides are projective (which are the Spl+ over the respective bases,
as in Proposition 2.3.10) and surjective, whose pre-composition with the horizon-
tal arrows at the left-hand sides in the same rows are still open immersions with
schematically dense images. The (vertical) arrows between the top two rows are
closed immersions, while the arrows between the second and third rows are formal
completions. The arrows between the third and fourth rows are given by affine
toroidal embeddings associated with the cone σ. The arrows between the fourth
and fifth rows are (smooth) torsors under the same split torus EΦH . The arrows
between the fifth and sixth rows are all proper and surjective with the left-most one
being an abelian scheme torsor. The arrows between the bottom two rows are all
finite and surjective with the left-most one being étale. The commutative diagram
can be further expanded by adding vertical arrows from the first row to the fifth
row, which are (smooth) torsors under the same split torus EΦH,σ.

By [13, Thm. 10.13] and [15, Thm. 6.1(4)], there is a canonical isomorphism

(3.2.21) (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

∼→ ~XΦH,δH,σ.

Lemma 3.2.22. For each Λ ∈ L , there exist split tori TΛ and T∨Λ , with character
groups some O-lattices XΛ and YΛ, such that we have short exact sequences

(3.2.23) 1→ TΛ → Aext
Λ → BΛ → 1

and

(3.2.24) 1→ T∨Λ → Aext,∨
Λ → B∨Λ → 1

of (relative) group schemes over (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

, where Aext
Λ and Aext,∨

Λ abusively

denote (by the same symbols) the pullbacks to (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

of the semi-abelian

schemes Aext
Λ and Aext,∨

Λ over ~Mtor
H,Σ, respectively. Moreover, we have a commutative

diagram

(3.2.25) 1 // TΛ
//

o
��

Aext
Λ

//

o
��

BΛ
//

o
��

1

1 // T∨Λ#
// Aext,∨

Λ#
// B∨Λ#

// 1

in which the left-most vertical arrow is dual to a canonical isomorphism YΛ#
∼→ XΛ;

the middle vertical arrow is the pullback to (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

of the unique extension

over the noetherian normal scheme ~Mtor
H,Σ of the isomorphism AΛ

∼→ A∨Λ# over ~MH

(see [12, Prop. 3.3.1.5]), which is part of the data of (A, λ, i) over ~MH; and where the

right-most vertical arrow is the pullback to (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

of the isomorphism

BΛ
∼→ B∨Λ# over ~MZH

H , which is part of the data of (B, λB , iB) over ~MZH
H .

Proof. First consider the special case where Λ = prLj⊗
Z
Zp, for some r ∈ Z and

j ∈ J. By the construction of Aext
Λ = ~Aext

j and Aext,∨
Λ = ~Aext,∨

j over ~Mtor
H,Σ, which
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was based on [13, Lem. 11.1 and Thm. 11.2] and [15, Thm. 6.1] (or more precisely

[15, Lem. 5.19 and Prop. 5.20]), their pullbacks to (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

are isomorphic

to the pullbacks of the Mumford families ♥ ~Gj and ♥ ~G∨j over ~XΦH,δH,σ (see [12,

Def. 6.2.5.28] and [13, (8.29)]), respectively. Then it follows from the constructions
of the Mumford families there that we have canonical short exact sequences

(3.2.26) 1→ Tj → ♥ ~Gj → Bj → 1

and

(3.2.27) 1→ T∨j → ♥ ~G∨j → B∨j → 1

for the split tori Tj and T∨j with character groups Xj and Yj, respectively, where Xj

and Yj are part of the torus argument ΦHj
= (Xj, Yj, φj, ϕ−2,Hj

, ϕ0,Hj
) associated

with ΦH as in [13, (3.8)]. In this special case, Tj, T
∨
j , (3.2.26), and (3.2.27) give

up to (compatible) Z×(p)-isogenies the TΛ, T∨Λ , (3.2.23), and (3.2.24) we want. For

general Λ ∈ L , as in the proof of Lemma 3.1.1, we have an isogeny ~Aext
j → Aext

Λ

of semi-abelian schemes over ~Mtor
H,Σ, for some j ∈ J, which induces isogenies of

Raynaud extensions and of dual Raynaud extensions, by the constructions in [12,
Sec. 3.3.3, 3.4.1, and 3.4.4], which give the desired TΛ, T∨Λ , (3.2.23), and (3.2.24)

over (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

. As for the commutative diagram (3.2.25), it suffices to

note that, in the proof of Proposition 2.2.11, the polarization λΛ0
: AΛ0

→ A∨Λ0

in Lemma 2.2.2 is defined to be (f∨
p−r0Λj0

,Λ0
)−1 ◦ ~λj0 ◦ f−1

p−r0Λj0
,Λ0

over ~MH, for

any j0 ∈ L (satisfying Λj0 ⊂ pr0Λ0 as in Choices 2.2.9), which (uniquely) extends

to (f ext,∨
p−r0Λj0 ,Λ0

)−1 ◦ ~λext
j0
◦ (f ext

p−r0Λj0
,Λ0

)−1 (with the superscript “ext” denoting the

unique extensions of homomorphisms of semi-abelian schemes) over the noetherian

normal scheme ~Mtor
H,Σ (by [12, Prop. 3.3.1.5]), and we have a commutative diagram

(3.2.28) 1 // Tj0
//

λTj0

��

♥ ~Gj0
//

♥~λj0

��

Bj0
//

λBj0

��

1

1 // T∨j0
// ♥ ~G∨j0

// B∨j0
// 1

canonically associated with the Mumford family (♥ ~Gj0 ,
♥~λj0 ,

♥~ij0 ,
♥~αHj0

), which

induces (3.2.25) for all other Λ ∈ L by using the Q×-isogenies f ext
Λ′,Λ′′ : Aext

Λ′ → Aext
Λ′′

associated with all the inclusions Λ′ ⊂ Λ′′ in L (see Lemma 3.1.1). �

3.3. Comparison of formal completions.

Theorem 3.3.1. There is a canonical isomorphism

(3.3.2) (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

∼→ ~Xspl
ΦH,δH,σ

,

where (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

is defined as in the end of Section 3.1, covering the

canonical isomorphism (3.2.21). Then (3.3.2) induces a canonical isomorphism

(3.3.3) ~Zspl
[(ΦH,δH,σ)]

∼→ ~Ξspl
ΦH,δH,σ

covering the isomorphism ~Z[(ΦH,δH,σ)]
∼→ ~ΞΦH,δH,σ (see [13, Cor. 10.15] and [15,

Thm. 6.1(5)]).
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Remark 3.3.4. Since both sides of (3.3.2) are separated and have schematically
dense characteristic zero fibers isomorphic to those of (3.2.21) by Lemma 2.3.9, the
condition that (3.3.2) covers (3.2.21) forces (3.3.2) to be unique if it exists. Any
isomorphism as in (3.3.2) then canonically induces an isomorphism as in (3.3.3).

The remainder of this section will be devoted to the proof of Theorem 3.3.1. By
Remark 3.3.4, it suffices to construct an isomorphism (3.3.2) covering (3.2.21).

For simplicity of notation, in the remainder of this section, let us write

(3.3.5) X := (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

⊗
OF0,(p)

OK

and

(3.3.6) Xspl := (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

.

As in Definition 3.2.1, let us denote by the same symbols the pullback to X

of the ( ]H , ]F , ]j) over ~MZH
H under the composition X → ~MZH

H of (3.2.21) and

the structural morphism ~XΦH,δH,σ → ~MZH
H (see (3.2.20)); and let us denote by

( \H , \F , \j) the pullback to X of the (H ext,F ext, jext) as in Proposition 3.1.2

under the canonical morphism X→ ~Mtor
H,Σ. Then we can abusively write

(3.3.7) Xspl ∼= Spl+( \H , \F , \j)/X

(cf. Proposition 2.3.10 and Remark 3.2.19) and

(3.3.8) ~Xspl
ΦH,δH,σ

∼= Spl+( ]H , ]F , ]j)/X

(cf. (3.2.10)), where the right-hand sides of (3.3.7) and (3.3.8) are relative schemes
over X (see [8]; cf. the explanation in Lemma 3.2.4).

Lemma 3.3.9. For all Λ ∈ L and [τ ] ∈ Υ/ ∼, we have canonical short exact
sequences

(3.3.10) 0→ ]FΛ,[τ ] → \FΛ,[τ ] → [FΛ,[τ ] → 0

of O⊗
Z

OX-modules, where ]FΛ,[τ ],
\FΛ,[τ ], and [FΛ,[τ ] can be identified with the

OX-module local direct summands (Lie∨B∨Λ/X)[τ ], (Lie∨
Aext,∨

Λ /X
)[τ ], and (Lie∨T∨Λ /X)[τ ] of

Lie∨B∨Λ/X, Lie∨
Aext,∨

Λ /X
, and Lie∨T∨Λ /X, respectively, defined as in (2.1.5).

Proof. Since F ext
Λ
∼= Lie∨

Aext,∨
Λ /~Mtor

H,Σ
, this follows from the short exact sequence for

duals of relative Lie algebras induced by (3.2.24). �

Lemma 3.3.11. Consider any object

{( \F i
[τ ],

\ji
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

parameterized by Spl′( \H , \F , \j)/X (cf. (3.3.7)), without condition (4) in Definition

2.3.3. For all Λ ∈ L and [τ ] ∈ Υ/ ∼, and for all integers i satisfying 0 ≤ i < d[τ ],
let

(3.3.12) ]F i
Λ,[τ ] := \F i

Λ,[τ ] ∩
]FΛ,[τ ]

and

(3.3.13) [F i
Λ,[τ ] := \F i

Λ,[τ ]/
]F i

Λ,[τ ].
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Then the graded pieces ]F i
Λ,[τ ]/

]F i+1
Λ,[τ ] and [F i

Λ,[τ ]/
[F i+1

Λ,[τ ] are annihilated by

b⊗ 1−1⊗ τ[τ ],i(b) for all b ∈ OF[τ]
. Moreover, for each unit b of O⊗

Z
Qp which nor-

malizes O⊗
Z
Zp, the periodicity isomorphism θb\F i

Λ,[τ]

induces the periodicity iso-

morphisms θb]F i
Λ,[τ]

: ( ]F i
Λ,[τ ])

b ∼→ ]F i
bΛ,[τ ] and θb[F i

Λ,[τ]

: ( [F i
Λ,[τ ])

b ∼→ [F i
bΛ,[τ ]

of O⊗
Z

OX-modules.

Proof. Since (3.3.10) is an exact sequence of O⊗
Z

OX-modules, these follow from

the very definitions of ]F i
Λ,[τ ] and [F i

Λ,[τ ]. �

Lemma 3.3.14. Let M be any OF[τ]
-lattice, let S be any scheme or formal scheme

over Spec(OK), and let M := M ⊗
Zp

OS. Then there exists a unique filtration

(3.3.15) 0 = M d[τ] ⊂M d[τ]−1 ⊂ · · · ⊂M 1 ⊂M 0 = M

of coherent OS-submodules of M such that, for each integer i satisfying 0 ≤ i < d[τ ],

the quotient M i/M i+1 is annihilated by b⊗ 1 − 1⊗ τ[τ ],i(b) for all b ∈ OF[τ]
. The

graded pieces M i/M i+1 are automatically locally free OS-modules of finite rank,
and hence both M i and M /M i are locally free OS-modules of finite rank. More-
over, M i is the OS-submodule of M spanned by the images of the endomorphism∏
0≤k<i

(bk ⊗ 1−1⊗ τ[τ ],k(bk)) of M , for all elements b0, b1, . . . , bi−1 ∈ OF[τ]
; it is also

the intersection of the kernels of the endomorphisms
∏

i≤k<d[τ]

(bk ⊗ 1−1⊗ τ[τ ],k(bk))

of M , for all elements bi, bi+1, . . . , bd[τ]−1 ∈ OF[τ]
.

Proof. Let K0 denote the maximal unramified extension of Qp in K, so that
F[τ ] ⊗

Qp
K0
∼=
∏
α
Fα for some totally ramified field extensions Fα of K0. Since

OK0 is finite étale over Zp, the canonical morphism OF[τ]
⊗
Zp
OK0 →

∏
α
OFα is

an isomorphism, because both sides are normal and have the same total ring
of fractions F[τ ] ⊗

Qp
K0. Accordingly, the OF[τ]

⊗
Zp
OK0-module M ⊗

Zp
OK0 and the

sheaf M ∼= (M ⊗
Zp
OK0

) ⊗
OK0

OS compatibly decompose into direct sums, where

OF[τ]
⊗
Zp
OK0

acts on each summand via some factor OFα . Thus, in order to prove

the lemma, we may and we shall replace OF[τ]
with some factor OFα , and replace M

with the corresponding summand of M ⊗
Zp
OK0

. Now that Fα is a totally ramified

(separable) extension of K0, the lemma follows by writing each M i as both the
image of some Qi(T ) and the kernel of some Qi(T ) as in [17, (2.4)], whose forma-
tion is compatible with arbitrary base changes, and hence must be OS-module local
direct summands of M , as desired. �

Corollary 3.3.16. The sub-O⊗
Z

OX-modules [F i
Λ,[τ ] of [FΛ,[τ ] in Lemma 3.3.11

are locally free and independent of the filtrations { \F i
Λ,[τ ]}0≤i<d[τ]

on \FΛ,[τ ].

Proof. By Lemma 3.2.22, the character group of the split torus T∨Λ is an O-lattice
YΛ, and so Lie∨T∨Λ /X

∼= YΛ⊗
Z

OX
∼= (YΛ⊗

Z
Zp)⊗

Zp
OX, where theO⊗

Z
Zp-lattice YΛ⊗

Z
Zp

is an OF ⊗
Z
Zp-lattice because O is maximal at p, by Assumption 2.1.1. Let us write
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YΛ⊗
Z
Zp ∼= ⊕

[τ ]∈Υ/∼
YΛ,[τ ] as in (2.1.5). Then [FΛ,[τ ]

∼= (Lie∨T∨Λ /X)[τ ]
∼= YΛ,[τ ] ⊗

Zp
OX

by Lemma 3.3.9, and the corollary follows from Lemma 3.3.14, as desired. �

Proposition 3.3.17. The sub-O⊗
Z

OX-modules ]F i
Λ,[τ ] of ]FΛ,[τ ] in Lemma 3.3.11

are locally free OX-modules. Together with the canonical embeddings

]jiΛ,[τ ] : ]F i
Λ,[τ ] →

]HΛ,[τ ]

defined by composing the canonical embeddings ]F i
Λ,[τ ] →

]FΛ,[τ ] and ]FΛ,[τ ] →
]HΛ,[τ ], we obtain a splitting structure

{( ]F i
[τ ],

]ji
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

for ( ]H , ]F , ]j) over X, parameterized by Spl+( ]H , ]F , ]j)/X. By repeating the same

construction over affine formal schemes over X, we obtain a canonical morphism

(3.3.18) Spl′( \H , \F , \j)/X → Spl′( ]H , ]F , ]j)/X

over X, which induces a canonical morphism

(3.3.19) Spl+( \H , \F , \j)/X → Spl+( ]H , ]F , ]j)/X

over X, by Lemma 2.3.9 and by the second paragraph of Proposition 2.3.10.

Proof. Since we have a short exact sequence

(3.3.20) 0→ ]F i
Λ,[τ ] →

\F i
Λ,[τ ] →

[F i
Λ,[τ ] → 0

by definition (see Lemma 3.3.11), and since \F i
Λ,[τ ] and [F i

Λ,[τ ] are locally free

OX-modules by definition and by Corollary 3.3.16, ]F i
Λ,[τ ] is also a locally free

OX-module. Hence, by Lemma 3.3.11, the collection {( ]F i
[τ ],

]ji
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

satisfies all but the last condition (4) in Definition 2.3.3 as a splitting structure for
( ]H , ]F , ]j), and defines an object parameterized by the Spl′( ]H , ]F , ]j)/X as in

Proposition 2.3.10. Since the same construction works for splittings structures
of pullbacks of ( ]H , ]F , ]j) to any affine formal schemes over X, we obtain the
canonical morphism (3.3.18) over X, as desired. �

Proposition 3.3.21. The canonical morphism (3.3.19) is an isomorphism.

Proof. By Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]) and by [7, IV-4,
18.12.6], it suffices to show that the morphism (3.3.18) is a monomorphism. Hence,
it suffices to show that, for each affine formal scheme Spf(R) over X such that R is
noetherian and local, the induced morphism

(3.3.22) Spl′( \H , \F , \j)/ Spec(R) → Spl′( ]H , ]F , ]j)/ Spec(R)

induces an injection between points over R.
For each Λ ∈ L , since Lie∨T∨Λ / Spec(R)

∼= (YΛ⊗
Z
Zp)⊗

Zp
R as in the proof of Corollary

3.3.16, Lie∨T∨Λ / Spec(R) is a projective OF ⊗
Z
R-module. Since R is noetherian and

local, for all Λ ∈ L and [τ ] ∈ Υ/ ∼, there are (noncanonical) splittings

(3.3.23) \FΛ,[τ ]
∼→ ]FΛ,[τ ]⊕ [FΛ,[τ ]

of the short exact sequences (3.3.10) of OF[τ]
⊗
Z
R-modules.
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Suppose that the filtration { \F i
Λ,[τ ]}0≤i<d[τ]

on \FΛ,[τ ] induces the filtrations

{ ]F i
Λ,[τ ]}0≤i<d[τ]

and { [F i
Λ,[τ ]}0≤i<d[τ]

on ]FΛ,[τ ] and [FΛ,[τ ], respectively, by

the assignments as in (3.3.12) and (3.3.13). By the last assertion in Lemma 3.3.14,
[F i

Λ,[τ ] is the R-submodule of [FΛ,[τ ] spanned by the images of the endomorphisms∏
0≤k<i

(bk ⊗ 1 − 1⊗ τ[τ ],k(bk)), for all elements b0, b1, . . . , bi−1 ∈ OF[τ]
. Since the

splitting (3.3.23) is OF[τ]
⊗
Z
R-equivariant, by condition (2) of Definition 2.3.3, it

canonically induces a splitting \F i
Λ,[τ ]

∼→ ]F i
Λ,[τ ]⊕

[F i
Λ,[τ ]. Hence, by Corollary

3.3.16, \F i
Λ,[τ ] is uniquely determined by ]F i

Λ,[τ ]. Since this holds for all [τ ] and i,

the morphism (3.3.22) induces an injection between points over R, as desired. �

Proof of Theorem 3.3.1. By Remark 3.3.4, it suffices to take (3.3.2) to be the com-
position of the isomorphisms (3.3.7), (3.3.19), and the inverse of (3.3.8). �

3.4. Main theorem for toroidal compactifications.

Theorem 3.4.1 (cf. [12, Thm. 6.4.1.1]). For each H as in Choices 2.2.10, and
for each compatible collection Σ = {ΣΦH}[(ΦH,δH)] of admissible rational polyhedral
cone decomposition data that is projective as in [15, Def. 2.1 and 2.7] (satisfying
[12, Cond. 6.2.5.25] by assumption; which includes the ones induced by auxiliary
choices as in [13, Sec. 7], as explained in [15, Rem. 2.3 and 2.9]), there is a normal

scheme ~Mspl,tor
H,Σ projective and flat over Spec(OK), containing the scheme ~Mspl

H in
Definition 2.4.5 as an open fiberwise dense subscheme, together with:

• a tautological degenerating family

(~Gj, ~λj,~ij, ~αHj
)

of type MHj
over ~Mspl,tor

H,Σ (see [12, Def. 5.3.2.1]), for each j ∈ J, where ~αHj

is defined only over the open dense subscheme MH ⊗
F0

K of ~Mspl,tor
H,Σ ;

• a tautological L -set

(H ext,F ext, jext)

of polarized O⊗
Z

O~Mspl,tor
H,Σ

-modules extending the L -set (H ,F , j) of polar-

ized O⊗
Z

O~Mspl
H

-modules associated with the tautological (A, λ, i, αHp) over

~Mspl
H (see Definition 2.4.1 and Lemma 2.2.7) that induces compatible iso-

morphisms F ext
Λ
∼= Lie∨

Aext,∨
Λ /~Mtor

H,Σ
and H ext

Λ /F ext
Λ
∼= LieAext

Λ /~Mtor
H,Σ

extend-

ing the canonical isomorphisms FΛ
∼= Lie∨

A∨Λ/
~MH

and HΛ/FΛ
∼= LieAΛ/~MH

,

respectively, for all Λ ∈ L (see Proposition 3.1.2); and
• a tautological splitting structure

{(F ext,i
[τ ] , jext,i

[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ]

for (H ext,F ext, jext) over ~Mspl,tor
H,Σ , which extends the tautological splitting

structure {(F i
[τ ], j

i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
for (H ,F , j) over ~Mspl

H (see Defini-

tion 2.4.1);

such that we have the following:
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(1) We have a commutative diagram

(3.4.2) MH ⊗
F0

K �
�

//

� _

��

~Mspl
H

// //
� _

��

~MH ⊗
OF0,(p)

OK
� _

��

Mtor
H,Σ ⊗

F0

K
� � // ~Mspl,tor

H,Σ
// // ~Mtor
H,Σ ⊗

OF0,(p)

OK

of noetherian normal schemes flat over Spec(OK) and of canonical mor-
phisms (over Spec(OK)), in which all squares are Cartesian, all vertical
arrows are open immersions with fiberwise dense image over Spec(OK),
the two horizontal arrows at the left-hand side are open immersions with
schematically dense images, the two horizontal arrows at the right-hand side
are projective and surjective, and the compositions of horizontal arrows in
the same rows are also open immersions with schematically dense images.

(2) ~Mspl,tor
H,Σ has a stratification by locally closed subschemes

(3.4.3) ~Mspl,tor
H,Σ =

∐
[(ΦH,δH,σ)]

~Zspl
[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equivalence classes of
(ΦH, δH, σ) (as in [12, Def. 6.2.6.1]) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ (see

(3.1.9)). (Here ZH is suppressed in the notation by [12, Conv. 5.4.2.5].) In
this stratification, the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ

′)] is contained in the

closure of the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and only if [(ΦH, δH, σ)]
is a face of [(Φ′H, δ

′
H, σ

′)] as in [12, Thm. 6.3.2.14 and Rem. 6.3.2.15]. The
analogous assertion holds after pullback to fibers over Spec(OK).

The [(ΦH, δH, σ)]-stratum ~Zspl
[(ΦH,δH,σ)] is flat over Spec(OK) and normal,

and is isomorphic to the support of the formal scheme ~Xspl
ΦH,δH,σ

for any

representative (ΦH, δH, σ) of [(ΦH, δH, σ)]. The formal scheme ~Xspl
ΦH,δH,σ

admits a canonical structure as the completion of an affine toroidal embed-

ding ~Ξspl
ΦH,δH

(σ) (along its σ-stratum ~Ξspl
ΦH,δH,σ

) of a torus torsor ~Ξspl
ΦH,δH

over a normal scheme ~Cspl
ΦH,δH

flat over Spec(OK). The scheme ~Cspl
ΦH,δH

is proper (and surjective) over a finite cover ~MΦH,spl
H of the boundary ver-

sion ~MZH,spl
H of ~Mspl

H (cf. Definitions 2.4.5 and 3.2.1, and the summary in

Remark 3.2.19). (Note that ZH and the isomorphism class of ~MZH,spl
H de-

pend only on the cusp label [(ZH,ΦH, δH)], but not on the choice of the
representative (ZH,ΦH, δH).)

In particular, ~Mspl
H = ~Zspl

[(0,0,{0})] is an open fiberwise dense stratum in

this stratification.

The stratification (3.4.3) is compatible with the stratification of ~Mtor
H,Σ

as in [13, Thm. 9.13] and [15, Thm. 6.1(3)], and we have a commutative
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diagram

(3.4.4) ΞΦH,δH,σ ⊗
F0

K
� � //

o

��

~Ξspl
ΦH,δH,σ

// //

o

��

~ΞΦH,δH,σ ⊗
OF0,(p)

OK

o
��

Z[(ΦH,δH,σ)] ⊗
F0

K
� � //

� _

��

~Zspl
[(ΦH,δH,σ)]

// //
� _

��

~Z[(ΦH,δH,σ)] ⊗
OF0,(p)

OK
� _

��

Mtor
H,Σ ⊗

F0

K �
�

// ~Mspl,tor
H,Σ

// // ~Mtor
H,Σ ⊗

OF0,(p)

OK

of canonical morphisms, in which all squares not involving ~Mtor
H,Σ ⊗

OF0,(p)

OK

are Cartesian, the vertical arrows in the upper-half are isomorphisms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

(3) The formal completion (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

of the scheme ~Mspl,tor
H,Σ along

its (locally closed) [(ΦH, δH, σ)]-stratum ~Zspl
[(ΦH,δH,σ)] is canonically isomor-

phic to the formal scheme ~Xspl
ΦH,δH,σ

for any representative (ΦH, δH, σ) of

[(ΦH, δH, σ)]. (See the isomorphism (3.3.2) in Theorem 3.3.1.)

For any open immersion Spf(R, I) → ~Xspl
ΦH,δH,σ

inducing morphisms

Spec(R) → ~Ξspl
ΦH,δH

(σ) and Spec(R) → ~Mspl,tor
H,Σ (via the structural mor-

phisms and the inverse of the above-mentioned isomorphism (3.3.2)), the

preimage of ~Ξspl
ΦH,δH

under Spec(R)→ ~Ξspl
ΦH,δH

(σ) coincides with the preim-

age of ~Mspl
H under Spec(R)→ ~Mspl,tor

H,Σ .

For each j ∈ J, the pullback to (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

of the degenerating

family (~Gj, ~λj,~ij, ~αHj
) over ~Mspl,tor

H,Σ is canonically isomorphic to the pullback

to ~Xspl
ΦH,δH,σ

of the Mumford family (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj

) over ~XΦH,δH,σ

(see [12, Def. 6.2.5.28] and [13, (8.29)]), after we identify the bases using
the above-mentioned canonical isomorphism (3.3.2).



COMPACTIFICATIONS OF SPLITTING MODELS 31

Then we have a commutative diagram
(3.4.5)

XΦH,δH,σ ⊗
F0

K �
�

//

o

��

~Xspl
ΦH,δH,σ

// //

o

��

~XΦH,δH,σ ⊗
OF0,(p)

OK

o
��

(Mtor
H,Σ)∧Z[(ΦH,δH,σ)]

⊗
F0

K �
�
//

��

(~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

// //

��

(~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

⊗
OF0,(p)

OK

��

Mtor
H,Σ ⊗

F0

K �
�

// ~Mspl,tor
H,Σ

// // ~Mtor
H,Σ ⊗

OF0,(p)

OK

of canonical morphisms compatibly extending those in (3.4.4), in which all
squares are Cartesian, the vertical arrows in the upper-half are isomor-
phisms, the vertical arrows in the bottom-half are formal completions along
locally closed subschemes, the horizontal arrows at the left-hand sides are
open immersions with schematically dense images, the horizontal arrows at
the right-hand sides are projective and surjective, and the compositions of
horizontal arrows in the same rows are also open immersions with schemat-
ically dense images. This commutative diagram (3.4.5) is compatible with
the commutative diagrams (3.2.20) and (3.4.4) along their common arrows.

(4) Let S be an irreducible noetherian normal scheme over Spec(OK), with
generic point η, which is equipped with a morphism

(3.4.6) η → MH ⊗
F0

K.

Let (Aη, λη, iη, αH,η) denote the pullback of the tautological object of MH to
η under (3.4.6). Suppose that, for each j ∈ J, we have a degenerating family

(G†j , λ
†
j , i
†
j , α
†
Hj

) of type MHj
over S, whose pullback (Gj,η, λj,η, ij,η, αHj,η)

to η defines a morphism

(3.4.7) η → MHj
⊗
F0

K

by the universal property of MHj
, which we assume to coincide with the com-

position of (3.4.6) with the canonical isomorphism MH ∼= MHj
given by [13,

(2.1)]. Suppose moreover that there exists an L -set (H †,F †, j†) of polar-
ized O⊗

Z
OS-modules extending the pullback (H η,F η, jη) of the (H ,F , j)

over ~Mspl
H (see Definition 2.4.1 and Lemma 2.2.7) and inducing compati-

ble isomorphisms F †Λj

∼= Lie∨
G†,∨j /S

and H †
Λj
/F †Λj

∼= LieG†j /S
extending the

canonical isomorphisms FΛj,η
∼= Lie∨G∨j,η/η and HΛj,η/FΛj,η

∼= LieGj,η/η
,

respectively, where Λj is as in Choices 2.2.9, for all j ∈ J; and that there

exists a splitting structure {(F †,i[τ ], j
†,i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
for (H †,F †, j†).

Then (3.4.6) (necessarily uniquely) extends to a morphism

(3.4.8) S → ~Mspl,tor
H,Σ
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(over Spec(OK)), under which the above two tuples, (H †,F †, j†) and

{(F †,i[τ ], j
†,i
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]
), are isomorphic to the pullbacks of the tauto-

logical tuples (H ext,F ext, jext) and {(F ext,i
[τ ] , jext,i

[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ]

) over

~Mspl,tor
H,Σ , respectively, if and only if the following condition is satisfied at

each geometric point s̄ of S:
Consider any dominant morphism Spec(V ) → S centered at s̄, where

V is a complete discrete valuation ring with fraction field K̃, algebraically
closed residue field k, and discrete valuation υ. By the semistable reduc-
tion theorem (see, for example, [5, Ch. I, Thm. 2.6] or [12, Thm. 3.3.2.4]),

up to replacing K̃ with a finite extension field and replacing V accord-

ingly, we may assume that the pullback of Aη to Spec(K̃) extends to a
semi-abelian scheme G‡ over Spec(V ). By the theory of Néron models
(see [3]; cf. [20, IX, 1.4], [5, Ch. I, Prop. 2.7], or [12, Prop. 3.3.1.5]), the

pullback of (Aη, λη, iη, αH,η) to Spec(K̃) extends to a degenerating family

(G‡, λ‡, i‡, α‡H) of type MH over Spec(V ), where α‡H is defined only over

Spec(K̃), which defines an object of DEGPEL,MH(V ) corresponding to a
tuple

(B‡, λB‡ , iB‡ , X
‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α\,‡H ])

in DDPEL,MH(V ) under [12, Thm. 5.3.1.19]. Then [α\,‡H ] determines a fully

symplectic-liftable admissible filtration Z
‡
H. Moreover, the étale sheaves X‡

and Y ‡ are necessarily constant, because the base ring V is strict local.
Hence, it makes sense to say we also have a uniquely determined torus ar-

gument Φ‡H at level H for Z
‡
H. On the other hand, we have objects ΦH(G‡),

SΦH(G‡), and B(G‡) (see [12, Constr. 6.3.1.1]), which define objects Φ‡H,

SΦ‡H
, and in particular B‡ : SΦ‡H

→ Inv(V ) over the special fiber. Then

υ ◦B‡ : SΦ‡H
→ Z defines an element of S∨

Φ‡H
, where υ : Inv(V )→ Z is the

homomorphism induced by the discrete valuation of V .
Then the condition is that, for each Spec(V ) → S as above (centered

at s̄), and for some (and hence every) choice of δ‡H, there is a cone σ‡

in the cone decomposition ΣΦ‡H
of PΦ‡H

such that σ‡ contains all υ ◦ B‡

obtained in this way. (As explained in the proof of [12, Prop. 6.3.3.11], we
may assume that σ‡ is minimal among such choices; also, it follows from
the positivity of τ ‡ that σ‡ ⊂ P+

Φ‡H
. Then the extended morphism (3.4.8)

maps s̄ to a geometric point over ~Zspl

[(Φ‡H,δ
‡
H,σ

‡)]
; conversely, this property

also characterizes the stratum ~Zspl

[(Φ‡H,δ
‡
H,σ

‡)]
of ~Mspl,tor

H,Σ .)

In particular, since this condition involves only H, Σ, and the linear
algebraic data in Section 2.1 (such as L ) and Choices 2.3.1, the scheme
~Mspl,tor
H,Σ depends (up to canonical isomorphism) only on these, but not on

any auxiliary choices made in [13, Sec. 7] or any compatible collection pol
of polarization function as in [15, Sec. 2].

Proof. By its very construction in Definition 3.1.3, we know ~Mspl,tor
H,Σ as a normal

scheme flat over Spec(OK) and projective over ~Mtor
H,Σ, with the tautological struc-

tures as described in the beginning of this theorem, which satisfies assertion (1).
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The assertions (2) and (3) then follow from [13, Prop. 7.4, 8.1, 8.4, 8.7, 8.14, and
8.20; Thm. 9.13, 10.13, and 11.2; and Cor. 10.16, 10.18, and 11.9], [15, Thm. 6.1
(3) and (4)], the constructions summarized in Remark 3.2.19, and Theorem 3.3.1.

It remains to justify assertion (4). By [13, Thm. 11.4] and [15, Thm. 6.1(6)], the
condition there is necessary and sufficient for (3.4.6) to extend to a morphism

(3.4.9) S → ~Mtor
H,Σ ⊗

OF0,(p)

OK .

By Proposition 3.1.2, the tautological tuple (H ext,F ext, jext) over ~Mspl,tor
H,Σ canon-

ically descends to ~Mtor
H,Σ ⊗

OF0,(p)

OK , whose pullback under (3.4.9) must be isomor-

phic to the (H †,F †, j†) over S, by the density of η in S, and by the assump-

tion that (H ext,F ext, jext) induces compatible isomorphisms F †Λj

∼= Lie∨
G†,∨j /S

and H †
Λj
/F †Λj

∼= LieG†j /S
extending the canonical isomorphisms FΛj,η

∼= Lie∨G∨j,η/η

and HΛj,η/FΛj,η
∼= LieGj,η/η

, respectively, for all j ∈ J. Thus, the morphism

(3.4.9) lifts to a morphism S → ~Mspl,tor
H,Σ as in (3.4.8) by the universal property of

~Mspl,tor
H,Σ = Spl+

(H ext,Fext,jext)/(~Mtor
H,Σ ⊗

OF0,(p)

OK)
(see (3.1.4)), as desired. �

Proposition 3.4.10 (cf. [13, Prop. 13.7, 13.9, and 13.15] and [15, Prop. 7.3 and
7.5]). With the same setting as in Proposition 2.4.17, suppose moreover that Σ
and Σ′ are compatible collections of projective admissible rational polyhedral cone
decomposition data for MH and MH′ , respectively, as in [15, Def. 2.1 and 2.7], such
that Σ is a g-refinement of Σ′ as in [12, Def. 6.4.3.3]. Then the morphism (2.4.18)
extends to a canonical projective morphism

(3.4.11) ~[g]
tor

: ~Mtor
H,Σ → ~Mtor

H′,Σ′ ,

whose pullback from OF0,(p) to OK lifts to a canonical projective morphism

(3.4.12) ~[g]
spl,tor

: ~Mspl,tor
H,Σ → ~Mspl,tor

H′,Σ′

extending the morphism (2.4.19). The morphism (3.4.11) (resp. (3.4.12)) maps the

[(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)] (resp. ~Zspl
[(ΦH,δH,σ)]) of ~Mtor

H,Σ (resp. ~Mspl,tor
H,Σ ) to the

[(Φ′H′ , δH′ , σ
′)]-stratum ~Z[(Φ′H′ ,δH′ ,σ

′)] (resp. ~Zspl
[(Φ′H′ ,δH′ ,σ

′)]) of ~Mtor
H′,Σ′ (resp. ~Mspl,tor

H′,Σ′ )

if and only if there are (ΦH, δH, σ) and (Φ′H′ , δ
′
H′ , σ

′) representing [(ΦH, δH, σ)] and
[(Φ′H′ , δ

′
H′ , σ

′)], respectively, such that (ΦH, δH, σ) is a g-refinement of (Φ′H′ , δ
′
H′ , σ

′)
as in [12, Def. 6.4.3.1]. Also, the analogues of [15, Prop. 7.5] for (3.4.11) and (3.4.12)
are true.

Proof. The existence of the canonical morphisms (3.4.11) and (3.4.12) (with the
desired properties) follows from Proposition 2.4.17 and its proof, and from compar-
isons of the universal properties of objects involved, using [13, Thm. 11.4] and [15,
Thm. 6.1(6)], and using (4) of Theorem 3.4.1. As for the last statement, it follows
from the same argument as in the proof of [15, Prop. 7.5], by showing that the
formal completions of the toroidal compactifications along the pullbacks of strata
of the corresponding minimal compactifications have the desired forms, using [13,
Thm. 7.14 and 11.4], [15, Thm. 6.1], and Theorem 3.4.1. �



34 KAI-WEN LAN

By the same arguments as in the proofs of [13, Prop. 14.1 and 14.2], using the fact
that the squares in the commutative diagrams (3.2.20) and (3.4.5) are all Cartesian,
we obtain the following two propositions:

Proposition 3.4.13 (cf. [13, Prop. 14.1]). Suppose Σ is smooth as in [12, Def.

6.3.3.4]. Then ~Mspl
H is regular if and only if ~Mspl,tor

H,Σ is.

Proposition 3.4.14 (cf. [13, Prop. 14.2]). Let P be the property of being one of the
following: reduced, geometrically reduced, normal, geometrically normal, Cohen–
Macaulay, (R0), geometric (R0), (R1), geometric (R1), and (Si), one property for

each i ≥ 0 (see [7, IV-2, 5.7.2 and 5.8.2]). Then the fiber of ~Mspl,tor
H,Σ → Spec(OK)

over some point s of Spec(OK) satisfies property P if and only if the corresponding

fiber of the open subscheme ~Mspl
H → Spec(OK) over s does. If Σ is smooth as in [12,

Def. 6.3.3.4], then P can also be the property of being one of the following: regular,
geometrically regular, (Ri), and geometrically (Ri), one property for each i ≥ 0.

Corollary 3.4.15 (cf. [13, Cor. 14.4]). Suppose that the geometric fibers of ~Mspl
H →

Spec(OK) are reduced (resp. have integral local rings). Then all geometric fibers

of ~Mspl,tor
H,Σ → Spec(OK) have the same number of connected (resp. irreducible)

components, and the same is true for ~Mspl
H → Spec(OK).

Proof. By Proposition 3.4.14, the proper flat morphism ~Mspl,tor
H,Σ → Spec(OK) has

geometric fibers with reduced (resp. integral) local rings. So, by [6, Prop. 8.5.16],

in its Stein factorization ~Mspl,tor
H,Σ → (~Mspl,tor

H,Σ )st → Spec(OK) (see [7, III-1, 4.3.3

and 4.3.4]), the second morphism is étale, while the first has connected and hence

reduced (resp. integral) geometric fibers. Thus, the assertions for ~Mspl,tor
H,Σ follow.

The assertion for ~Mspl
H concerning irreducible components then follows from the

fiberwise density of ~Mspl
H in ~Mspl,tor

H,Σ over Spec(OK) (see (2) of Theorem 3.4.1).

The assertion for ~Mspl
H concerning connected components does not follow as eas-

ily, because an open dense subset of a connected set is not necessarily connected.
Nevertheless, we have the following subtler argument: By (2) and (3) of Theorem
3.4.1, and by Artin’s approximation (see [1, Thm. 1.12 and the proof of the corollar-

ies in Sec. 2]), for each geometric point s̄→ Spec(OK), and for each x ∈ (~Mspl,tor
H,Σ )s̄,

there exist an étale neighborhood x → U → (~Mspl,tor
H,Σ )s̄ and an étale morphism

U → (~Ξspl
ΦH,δH

(σ))s̄ (see Proposition 3.2.11), for some (ΦH, δH, σ), such that (by

also approximating closed subschemes defining the boundary) the (open) preim-

ages of (~Mspl
H )s̄ and (~Ξspl

ΦH,δH
)s̄ in U coincide with each other, and such that (up to

replacing U with an open neighborhood of x) these étale morphisms have connected

geometric fibers. Since ~Ξspl
ΦH,δH

↪→ ~Ξspl
ΦH,δH

(σ) is fiberwise dense between schemes

with geometrically irreducible fibers over ~Cspl
ΦH,δH

, since the formation of closures

commutes with any flat base change (see [7, IV-2, 2.3.10]), and since x is arbitrary,

the connected components of (~Mspl,tor
H,Σ )s̄ are exactly the closures of those of (~Mspl

H )s̄.
Since s̄ is also arbitrary, the desired assertion still follows. �
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4. Minimal compactifications

4.1. Variants of Hodge invertible sheaves. Unless otherwise specified, all ten-
sor products of quasi-coherent sheaves in this section will be over their respective
base schemes.

Definition 4.1.1. The invertible sheaf ω~Mspl
H ,J over ~Mspl

H is the pullback of the ample

invertible sheaf ω~MH,J over ~MH (see [13, Prop. 6.1]) under the canonical morphism

~Mspl
H → ~MH. Similarly, the invertible sheaf ω~Mspl,tor

H,Σ ,J over ~Mspl,tor
H,Σ is the pullback of

the invertible sheaf ω~Mtor
H,Σ,J

over ~Mtor
H,Σ (cf. [13, Prop. 7.11] and [15, Thm. 6.1(2)])

under the canonical morphism ~Mspl,tor
H,Σ → ~Mtor

H,Σ.

Remark 4.1.2. Since ω~Mtor
H,Σ,J

and ω~Mspl,tor
H,Σ ,J are (by definition) the pullbacks of the

ample invertible sheaf ω~Mmin
H ,J over ~Mmin

H (see [13, Prop. 6.4]), they are semiample

in the sense that both ω⊗N~Mtor
H,Σ,J

and ω⊗N~Mspl,tor
H,Σ ,J

are generated by their global sections

(over their respective base schemes) for all sufficiently large N .

Definition 4.1.3. Consider the invertible sheaf

(4.1.4) ω
µ

~Mspl
H

:= ω
µ,+

(H ,F ,j)/(~MH ⊗
OF0,(p)

OK)

over ~Mspl
H , which extends to the invertible sheaf

(4.1.5) ω
µ

~Mspl,tor
H,Σ

:= ω
µ,+

(H ext,Fext,jext)/(~Mspl,tor
H,Σ ⊗

OF0,(p)

OK)

over ~Mspl,tor
H,Σ , defined as in (2.3.8) and Proposition 2.3.10 (see also Definitions 2.4.5

and 3.1.3) for each positive µ. For each integer k, consider the invertible sheaf

(4.1.6) ω
⊗(k,µ)

~Mspl
H ,J

:= ω⊗ k~Mspl
H ,J
⊗ωµ~Mspl

H

over ~Mspl
H , which extends to the invertible sheaf

(4.1.7) ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

:= ω⊗ k~Mspl,tor
H,Σ ,J

⊗ωµ~Mspl,tor
H,Σ

over ~Mspl,tor
H,Σ . For simplicity, for each integer N , we shall abusively denote the N -th

tensor powers of (4.1.6) and (4.1.7) by ω
⊗(k,µ)N

~Mspl
H ,J

and ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

, respectively.

Lemma 4.1.8. For each positive µ, there exists some constant k0(µ) ≥ 0 such that

ω
⊗(k,µ)

~Mspl
H ,J

is ample for all k ≥ k0(µ). Consequently, there also exists some constant

N0(µ) ≥ 0 such that ω
⊗(k,µ)N

~Mspl
H ,J

is very ample for all k ≥ k0(µ) and N ≥ N0(µ) .

Proof. This is because ω
µ

~Mspl
H

is relatively ample over ~Mspl
H (see Proposition 2.3.10),

and because ω~Mspl
H ,J is (by definition) the pullback of the ample invertible sheaf

ω~MH,J over ~MH (see Definition 4.1.1 and [13, Prop. 6.1]). �
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Definition 4.1.9. For each cusp label [(ΦH, δH)], and for integers k and N , we

define as in Definition 4.1.3 the invertible sheaves ω⊗ k
~M

ZH,spl

H ,J
, ω

µ

~M
ZH,spl

H
, ω
⊗(k,µ)

~M
ZH,spl

H ,J
,

and ω
⊗(k,µ)N

~M
ZH,spl

H ,J
over ~MZH,spl

H = Spl+
( ]H , ]F , ]j)/(~M

ZH
H ⊗
OF0,(p)

OK)
(see (3.2.2)).

For each triple (ΦH, δH, σ) such that its equivalence class [(ΦH, δH, σ)] defines a

stratum ~Zspl
[(ΦH,δH,σ)] of ~Mspl,tor

H,Σ , consider the structural morphisms

(4.1.10) ~Xspl
ΦH,δH,σ

→ ~MZH,spl
H

and

(4.1.11) ~Ξspl
ΦH,δH,σ

→ ~MZH,spl
H

(see Definition 3.2.3 and Remark 3.2.19), which are compatible with the structural

morphism ~Ξspl
ΦH,δH,σ

→ ~Xspl
ΦH,δH,σ

.

Lemma 4.1.12. For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, and each integer i satisfying
0 ≤ i < d[τ ], consider the invertible sheaf

(4.1.13) ωi
Λ,[τ ],~Mspl,tor

H,Σ
:= ∧top (F ext,i

Λ,[τ ]/F
ext,i+1
Λ,[τ ] )

over ~Mspl,tor
H,Σ , where

{(F ext,i
[τ ] , jext,i

[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ]

is the tautological splitting structure over ~Mspl,tor
H,Σ (see Theorem 3.4.1); and consider

the invertible sheaf

(4.1.14) ωi
Λ,[τ ],~M

ZH,spl

H
:= ∧top ( ]F i

Λ,[τ ]/
]F i+1

Λ,[τ ])

over ~MZH,spl
H , where

{( ]F i
[τ ],

]ji
[τ ]

)}[τ ]∈Υ/∼,0≤i<d[τ]

is the tautological splitting structure over ~MZH,spl
H = Spl+

( ]H , ]F , ]j)/(~M
ZH
H ⊗
OF0,(p)

OK)

(see Definition 3.2.1). Then the pullback of ωi
Λ,[τ ],~Mspl,tor

H,Σ
under the canonical mor-

phism ~Xspl
ΦH,δH,σ

→ ~Mspl,tor
H,Σ induced by the inverse of (3.3.2) is isomorphic to the

pullback of ωi
Λ,[τ ],~M

ZH,spl

H
under the morphism (4.1.10).

Proof. Consider the pullback \F i
Λ,[τ ] of F ext,i

Λ,[τ ] to Xspl = (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

, as in

Section 3.3. By assigning ]F i
Λ,[τ ] and [F i

Λ,[τ ] to \F i
Λ,[τ ] as in (3.3.12) and (3.3.13),

we have a short exact sequence 0 → ]F i
Λ,[τ ] →

\F i
Λ,[τ ] →

[F i
Λ,[τ ] → 0 of locally

free OXspl -modules as in (3.3.20), which induces an isomorphism ∧top ( \F i
Λ,[τ ])

∼=
∧top ( ]F i

Λ,[τ ])⊗∧
top ( [F i

Λ,[τ ]) of invertible sheaves over Xspl. By Corollary 3.3.16

and its proof, ∧top ( [F i
Λ,[τ ])

∼= ∧top (YΛ,[τ ] ⊗
Zp

OXspl) ∼= (∧top
Zp (YΛ,[τ ]))⊗

Zp
OXspl is

trivial. Then it suffices to note that, by the construction of (3.3.2) (see the proof
of Theorem 3.3.1), the ]F i

Λ,[τ ] over Xspl is canonically isomorphic to the pullback

of the ]F i
Λ,[τ ] over ~MZH,spl

H under the composition of (3.3.2) and (4.1.10). �
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Corollary 4.1.15. For each µ, and for any integers k and N , the pullback of

the invertible sheaf ω⊗ k~Mspl,tor
H,Σ ,J

(resp. ω
µ

~Mspl,tor
H,Σ

, resp. ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

, resp. ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

) to

~Xspl
ΦH,δH,σ

via the canonical morphism ~Xspl
ΦH,δH,σ

→ ~Mspl,tor
H,Σ induced by the inverse

of (3.3.2) is isomorphic to the pullback of ω⊗ k
~M

ZH,spl

H ,J
(resp. ω

µ

~M
ZH,spl

H
, resp. ω

⊗(k,µ)

~M
ZH,spl

H ,J
,

resp. ω
⊗(k,µ)N

~M
ZH,spl

H ,J
) under the morphism (4.1.10).

Proof. The case for ω⊗ k~Mspl,tor
H,Σ ,J

follows from [12, Lem. 7.1.2.1, and the proof of Thm.

7.2.4.1], and from the definitions (see Definitions 4.1.1 and 4.1.9). The case for

ω
µ

~Mspl,tor
H,Σ

follows from Lemma 4.1.12, and from the definition of ω
µ

~Mspl,tor
H,Σ

(see (2.3.8)).

The remaining cases then follow from these two cases, by definition. �

Corollary 4.1.16. For each positive µ, and for each cusp label [(ΦH, δH)], there
exists some constant k(ΦH,δH)(µ) ≥ 0 such that, for each triple [(ΦH, δH, σ)] defin-

ing a stratum ~Zspl
[(ΦH,δH,σ)] of ~Mspl,tor

H,Σ above the stratum ~Z[(ΦH,δH)] of ~Mmin
H (see

Definition 3.1.8, [13, Thm. 12.1], and [15, Thm. 6.1]), the pullback of ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

to

~Zspl
[(ΦH,δH,σ)] is semiample for all k ≥ k(ΦH,δH)(µ), and is isomorphic to the pullback

of an ample invertible sheaf ω
⊗(k,µ)

~M
ZH,spl

H ,J
under the structural morphism (4.1.11). Con-

sequently, there also exists some constant N(ΦH,δH)(µ) ≥ 0 such that the pullback of

ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

to ~Zspl
[(ΦH,δH,σ)] is generated by its global sections for all k ≥ k(ΦH,δH)(µ)

and N ≥ N(ΦH,δH)(µ) (see Remark 4.1.2), and is isomorphic to the pullback of a

very ample invertible sheaf ω
⊗(k,µ)N

~M
ZH,spl

H ,J
under the structural morphism (4.1.11)

Proof. This follows from Corollary 4.1.15, and from the same argument as in the
proof of Lemma 4.1.8. �

Lemma 4.1.17. For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, and each integer i satisfying
0 ≤ i < d[τ ], the pullback ωiΛ,[τ ],Mtor

H,Σ ⊗
F0

K of ωi
Λ,[τ ],~Mspl,tor

H,Σ
(see (4.1.13)) to Mtor

H,Σ ⊗
F0

K

(see (3.4.2)) descends to an invertible sheaf ωi
Λ,[τ ],Mmin

H ⊗
F0

K
over Mmin

H ⊗
F0

K.

Proof. As in the proof of [12, Thm. 7.2.4.1], it suffices to note that the pullback of
ωi~Mspl,tor
H,Σ ,Λ,[τ ]

to XΦH,δH,σ ⊗
F0

K descends to MZH
H ⊗

F0

K, by Lemma 4.1.12. �

Corollary 4.1.18. For each µ, and for all k and N , the pullback ω
⊗(k,µ)N

Mtor
H,Σ ⊗

F0

K,J

of ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

to Mtor
H,Σ ⊗

F0

K (see (3.4.2)) descends to an invertible sheaf ω
⊗(k,µ)N

Mmin
H ⊗

F0

K,J

over Mmin
H ⊗

F0

K. Consequently, for all sufficiently large integer k (depending on µ),

the invertible sheaf ω
⊗(k,µ)N

Mmin
H ⊗

F0

K,J
over Mmin

H ⊗
F0

K is ample, and so that its pullback

ω
⊗(k,µ)N

Mtor
H,Σ ⊗

F0

K,J
to Mtor

H,Σ ⊗
F0

K is semiample.
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Proof. By Definitions 4.1.1 and 4.1.3, and by the definition of ω
µ

~Mspl,tor
H,Σ

(see (2.3.8)),

this follows from Lemma 4.1.17. �

Corollary 4.1.19. For each positive µ, there exist integers k1(µ) ≥ k0(µ) and
N1(µ) ≥ N0(µ) such that, for all integers k ≥ k1(µ) and N ≥ N1(µ), the pullback

of the invertible sheaf ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

to ~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q) ∼= ~Mspl

H ∪(Mtor
H,Σ ⊗

F0

K) (glued

over their common open subscheme ~Mspl
H ⊗Z

Q ∼= MH ⊗
F0

K) is generated by its global

sections and descends to a very ample invertible sheaf over ~Mspl
H ∪(Mmin

H ⊗
F0

K).

Proof. This follows from Corollary 4.1.18 and the same argument as in the proof
of Lemma 4.1.8. �

Remark 4.1.20. The constants in Lemma 4.1.8 and in Corollaries 4.1.16 and 4.1.19
depend on the integral PEL datum (O, ?, 〈 · , · 〉, h0), on the choices of J and LJ

(see Choices 2.2.9), on the level H (see Choices 2.2.10), on the choices of the
integers {aj}j∈J as in [13, Lem. 5.30], on the choices of K and the ordering of
τ[τ ],0, τ[τ ],1, . . . , τ[τ ],d[τ]−1 in [τ ] for all [τ ] ∈ Υ/ ∼ (see Choices 2.3.1), and on µ.

Lemma 4.1.21. The canonical restriction map

Γ(~Mspl,tor
H,Σ , ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

)→ Γ(~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q), ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

)

is bijective for all µ, k, and N .

Proof. Since ~Mspl,tor
H,Σ is noetherian and normal by construction, which is (S2) at all

points of codimension at least two by Serre’s criterion (see [7, IV-2, 5.8.6]), and

since the complement of ~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q) in ~Mspl,tor

H,Σ has codimension at least

two (because ~Mspl
H is fiberwise dense in ~Mspl,tor

H,Σ , by Theorem 3.4.1), this follows

from [9, Prop. 1.11 and Thm. 3.8]. �

Proposition 4.1.22. For each positive µ, given any integers k ≥ k1(µ) and N ≥
N1(µ), the canonical morphism

(4.1.23) ~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q)→ PSpec(OK)(Γ(~Mspl,tor

H,Σ , ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

))

induces a canonical open immersion

(4.1.24) ~Mspl
H ∪(Mmin

H ⊗
F0

K) ↪→ PSpec(OK)(Γ(~Mspl,tor
H,Σ , ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

))

whose pre-composition with the canonical morphism

(4.1.25) ~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q)→ ~Mspl

H ∪(Mmin
H ⊗

F0

K)

is (4.1.23). Let us define ~Mspl,min
H,(k,µ)N to be the normalization of the closure of the

image of (4.1.24) in PSpec(OK)(Γ(~Mspl,tor
H,Σ , ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

)). Then we have a canonical

open immersion

(4.1.26) ~Mspl
H ∪(Mmin

H ⊗
F0

K) ↪→ ~Mspl,min
H,(k,µ)N ,
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with schematically dense image (by definition of ~Mspl,min
H,(k,µ)N ), whose pre-composition

with (4.1.25) defines a canonical morphism

(4.1.27) ~∮ spl,pre

H,(k,µ)N
: ~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q)→ ~Mspl,min

H,(k,µ)N

with schematically dense image. The pullback of O
PSpec(OK )(Γ(~Mspl,tor

H,Σ ,ω
⊗(k,µ)N

~M
spl,tor
H,Σ ,J

))
(1) to

~Mspl,min
H,(k,µ)N , which we abusively denote by ω

⊗(k,µ)N

~Mspl,min
H,(k,µ)N

,J
(before defining ω

⊗(k,µ)

~Mspl,min
H,(k,µ)N

,J
),

is an ample invertible sheaf, whose further pullback to ~Mspl
H ∪(Mmin

H ⊗
F0

K) under

(4.1.26) is the very ample invertible sheaf in Corollary 4.1.19.

Proof. The existence of the canonical morphism (4.1.23) and the induced open
immersion (4.1.24) follows from Lemma 4.1.8, Corollaries 4.1.18 and 4.1.19, and
Lemma 4.1.21. The rest of the assertions are self-explanatory. �

Choices 4.1.28. From now on, for each positive µ, we shall fix the choices of some
integers k2(µ) ≥ k1(µ) and N2(µ) ≥ N1(µ) such that k2(µ) ≥ k(ΦH,δH)(µ) and
N2(µ) ≥ N(ΦH,δH)(µ) for all cusp labels [(ΦH, δH)] (see Corollary 4.1.16).

We will show in the next section that, when k ≥ k2(µ) and N ≥ N2(µ), the

morphism (4.1.27) extends to a morphism ~∮ spl

H : ~Mspl,tor
H,Σ → ~Mspl,min

H , whose target

is (up to unique isomorphism) independent of the choices of k and N .

4.2. Semiampleness and projective spectra. Throughout this section, we shall
fix the choice of a positive µ, and assume that k ≥ k2(µ) and N ≥ N2(µ), where
k2(µ) and N2(µ) are as in Choices 4.1.28.

Let Graph(~
∮ spl,pre

H,(k,µ)N
) denote the graph of the canonical morphism ~∮ spl,pre

H,(k,µ)N
in

(4.1.27), which we view as a locally closed subscheme of ~Mspl,tor
H,Σ ×

Spec(OK)

~Mspl,min
H,(k,µ)N ,

which is isomorphic to the open dense subscheme ~Mspl
H ∪(~Mspl,tor

H,Σ ⊗
Z
Q) of ~Mspl,tor

H,Σ via

the first projection, and has schematically dense image via the second projection
(see Proposition 4.1.22). Let us denote by

~Mspl,tor
H,Σ,(k,µ)N

the normalization of the necessarily reduced schematic closure of Graph(~
∮ spl,pre

H,(k,µ)N
)

in ~Mspl,tor
H,Σ ×

Spec(OK)

~Mspl,min
H,(k,µ)N . Then the projections from ~Mspl,tor

H,Σ ×
Spec(OK)

~Mspl,min
H,(k,µ)N

to its two factors induce canonical proper surjections

(4.2.1) ~∂spl
H,(k,µ)N : ~Mspl,tor

H,Σ,(k,µ)N → ~Mspl,tor
H,Σ

and

(4.2.2) ~∮ spl

H,(k,µ)N
: ~Mspl,tor
H,Σ,(k,µ)N → ~Mspl,min

H,(k,µ)N .

Lemma 4.2.3. The canonical morphisms

(4.2.4) O~Mspl,tor
H,Σ

→ (~∂spl
H,(k,µ)N )∗O~Mspl,tor

H,Σ,(k,µ)N
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and

(4.2.5) O~Mspl,min
H,(k,µ)N

→ (~
∮ spl

H,(k,µ)N
)∗O~Mspl,tor

H,Σ,(k,µ)N

induced by (4.2.1) and (4.2.2), respectively, are isomorphisms. Consequently, the
morphisms (4.2.1) and (4.2.2) are their own Stein factorizations (see [7, III-1, 4.3.3
and 4.3.4]), by abuse of language, and their geometric fibers are all connected.

Proof. Since (4.2.1) is proper, it induces a Stein factorization

(4.2.6) ~Mspl,tor
H,Σ,(k,µ)N → Spec

O~Mspl,tor
H,Σ

(
(~∂spl
H,(k,µ)N )∗O~Mspl,tor

H,Σ,(k,µ)N

)
→ ~Mspl,tor

H,Σ ,

and we need the second (finite) morphism to be an isomorphism. Since ~Mspl,tor
H,Σ,(k,µ)N

is normal, the second scheme in (4.2.6) is normal. Since (4.2.1) induces the identity

morphism over the open dense subscheme ~Mspl
H , the second morphism in (4.2.6) is

an isomorphism by Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]). This shows
that (4.2.4) is an isomorphism. The argument for (4.2.5) is similar. �

For each (locally closed) stratum ~Zspl
[(ΦH,δH,σ)] of ~Mspl,tor

H,Σ as in (3.1.9), consider

the locally closed subscheme

(4.2.7) ~Zspl
[(ΦH,δH,σ)],(k,µ)N := (~∂spl

H,(k,µ)N )−1(~Zspl
[(ΦH,δH,σ)])

of ~Mspl,tor
H,Σ,(k,µ)N with its canonical reduced subscheme structure. Then we have a

disjoint union

(4.2.8) ~Mspl,tor
H,Σ,(k,µ)N =

∐
[(ΦH,δH,σ)]

~Zspl
[(ΦH,δH,σ)],(k,µ)N

compatible with (3.1.9), [13, Thm. 9.13], and [15, Thm. 6.1].

For each stratum ~Zspl
[(ΦH,δH,σ)], we have an induced proper morphism

(4.2.9)

(~∂spl
H,(k,µ)N )∧~Zspl

[(ΦH,δH,σ)]

: (~Mspl,tor
H,Σ,(k,µ)N )∧~Zspl

[(ΦH,δH,σ)],(k,µ)N

→ (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

between the formal completions. By Lemma 4.2.3 and [7, III-1, 4.1.5], the isomor-
phism (4.2.4) induces a canonical isomorphism
(4.2.10)

O(~Mspl,tor
H,Σ )∧

~Z
spl
[(ΦH,δH,σ)]

∼→
(
(~∂spl
H,(k,µ)N )∧~Zspl

[(ΦH,δH,σ)]

)
∗O(~Mspl,tor

H,Σ,(k,µ)N
)∧
~Z
spl
[(ΦH,δH,σ)],(k,µ)N

.

So, the pullback of any f ∈ Γ(~Mspl,tor
H,Σ , ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

) to (~Mspl,tor
H,Σ,(k,µ)N )∧~Zspl

[(ΦH,δH,σ)],(k,µ)N

is

determined by its pullback to (~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

, which defines the Fourier–Jacobi

expansions of f as in [12, Sec. 7.1.2] and [13, Sec. 12]. By the same arguments there,
we obtain the following:

Proposition 4.2.11 (cf. [12, Prop. 7.1.2.13] and [13, Prop. 12.10]). The pullback of

each f ∈ Γ(~Mspl,tor
H,Σ , ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

) to the subscheme ~Zspl
[(ΦH,δH,σ)],(k,µ)N of ~Mspl,tor

H,Σ,(k,µ)N

is constant along the fibers of the structural morphism

(4.2.12) ~Zspl
[(ΦH,δH,σ)],(k,µ)N

restriction of
(4.2.1)→ ~Zspl

[(ΦH,δH,σ)]

(3.3.3)−1

∼→ ~Ξspl
ΦH,δH,σ

→ ~MZH,spl
H .
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Corollary 4.2.13. The restriction of (4.2.2) to ~Zspl
[(ΦH,δH,σ)],(k,µ)N induces a canon-

ical morphism ~Zspl
[(ΦH,δH,σ)],(k,µ)N → ~Mspl,min

H,(k,µ)N , which factors through a morphism

~MZH,spl
H → ~Mspl,min

H,(k,µ)N . Consequently, the stratum Zspl
[(ΦH,δH)] := Z[(ΦH,δH)] ⊗

F0

K of

Mmin
H ⊗

F0

K is dense in the schematic image of ~Zspl
[(ΦH,δH,σ)],(k,µ)N under (4.2.2).

Proof. The first assertion follows from Proposition 4.2.11. By [13, Thm. 12.1] and
[15, Thm. 6.1 (3) and (5)], the restriction of (4.2.2) to the stratum

Zspl
[(ΦH,δH,σ)] := Z[(ΦH,δH,σ)] ⊗

F0

K ∼= ~Zspl
[(ΦH,δH,σ)],(k,µ)N ⊗Z

Q

of Mtor
H,Σ ⊗

F0

K ∼= ~Mspl,tor
H,Σ,(k,µ)N ⊗Z

Q (see Definition 3.1.8 and (4.2.7)) induces a canon-

ical surjection Zspl
[(ΦH,δH,σ)] � Zspl

[(ΦH,δH)]. Hence, the last assertion follows from the

flatness of ~MZH,spl
H over Spec(OK). �

For each stratum Zspl
[(ΦH,δH)] of Mmin

H ⊗
F0

K as in Corollary 4.2.13, consider its

closure Z
spl

[(ΦH,δH)] in Mmin
H ⊗

F0

K and its closure ~Z
spl

[(ΦH,δH)],(k,µ)N in ~Mspl,min
H,(k,µ)N under

the open immersion (4.1.26) with schematically dense image. Then we define a
locally closed subscheme

(4.2.14) ~Zspl
[(ΦH,δH)],(k,µ)N := ~Z

spl

[(ΦH,δH)],(k,µ)N− ∪
Zspl

[(ΦH,δH)]
*Z

spl

[(Φ′H,δ
′
H)]

~Z
spl

[(Φ′H,δ
′
H)],(k,µ)N

of ~Mspl,min
H,(k,µ)N (cf. [13, (6.8)]).

Proposition 4.2.15 (cf. [13, Thm. 12.1] and [15, Thm. 6.1 (3) and (5)]). The

locally closed subschemes ~Zspl
[(ΦH,δH)],(k,µ)N of ~Mspl,min

H,(k,µ)N form a stratification

(4.2.16) ~Mspl,min
H,(k,µ)N =

∐
[(ΦH,δH)]

~Zspl
[(ΦH,δH)],(k,µ)N ,

with incidence relations similar to those in [12, Thm. 7.2.4.1 (4) and (5)], [13,
Thm. 12.1], and [15, Thm. 6.1(3)]. For each representative (ΦH, δH, σ) such that

[(ΦH, δH, σ)] labels a stratum ~Zspl
[(ΦH,δH,σ)] of ~Mspl,tor

H,Σ as in (3.1.9), the restriction of

the canonical morphism (4.2.2) to the corresponding stratum ~Zspl
[(ΦH,δH,σ)],(k,µ)N of

~Mspl,tor
H,Σ,(k,µ)N induces a canonical surjection

(4.2.17) ~Zspl
[(ΦH,δH,σ)],(k,µ)N � ~Zspl

[(ΦH,δH)],(k,µ)N ,

which is proper when σ is top-dimensional in ΣΦH .

Proof. By Corollary 4.2.13 and its proof, the restriction of (4.2.2) to Zspl
[(ΦH,δH,σ)]

induces a canonical surjection Zspl
[(ΦH,δH,σ)] � Zspl

[(ΦH,δH)], and Zspl
[(ΦH,δH)] is dense

in the schematic image of ~Zspl
[(ΦH,δH,σ)],(k,µ)N under (4.2.2). Since the morphism

(4.2.2) is proper and surjective, and since the disjoint union (4.2.8) is the pull-

back of the stratification (3.1.9), it follows that Zspl
[(ΦH,δH)]

∼= ~Zspl
[(ΦH,δH)],(k,µ)N ⊗Z

Q
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as subschemes of Mmin
H ⊗

F0

K ∼= ~Mspl,min
H,(k,µ)N ⊗Z

Q, and that Zspl
[(ΦH,δH)] is dense in

~Zspl
[(ΦH,δH)],(k,µ)N . Hence, the union in (4.2.16) defines the desired stratification of

~Mspl,min
H,(k,µ)N . As for the properness of (4.2.17) when σ is top-dimensional in ΣΦH , it

follows from that of (4.2.2), because then ~Zspl
[(ΦH,δH,σ)],(k,µ)N is closed in the preimage

(~
∮ spl

H,(k,µ)N
)−1(~Zspl

[(ΦH,δH)],(k,µ)N ) by the other assertions we have proved. �

Corollary 4.2.18 (cf. [12, Cor. 7.2.3.12] and [13, Cor. 12.12]). The morphism
(4.2.17) factors through (4.2.12) and defines a canonical surjection

(4.2.19) ~MZH,spl
H � ~Zspl

[(ΦH,δH)],(k,µ)N .

Under the running assumption that k ≥ k2(µ) ≥ k[(ΦH,δH)](µ) and N ≥ N2(µ) ≥
N[(ΦH,δH)](µ) (see Choices 4.1.28), this surjection is finite and induces a canonical

isomorphism from ~MZH,spl
H to the normalization of ~Zspl

[(ΦH,δH)],(k,µ)N .

Proof. The first assertion follows from Corollary 4.2.13. Since the morphisms
(4.2.12), for all possible σ, all factor through the same induced morphism (4.2.19)
(by the same argument of relating every two cones by a sequences of inclusions
of closures, as in the paragraph following [12, Rem. 7.1.2.5]), by taking σ to be
top-dimensional in ΣΦH , which necessarily satisfies σ ⊂ P+

ΦH
, it follows from

Proposition 4.2.15 that the induced morphism (4.2.19) is proper. Since (by Corol-

lary 4.1.15) the pullback of ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

to ~Zspl
[(ΦH,δH,σ)],(k,µ)N descends to ~MZH,spl

H (via

(4.2.12)), the pullback of ω
⊗(k,µ)N

~Mspl,min
H,(k,µ)N

,J
(see Proposition 4.1.22) under (4.2.19) is iso-

morphic to the invertible sheaf ω
⊗(k,µ)N

~M
ZH,spl

H ,J
over ~MZH,spl

H , which is ample (by Corollary

4.1.16) under the assumption that k ≥ k2(µ) ≥ k[(ΦH,δH)](µ) and N ≥ N2(µ) ≥
N[(ΦH,δH)](µ). This shows that the proper morphism (4.2.19) is finite, by [7, II,
5.1.6, and III-1, 4.4.2]. Since (4.2.19) induces in characteristic zero the canonical

isomorphism MZH
H ⊗

F0

K
∼→ Zspl

[(ΦH,δH)] = Z[(ΦH,δH)] ⊗
F0

K (see [12, Cor. 7.2.3.18]), the

second assertion follows from Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]),
as desired. �

Proposition 4.2.20 (cf. [12, Prop. 7.2.3.16] and [13, Prop. 12.14]). Let x̄ be a

geometric point of ~Mspl,min
H,(k,µ)N over the [(ΦH, δH)]-stratum ~Zspl

[(ΦH,δH)],(k,µ)N . Let

(~Mspl,min
H,(k,µ)N )∧x̄ denote the completion of the strict localization of ~Mspl,min

H,(k,µ)N at x̄,

let

(~Zspl
[(ΦH,δH)],(k,µ)N )∧x̄ := ~Zspl

[(ΦH,δH)],(k,µ)N ×
~Mspl,min
H,(k,µ)N

(~Mspl,min
H,(k,µ)N )∧x̄ ,

and let

(~MZH,spl
H )∧x̄ := ~MZH,spl

H ×
~Zspl

[(ΦH,δH)],(k,µ)N

(~Zspl
[(ΦH,δH)],(k,µ)N )∧x̄ .

For each ` ∈ SΦH , let ~Ψspl
ΦH,δH

(`) be as in (3.2.15), and let ( ~FJ
spl,(`)

ΦH,δH
)∧x̄ denote the

pullback of

~FJ
spl,(`)

ΦH,δH
:= (~Cspl

ΦH,δH
→ ~MZH,spl

H )∗(~Ψ
spl
ΦH,δH

(`))
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under the canonical morphism (~MZH,spl
H )∧x̄ → ~MZH,spl

H . Then we have a canonical
isomorphism

(4.2.21) O(~Mspl,min
H,(k,µ)N

)∧x̄
∼=
( ∏
`∈P∨ΦH

( ~FJ
spl,(`)

ΦH,δH
)∧x̄

)ΓΦH
,

where P∨ΦH := {` ∈ SΦH : 〈`, y〉 ≥ 0 ∀y ∈ PΦH} as usual, which is adic if we
interpret the product on the right-hand side as the completion of the elements
that are finite sums with respect to the ideal generated by the elements with zero

constant terms (i.e., with zero projection to ( ~FJ
spl,(0)

ΦH,δH
)∧x̄ ). Then the isomorphism

(4.2.21) induces a homomorphism
(
( ~FJ

spl,(0)

ΦH,δH
)∧x̄
)ΓΦH → O(~Mspl,min

H,(k,µ)N
)∧x̄

, whose source

is canonically isomorphic to O
(~M

ZH,spl

H )∧x̄
(by Corollary 4.2.18 and Zariski’s main

theorem; see [7, III-1, 4.4.3, 4.4.11]). This homomorphism defines a structural

morphism (~Mspl,min
H,(k,µ)N )∧x̄ → (~MZH,spl

H )∧x̄ , whose pre-composition with the canonical

morphism (~Zspl
[(ΦH,δH)],(k,µ)N )∧x̄ → (~Mspl,min

H,(k,µ)N )∧x̄ defines a canonical morphism

(~Zspl
[(ΦH,δH)],(k,µ)N )∧x̄ → (~MZH,spl

H )∧x̄ , which is then an isomorphism because its

pre-composition with the formal completion (~MZH,spl
H )∧x̄ → (~Zspl

[(ΦH,δH)],(k,µ)N )∧x̄ of

(4.2.19) is the identity morphism on (~MZH,spl
H )∧x̄ . Consequently, this last completion

of (4.2.19) is also an isomorphism.

Proof. Using the canonical isomorphisms (4.2.10), the same argument as in the
proof of [12, Prop. 7.2.3.16] works here. �

Remark 4.2.22. As remarked in the proof of [13, Prop. 12.14], we do not need to
know a priori that (4.2.19) induces a bijection on geometric points. Also, by the
same argument as in the proof of Corollary 4.2.18, we may remove the dependence
on the second assertion of [13, Lem. 12.9] from the proof of [13, Prop. 12.14].

Corollary 4.2.23 (cf. [13, Thm. 12.16] and [15, Thm. 6.1(5)]). In (4.2.16), each

stratum ~Zspl
[(ΦH,δH)],(k,µ)N is canonically isomorphic to ~MZH,spl

H . The canonical sur-

jection (4.2.17) can be identified with the composition of the canonical morphism

(4.2.12) with the above-mentioned isomorphism ~MZH,spl
H

∼→ ~Zspl
[(ΦH,δH)],(k,µ)N .

Proof. As in the proof of [13, Thm. 12.16], it suffices to show that (4.2.19) is an
isomorphism. Since this can be verified over formal completions of strict local rings,
this follows from Proposition 4.2.20, as desired. �

Corollary 4.2.24. With the same setting as in Proposition 4.2.20, let

(~Mspl,tor
H,Σ,(k,µ)N )∧x̄ :=

(
(~Mspl,tor
H,Σ,(k,µ)N )∧~Zspl

[(ΦH,δH,σ)],(k,µ)N

)
×

~M
ZH,spl

H

(~MZH,spl
H )∧x̄

and

(~Mspl,tor
H,Σ )∧x̄ :=

(
(~Mspl,tor
H,Σ )∧~Zspl

[(ΦH,δH,σ)]

)
×

~M
ZH,spl

H

(~MZH,spl
H )∧x̄ .

The canonical morphism

(~
∮ spl

H,(k,µ)N
)∧x̄ : (~Mspl,tor

H,Σ,(k,µ)N )∧x̄ → (~Mspl,min
H,(k,µ)N )∧x̄
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induced by (4.2.2) factors as the composition of the canonical morphism

(~∂spl
H,(k,µ)N )∧x̄ : (~Mspl,tor

H,Σ,(k,µ)N )∧x̄ → (~Mspl,tor
H,Σ )∧x̄

induced by (4.2.9) with a canonical morphism

(~Mspl,tor
H,Σ )∧x̄ → (~Mspl,min

H,(k,µ)N )∧x̄ .

Proof. By treating all objects as formal schemes over (~MZH,spl
H )∧x̄ , this follows from

the explicit description (4.2.21) of O(~Mspl,min
H,(k,µ)N

)∧x̄
. �

Proposition 4.2.25. The proper morphism (4.2.1) is an isomorphism, and hence
the morphism (4.2.2) descends to a canonical morphism

(4.2.26) ~Mspl,tor
H,Σ → ~Mspl,min

H,(k,µ)N

extending (4.1.27), under which ω
⊗(k,µ)N

~Mspl,tor
H,Σ ,J

(see Definition 4.1.3) is isomorphic to

the pullback of ω
⊗(k,µ)N

~Mspl,min
H,(k,µ)N

,J
(see Proposition 4.1.22).

Proof. Since ~Mspl,tor
H,Σ,(k,µ)N is by definition the normalization of the schematic closure

of Graph(~
∮ spl,pre

H,(k,µ)N
) in ~Mspl,tor

H,Σ ×
Spec(OK)

~Mspl,min
H,(k,µ)N , Corollary 4.2.24 shows that the

proper morphism (4.2.1) is an isomorphism after pullback to an fpqc covering of
~Mspl,tor
H,Σ , which then forces (4.2.1) itself to be an isomorphism. �

Corollary 4.2.27. The invertible sheaf ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

over ~Mspl,tor
H,Σ is semiample.

Proof. Since the invertible sheaf ω
⊗(k,µ)N

~Mspl,min
H,(k,µ)N

,J
over ~Mspl,min

H,(k,µ)N is ample, this follows

from Proposition 4.2.25. �

Corollary 4.2.28 (cf. [13, Cor. 12.5]). ~Mspl
H ⊗Z

Fp is dense in ~Mspl,min
H,(k,µ)N ⊗Z

Fp.

Proof. Since ~Mspl
H ⊗Z

Fp is dense in ~Mspl,tor
H,Σ,(k,µ)N ⊗Z

Fp by (2) of Theorem 3.4.1, this

follows from Proposition 4.2.15. �

Lemma 4.2.29. For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, and each integer i satisfying
0 ≤ i < d[τ ], the invertible sheaf ωi

Λ,[τ ],~Mspl,tor
H,Σ

(see (4.1.13)) descends to an invertible

sheaf ωi
Λ,[τ ],~Mspl,min

H,(k,µ)N

over ~Mspl,min
H,(k,µ)N via the canonical morphism (4.2.26).

Proof. By Lemma 4.1.17 and Corollary 4.2.28, and by the same argument as in the
proof of [12, Thm. 7.2.4.1], it suffices to note that the pullback of each of these

sheaves to each ~Xspl
ΦH,δH,σ

descends to ~MZH,spl
H , by Lemma 4.1.12. �

Corollary 4.2.30. For all positive µ′ and all integers k′ and N ′, the invertible

sheaf ω⊗ k
′

~Mspl,tor
H,Σ ,J

(resp. ω
µ′

~Mspl,tor
H,Σ

, resp. ω
⊗(k′,µ′)

~Mspl,tor
H,Σ ,J

, resp. ω
⊗(k′,µ′)N ′

~Mspl,tor
H,Σ ,J

; see Definitions

4.1.1 and 4.1.3) descends to an invertible sheaf ω⊗ k
′

~Mspl,min
H,(k,µ)N

,J
(resp. ω

µ′

~Mspl,min
H,(k,µ)N

, resp.

ω
⊗(k′,µ′)

~Mspl,min
H,(k,µ)N

,J
, resp. ω

⊗(k′,µ′)N ′

~Mspl,min
H,(k,µ)N

,J
) over ~Mspl,min

H,(k,µ)N via the morphism (4.2.26).
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Proof. This follows from Lemma 4.2.29, as in the proof of Corollary 4.1.18. �

Proposition 4.2.31. For each positive µ′ and each integer k′ ≥ k(µ′), we have
canonical isomorphisms

~Mspl,min
H,(k,µ)N

∼= Proj
(
⊕

N ′≥0
Γ(~Mspl,min

H,(k,µ)N , ω
⊗(k′,µ′)N ′

~Mspl,min
H,(k,µ)N

,J
)
)

∼= Proj
(
⊕

N ′≥0
Γ(~Mspl,tor

H,Σ , ω
⊗(k′,µ′)N ′

~Mspl,tor
H,Σ ,J

)
)
.

(4.2.32)

This shows that ~Mspl,min
H,(k,µ)N is (up to canonical isomorphism) independent of the

choices of µ and the integers k ≥ k2(µ) and N ≥ N2(µ). We shall henceforth drop

the subscript (k, µ)N from the notation of ~Mspl,min
H,(k,µ)N etc, and rewrite the morphism

(4.2.26) as a canonical morphism

(4.2.33) ~∮ spl

H : ~Mspl,tor
H,Σ → ~Mspl,min

H .

Proof. By Corollary 4.2.27, ω
⊗(k′,µ′)

~Mspl,tor
H,Σ ,J

is also semiample. By Corollary 4.2.30,

ω
⊗(k′,µ′)

~Mspl,tor
H,Σ ,J

descends to the invertible sheaf ω
⊗(k′,µ′)

~Mspl,min
H,(k,µ)N

,J
. Since the canonical mor-

phism (4.2.26) is proper and surjective, the emptiness of the base locus of ω
⊗(k′,µ′)

~Mspl,tor
H,Σ ,J

forces that of ω
⊗(k′,µ′)

~Mspl,min
H,(k,µ)N

,J
, and hence ω

⊗(k′,µ′)

~Mspl,min
H,(k,µ)N

,J
is also semiample. Therefore,

the canonical morphism ~Mspl,tor
H,Σ → ~Mspl,min

H,(k′,µ′) factors as the composition of (4.2.26)

with a canonical morphism ~Mspl,min
H,(k,µ)N → ~Mspl,min

H,(k′,µ′). By a symmetric argument,

we also obtain a canonical morphism ~Mspl,min
H,(k′,µ′) → ~Mspl,min

H,(k,µ)N , whose pre- and post-

compositions with the previous canonical morphism are identity morphisms by con-

struction. This shows that ~Mspl,min
H,(k,µ)N and ~Mspl,min

H,(k′,µ′) are canonically isomorphic, and

that we have the canonical isomorphisms in (4.2.32), as desired. �

Proposition 4.2.34. There is a commutative diagram

(4.2.35) ~Mspl,tor
H,Σ

(4.2.33)
//

can.

��

~Mspl,min
H

��

~Mtor
H,Σ ⊗

OF0,(p)

OK

~∮
H

⊗
OF0,(p)

OK
// ~Mmin
H ⊗
OF0,(p)

OK

where the dotted morphism is induced by the composition of canonical morphisms

~Mspl,min
H → Proj

(
⊕
k≥0

Γ(~Mspl,min
H , ω⊗ k~Mspl,min

H ,J
)
)
∼= Proj

(
⊕
k≥0

Γ(~Mspl,tor
H,Σ , ω⊗ k~Mspl,tor

H,Σ ,J
)
)

∼= Proj
(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)
⊗

OF0,(p)

OK ∼= ~Mmin
H ⊗
OF0,(p)

OK

(see Corollary 4.2.30, Definition 4.1.1, [13, Prop. 7.11], and [15, Thm. 6.1(2)]),
under which ω~Mspl,min

H ,J is isomorphic to the pullback of ω~Mmin
H ,J ⊗

OF0,(p)

OK .
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4.3. Main theorem for minimal compactifications.

Theorem 4.3.1 (cf. [12, Thm. 7.2.4.1]). For each H as in Choices 2.2.9, there is a

normal scheme ~Mspl,min
H projective and flat over Spec(OK), containing the scheme

~Mspl
H in Definition 2.4.5 as an open fiberwise dense subscheme, such that:

(1) We have a commutative diagram

(4.3.2) MH ⊗
F0

K �
�

//

� _

��

~Mspl
H

// //
� _

��

~MH ⊗
OF0,(p)

OK
� _

��

Mmin
H ⊗

F0

K �
�

// ~Mspl,min
H

// // ~Mmin
H ⊗
OF0,(p)

OK

of noetherian normal schemes flat over Spec(OK) and of canonical mor-
phisms (over Spec(OK)), in which all squares are Cartesian, all vertical
arrows are open immersions with fiberwise dense image over Spec(OK),
the two horizontal arrows at the left-hand side are open immersions with
schematically dense images, the two horizontal arrows at the right-hand side
are projective and surjective, and the compositions of horizontal arrows in
the same rows are also open immersions with schematically dense images.

(2) For each Σ as in Theorem 3.4.1, the commutative diagrams (3.4.2) and
(4.3.2) are compatible with each other and form a commutative diagram

(4.3.3) MH ⊗
F0

K
� � //

� _

��

~Mspl
H

// //
� _

��

~MH ⊗
OF0,(p)

OK
� _

��

Mtor
H,Σ ⊗

F0

K �
�

//

∮
H ⊗
F0

K

����

~Mspl,tor
H,Σ

// //

~∮ spl

H
����

~Mtor
H,Σ ⊗

OF0,(p)

OK

~∮
H
����

Mmin
H ⊗

F0

K �
�

// ~Mspl,min
H

// // ~Mmin
H ⊗
OF0,(p)

OK

in which all squares not involving ~Mmin
H ⊗
OF0,(p)

OK are Cartesian, the ar-

rows already showed up in (3.4.2) and (4.3.2) are as before, the new arrows
between the bottom two rows are all proper and surjective with geometri-
cally connected fibers, and the compositions of vertical arrows in the same
columns are open immersions with fiberwise dense images.

(3) Over ~Mspl
H (resp. ~Mspl,tor

H,Σ , resp. ~Mspl,min
H ), there is a canonical invertible

sheaf ωi
Λ,[τ ],~Mspl

H
(resp. ωi

Λ,[τ ],~Mspl,tor
H,Σ

, resp. ωi
Λ,[τ ],~Mspl,min

H
), for each Λ ∈ L ,

each [τ ] ∈ Υ/ ∼, and each integer i satisfying 0 ≤ i < d[τ ]; and there

are canonical invertible sheaves ω⊗ k~Mspl
H ,J

(resp. ω⊗ k~Mspl,tor
H,Σ ,J

, resp. ω⊗ k~Mspl,min
H ,J

)

and ω
⊗(k,µ)

~Mspl
H ,J

(resp. ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

, resp. ω
⊗(k,µ)

~Mspl,min
H ,J

), for each integer k and each

triply indexed collection of integers µ = {µiΛ,[τ ]}Λ∈LJ,[τ ]∈Υ/∼,0≤i<d[τ]
that

is positive in the sense that µi−1
Λ,[τ ] > µiΛ,[τ ] for all Λ ∈ LJ, [τ ] ∈ Υ/ ∼,
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and 0 < i < d[τ ], so that (cf. (2.3.8) and (4.1.13))

ω
⊗(k,µ)

~Mspl
H ,J

∼= ω⊗ k~Mspl
H ,J
⊗
(
⊗

Λ∈LJ

(
⊗

[τ ]∈Υ/∼

(
⊗

0≤i<d[τ]

(ωi
Λ,[τ ],~Mspl

H
)⊗µ

i
Λ,[τ]

)))
,

ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

∼= ω⊗ k~Mspl,tor
H,Σ ,J

⊗
(
⊗

Λ∈LJ

(
⊗

[τ ]∈Υ/∼

(
⊗

0≤i<d[τ]

(ωi
Λ,[τ ],~Mspl,tor

H,Σ
)⊗µ

i
Λ,[τ]

)))
,

and

ω
⊗(k,µ)

~Mspl,min
H ,J

∼= ω⊗ k~Mspl,min
H ,J

⊗
(
⊗

Λ∈LJ

(
⊗

[τ ]∈Υ/∼

(
⊗

0≤i<d[τ]

(ωi
Λ,[τ ],~Mspl,min

H
)⊗µ

i
Λ,[τ]

)))
.

Under the canonical morphisms ~Mspl
H → ~Mspl,tor

H,Σ as in Theorem 3.4.1 and

~∮ spl

H : ~Mspl,tor
H,Σ → ~Mspl,min

H as in (4.3.3), the pullbacks of the sheaves over the

targets are canonical isomorphic to the corresponding sheaves (with similar

indices) over the sources, while the sheaves over ~Mspl,tor
H,Σ descend to the

corresponding sheaves over ~Mspl,min
H via the canonical morphism ~∮ spl

H .

For each integer k, the sheaf ω⊗ k~Mspl
H ,J

(resp. ω⊗ k~Mspl,tor
H,Σ ,J

, resp. ω⊗ k~Mspl,min
H ,J

)

is canonically isomorphic to the pullback of the sheaf ω⊗ k~MH,J
(resp. ω⊗ k~Mtor

H,Σ,J
,

resp. ω⊗ k~Mmin
H ,J

) as in [13, Prop. 6.1 (resp. 7.11, resp. 6.4)] and [15, Thm.

6.1(2)]. For all k > 0, it is semiample, and has an ample pullback to the
characteristic zero fiber.

For all positive µ, and for all sufficiently large k (depending on µ), the

sheaf ω
⊗(k,µ)

~Mspl
H ,J

(resp. ω
⊗(k,µ)

~Mspl,tor
H,Σ ,J

, resp. ω
⊗(k,µ)

~Mspl,min
H ,J

) is ample (resp. semiample,

resp. ample). In particular, for all positive µ and for all sufficiently large

k (depending on µ), we have ~Mspl,min
H

∼= Proj
(
⊕
N≥0

Γ(~Mspl,tor
H,Σ , ω

⊗(k,µ)N

~Mspl,tor
H,Σ ,J

)
)

.

(4) ~Mspl,min
H has a stratification by locally closed subschemes

(4.3.4) ~Mspl,min
H =

∐
[(ΦH,δH)]

~Zspl
[(ΦH,δH)],

with [(ΦH, δH)] running through a complete set of cusp labels as in [12,

Def. 5.4.2.4], such that the [(Φ′H, δ
′
H)]-stratum ~Zspl

[(Φ′H,δ
′
H)] is contained in

the closure of the [(ΦH, δH)]-stratum ~Zspl
[(ΦH,δH)] if and only if there is a

surjection from the cusp label [(Φ′H, δ
′
H)] to the cusp label [(ΦH, δH)] as in

[12, Def. 5.4.2.13]. The analogous assertion holds after pullback to fibers
over Spec(OK).

Each [(ΦH, δH)]-stratum ~Zspl
[(ΦH,δH)] is flat over Spec(OK) and normal,

and is canonically isomorphic to the boundary version ~MZH,spl
H of ~Mspl

H (cf.
Definitions 2.4.5 and 3.2.1, and the summary in Remark 3.2.19). In partic-

ular, ~Mspl
H = ~Zspl

[(0,0)] is an open fiberwise dense stratum in this stratification.



48 KAI-WEN LAN

This stratification (4.3.4) is compatible with the stratification of ~Mmin
H as

in [13, Thm. 12.1 and 12.16]; and we have a commutative diagram

(4.3.5) MZH
H ⊗

F0

K �
�

//

o

��

~MZH,spl
H

// //

o

��

~MZH
H ⊗
OF0,(p)

OK

o
��

Z[(ΦH,δH)] ⊗
F0

K �
�

//

� _

��

~Zspl
[(ΦH,δH)]

// //
� _

��

~Z[(ΦH,δH)] ⊗
OF0,(p)

OK
� _

��

Mmin
H ⊗

F0

K
� � // ~Mspl,min

H
// // ~Mmin
H ⊗
OF0,(p)

OK

of canonical morphisms, in which all squares not involving ~Mmin
H ⊗
OF0,(p)

OK

are Cartesian, the vertical arrows in the upper-half are isomorphisms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

(5) The restriction of the proper surjection ~∮ spl

H in the diagram (4.3.3) to the

stratum ~Zspl
[(ΦH,δH,σ)] of ~Mspl,tor

H,Σ induces a surjection to the stratum ~Zspl
[(ΦH,δH)]

of ~Mspl,min
H , which can be identified with the composition of the canonical iso-

morphism ~Zspl
[(ΦH,δH,σ)]

∼→ ~Ξspl
ΦH,δH,σ

given by (3.3.3) (whose inverse appeared

also in the diagram (3.4.4)), the structural morphism ~Ξspl
ΦH,δH,σ

→ ~MZH,spl
H ,

and the isomorphism ~MZH,spl
H

∼→ ~Zspl
[(ΦH,δH)] mentioned above in (4). In par-

ticular, it is proper and surjective if σ is top-dimensional in P+
ΦH
⊂ (SΦH)∨R.

Under such surjections, the commutative diagrams (3.2.20) (expanded
version), (3.4.4), (4.3.5), and (4.3.3) are all compatible with each others.

Proof. Let us take ~Mspl,min
H as in Proposition 4.2.31, which is a normal scheme pro-

jective and flat over Spec(OK) by construction. Then, based on the corresponding
assertions in [12, Thm. 7.2.4.1], the assertions (1) and (2) follow from [13, Prop.
6.1, 6.4, and 7.11] and [15, Thm. 6.1(2)], and from Propositions 4.2.25 and 4.2.34;
the assertion (3) follows from [13, Prop. 6.1, 6.4, and 7.11] and [15, Thm. 6.1(2)]
(again), from the definitions (see Definitions 4.1.1 and 4.1.3 and the references made
from there), and from Corollary 4.2.30; and the assertions (4) and (5) follow from
[13, Thm. 12.1, Cor. 12.14, and Thm. 12.16] and [15, Thm. 6.1(5)], from Proposi-
tion 4.2.15 and Corollary 4.2.18, and from the fact that the rather naive definitions
[13, (6.8)] and (4.2.14) are necessarily compatible with each other. �

Corollary 4.3.6. The canonical proper morphism

(4.3.7) ~Mspl,tor
H,Σ → ~Mspl,min

H ×
~Mmin
H

~Mtor
H,Σ
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induced by the diagram (4.3.3) is finite and induces a canonical isomorphism over

the open dense subscheme ~Mspl
H . Consequently, (4.3.7) identifies its source with the

normalization of its target, by Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]).

Proof. By (4) and (5) of Theorem 4.3.1, for each stratum ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ which

is mapped to the stratum ~Z[(ΦH,δH)] of ~Mmin
H , the morphism

(4.3.8) ~Zspl
[(ΦH,δH,σ)] → ~Zspl

[(ΦH,δH)] ×
~Z[(ΦH,δH)]

~Z[(ΦH,δH,σ)]

induced by the pullback of (4.3.7) can be identified with the canonical morphism

(4.3.9) ~Ξspl
ΦH,δH,σ

→ ~MZH,spl
H ×

~M
ZH
H

~ΞΦH,δH,σ

for any representative (ΦH, δH, σ) of [(ΦH, δH, σ)], which is finite and induces an
isomorphism from its source to the normalization of its target by Definition 3.2.3.
Then (4.3.7) is quasi-finite, in particular, and hence must be finite because it is
already known to be proper. When [(ΦH, δH, σ)] = [(0, 0, {0}], (4.3.8) is just the

identity morphism over ~Mspl
H = ~Zspl

[(0,0,{0})]. Thus, the corollary follows. �

Corollary 4.3.10 (cf. [13, Cor. 14.4]). If the geometric fibers of ~Mspl
H → Spec(OK)

are reduced (resp. have integral local rings), then all geometric fibers of ~Mspl,min
H →

Spec(OK) have the same number of connected (resp. irreducible) components.

Proof. As in the proof of [13, Cor. 14.4], this follows from Corollary 3.4.15, from

the geometric connectedness of the fibers of ~
∮ spl

H : ~Mspl,tor
H,Σ → ~Mspl,min

H , and from the

fiberwise density of ~Mspl
H in ~Mspl,tor

H,Σ and ~Mspl,min
H (see Theorems 3.4.1 and 4.3.1). �

Remark 4.3.11. We can improve [13, Cor. 14.4] and [15, Prop. 6.10] by assuming

there that the geometric fibers of ~MH → ~S0 are reduced (resp. have integral local
rings), by the same arguments as in the proofs of Corollaries 3.4.15 and 4.3.10.

Proposition 4.3.12 (cf. [13, Prop. 13.4, 13.9, and 13.15]). With the same setting
as in Proposition 2.4.17, the morphism (2.4.18) extends to a canonical projective
morphism

(4.3.13) ~[g]
min

: ~Mmin
H → ~Mmin

H′

compatible with any morphism as in (3.4.11), whose pullback from OF0,(p) to OK
lifts to a canonical projective morphism

(4.3.14) ~[g]
spl,min

: ~Mspl,min
H → ~Mspl,min

H′

extending the morphism (2.4.19) and compatible with any morphism as in (3.4.12).

The morphism (4.3.13) (resp. (4.3.14)) maps the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)]

(resp. ~Zspl
[(ΦH,δH)]) of ~Mmin

H (resp. ~Mspl,min
H ) to the [(Φ′H′ , δH′)]-stratum ~Z[(Φ′H′ ,δH′ )]

(resp. ~Zspl
[(Φ′H′ ,δH′ )]

) of ~Mmin
H′ (resp. ~Mspl,min

H′ ) if and only if there are representatives

(ΦH, δH) and (Φ′H′ , δ
′
H′) of [(ΦH, δH)] and [(Φ′H′ , δ

′
H′)], respectively, such that

(Φ′H′ , δ
′
H′) is g-assigned to (ΦH, δH) as in [12, Def. 5.4.3.9].

Proof. These follow from the same arguments as in the proofs of Propositions 2.4.17
and 3.4.10, and from [13, Thm. 12.1 and 12.16, and Prop. 13.4], from [15, Thm. 6.1
(2) and (5)], and from (3) and (5) of Theorem 4.3.1. �
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4.4. Vanishing of higher direct images, and Koecher’s principle. By [15,
Constr. 3.12 and Def. 5.13; cf. Rem. 2.9 and Cor. 5.11], we have

(4.4.1) ~Mtor
H,Σ
∼= NBl ~JH,dpol(

~Mmin
H )

for some compatible collection pol of polarization functions and for some integer

d ≥ 1, for some coherent O~Mmin
H

-ideal ~JH,dpol.

Proposition 4.4.2. Let ~J spl
H,dpol denote the pullback of ~JH,dpol to ~Mspl,min

H . Then
we have a composition of canonical isomorphisms

(4.4.3) ~Mspl,tor
H,Σ → NBl ~J spl

H,dpol
(~Mspl,min
H )→ ~Mspl,min

H ×
~Mmin
H

NBl ~JH,dpol(
~Mmin
H ),

inducing canonical isomorphisms over the common open dense subscheme ~Mspl
H ,

which can be identified with the canonical morphism (4.3.7), where the first mor-
phism is an isomorphism compatible with (4.4.1) (and with the canonical morphisms
in (4.3.3)), and where the second morphism is finite and identifies its source with
the normalization of its target.

Proof. Since the (coherent ideal) pullback of ~JH,dpol to ~Mtor
H,Σ is invertible, the

pullback of ~J spl
H,dpol to ~Mspl,tor

H,Σ is also invertible. Hence, the proposition follows from
the universal property of normalizations of blowups, and from Corollary 4.3.6. �

Corollary 4.4.4 (cf. [15, Cor. 6.7]). There exists an effective Carter divisor D′ over
~Mspl,tor
H,Σ , with D′red = ~Mspl,tor

H,Σ − ~Mspl
H (with its canonical reduced closed subscheme

structure) such that O~Mspl,tor
H,Σ

(−D′) is relative ample over ~Mspl,min
H , with respect to

the canonical morphism ~∮ spl

H,Σ : ~Mspl,tor
H,Σ → ~Mspl,min

H .

Proof. This follows from [15, Cor. 6.7] and Proposition 4.4.2. �

As in [12, Sec. 7.1.2], let ~pspl
ΦH,ZH

: ~Cspl
ΦH,δH

→ ~MZH,spl
H denote the structural

morphism. As in [14, Sec. 6], let P∨,+ΦH
:= {` ∈ SΦH : 〈`, y〉 > 0,∀y ∈ PΦH − {0}}.

(We made similar definitions in [15, Sec. 8].)

Lemma 4.4.5 (cf. [15, Lem. 8.1]). There exist infinitely many integers n prime to
p such that, for each such n, there exists a finite étale commutative group scheme

Hn of order prime to p over ~MZH,spl
H acting on ~Cspl

ΦH,δH
via morphisms compatible

with ~pspl
ΦH,ZH

, inducing canonical morphisms ~Cspl
ΦH,δH

→ ~Cspl
ΦH,δH

/Hn
∼→ ~Cspl

ΦH,δH

over ~MZH,spl
H , whose composition we denote as [n], such that [n]∗~Ψspl

ΦH,δH
(`) ∼=

~Ψspl
ΦH,δH

(n2`) ∼= ~Ψspl
ΦH,δH

(`)⊗n
2

, for each ` ∈ SΦH . Moreover, for any OK-algebra
R, the canonical morphism

(4.4.6) ~Ψspl
ΦH,δH

(`) ⊗
OK

R→ [n]∗(~Ψ
spl
ΦH,δH

(n2`) ⊗
OK

R)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants.

Proof. This follows from [15, Lem. 8.1] and from repeated applications of Zariski’s
main theorem (see [7, III-1, 4.4.3, 4.4.11]), by considering the action of Hn on
~Cspl

ΦH,δH
induced by that on ~CΦH,δH , and the canonical morphism [n] : ~Cspl

ΦH,δH
→

~Cspl
ΦH,δH

induced by [n] : ~CΦH,δH → ~CΦH,δH . �
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By Proposition 3.2.11, ~Ψspl
ΦH,δH

(`) is isomorphic to the pullback of ~ΨΦH,δH(`)

under the structural morphism ~Cspl
ΦH,δH

→ ~CΦH,δH . Therefore, by Lemma 4.4.5,

and by the same arguments as in the proofs of [15, Prop. 8.3 and 8.4], we obtain
the following two propositions:

Proposition 4.4.7 (cf. [15, Prop. 8.3]). Suppose ` ∈ P∨,+ΦH
. Then

Ri(~pspl
ΦH,ZH

)∗(~Ψ
spl
ΦH,δH

(`) ⊗
OK

R) = 0

for all i > 0 and all OK-algebra R.

Proposition 4.4.8 (cf. [15, Prop. 8.4]). Suppose that SΦH
∼= Z, that ` ∈ SΦH is

negative, and that the morphism ~pspl
ΦH,ZH

has positive-dimensional fibers (which is

the case when the structural morphism ~pΦH,ZH : ~CΦH,δH → ~MZH
H does). Then

(~pspl
ΦH,ZH

)∗(~ΨΦH,δH(`) ⊗
OF0,(p)

R) = 0

for all OF0,(p)-algebra R.

Let R be an OK-algebra. Let us define the formally canonical and subcanonical

quasi-coherent sheaves over ~Mspl,tor
H,Σ by the obvious analogue of [15, Def. 8.5]. By

definition, the pullback of a formally canonical (resp. subcanonical) quasi-coherent

sheaf over ~Mtor
H,Σ to ~Mspl,tor

H,Σ is formally canonical (resp. subcanonical). By the same

arguments as in the proofs of [15, Thm. 8.6 and 8.7], with the references to [15,
Thm. 6.1, and Prop. 8.3 and 8.4] there replaced with the references to Theorem
3.4.1 and Propositions 4.4.7 and 4.4.8 here, we obtain the following two theorems:

Theorem 4.4.9 (vanishing of higher direct images; cf. [14, Thm. 3.9] and [15,
Thm. 8.6]). Suppose R is an OK-algebra, and suppose that E is a quasi-coherent

sheaf over ~Mspl,tor
H,Σ that is formally canonical (resp. formally subcanonical) over R

(as above). Let D′ be as in Corollary 4.4.4, and let

E (−nD′) := E ⊗
O~Mspl,tor
H,Σ

O~Mspl,tor
H,Σ

(−nD′),

for each integer n. Then

Ri(~
∮ spl

H,Σ)∗E (−nD′) = 0

for all i > 0 and n > 0 (resp. n ≥ 0).

Theorem 4.4.10 (Koecher’s principle; compare with [14, Thm. 2.3] and [15, Thm.
8.7]). Suppose O⊗

Z
Q is a simple algebra over Q. Suppose R is an OK-algebra, and

suppose that E is a quasi-coherent sheaf over ~Mspl,tor
H,Σ that is formally canonical over

R (as above). For each open subset Umin of ~Mspl,min
H , consider its preimage U tor

in ~Mspl,tor
H,Σ under the canonical morphisms ~

∮ spl

H,Σ, and its preimage U in ~Mspl
H under

the canonical morphism ~Mspl
H → ~Mspl,min

H . Then the canonical restriction map

(4.4.11) Γ(U tor,E |Utor)→ Γ(U,E |U )

is a bijection, except when dim(MH) = 1 and Umin − U 6= ∅.
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