CLOSED IMMERSIONS OF TOROIDAL COMPACTIFICATIONS
OF SHIMURA VARIETIES

KAI-WEN LAN

ABSTRACT. We explain that any closed immersion between Shimura varieties
defined by morphisms of Shimura data extends to some closed immersion be-
tween their projective smooth toroidal compactifications, up to refining the
choices of cone decompositions. We also explain that the same holds for
many closed immersions between integral models of Shimura varieties and
their toroidal compactifications available in the literature.
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1. INTRODUCTION

Given any closed immersion between Shimura varieties or their integral mod-
els defined by some morphism of Shimura data (and some additional data, in the
case of integral models), it is natural to ask whether it extends to a closed immer-
sion between their toroidal compactifications. Since the construction of toroidal
compactifications depends on the choices of some compatible collections of cone
decompositions, part of the question is whether this can be achieved by some good
choices of them, which we might want to be refinements of some given ones.

This question is not as trivial as it seems to be. Already in characteristic zero,
the analogous question for minimal compactifications is subtle. In fact, in Scholze’s
groundbreaking work [27], for Hodge-type Shimura varieties, his “perfectoid mini-
mal compactifications” at infinite levels were first constructed using the closures in
the minimal compactifications of Siegel modular varieties, rather than the minimal
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compactifications of the Hodge-type Shimura varieties themselves; but the mor-
phism from the minimal compactification of the Shimura variety to the closure in
the minimal compactification of the Siegel modular variety is generally not even
injective on geometric points. As for toroidal compactifications, if the ambient
toroidal compactification is prescribed, then the closure of the Shimura subvariety
is generally not normal (and hence cannot be a toroidal compactification by itself),
and it might also happen that there exists no morphism that is injective on geo-
metric points from any toroidal compactification of the Shimura subvariety. (See
Remarks and for a related counter-example.)

In this article, we shall show that, under reasonable assumptions, there exist
compatible collections of cone decompositions, up to refinements, such that the
morphisms between the associated toroidal compactifications are indeed closed im-
mersions (see Theorem and Propositions and . We expect this to be
useful for studying cycles of Shimura varieties defined by special subvarieties (see
Section [5| for some examples). As an application, we shall generalize the construc-
tion of “perfectoid toroidal compactifications” from the Siegel case in [25, Appendix]
to all Hodge-type cases, and verify [9, Hypothesis 2.18] (see Section [6]).

Acknowledgements. 1 would like to thank Christopher Skinner for bringing this
question to my attention; and to thank Xin Wan and the Morningside Center of
Mathematics, and Chia-Fu Yu and the Academia Sinica, for their hospitality during
the preparation of this work. I would also like to thank David Loeffler and David
Hansen for helpful questions which led to crucial improvements and corrections.
Finally, I would like to thank Héléne Esnault and Michael Harris for encouraging
me to include an application to the verification of [9, Hypothesis 2.18], and to thank
the anonymous referee(s) for helpful comments.

2. MAIN RESULTS
Let us assume we are in one of the following cases:

Assumption 2.1. (1) For each i = 0,1, let (G;,D;) be a Shimura datum (see
[8, 1.2.1]), where D; is a G;(R)-conjugacy class of a homomorphism h; :
Resc/r Gm,c — Gigr. Let p: Go — G1 be an injective homomorphism of
algebraic groups over Q such that (p(R))(Do) C Dy1. Let H; C Gi(A™) be
neat (see [26] 0.6]) open compact subgroups, for i = 0,1, such that Hy =
(p(AOO))_l(’Hl). Let F denote a subfield of C containing the reflex field of
(Go, Do) (which then also contains that of (G1,D1) by [8, 2.2.1]), and let
So := Spec(F). For each i = 0,1, let X; denote the base change to F of
the canonical model of the Shimura variety associated with (G;,D;) at level
H;. Then we have a canonical morphism f : Xg — Xy over Sy, which we
assume to be a closed immersion. (This can be achieved up to replacing
Hy with a finite index subgroup still containing (p(A>))(Ho), by [T, 1.15].)

(2) For each i = 0,1, let (O;,%;, Li, (-, - )i, hi) be an integral PEL datum (see
[18, Def. 1.1.1.1]). Assume that Oy is a subring of Oy preserved by xo,
that %1 = *g|lo,, and that (Lo, {-, -)o,ho) = (L1,{-, - )1,h1) as PEL-type
O -lattices (see [16, Def. 1.2.1.3]). For each i = 0,1, let G; denote the
associated group functor over Spec(Z), as in [16, Def. 1.2.1.6], so that we
have a canonical injective homomorphism p : Gy — G1 by definition. Let

F denote a subfield of C that is a finite extension of the reflex field Fy of
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(Oo,*0, Lo, (-, Yo, ho) (see [16, Def. 1.2.5.4]) (which is also the reflex field
of (Go®Q,Go(R)-hg), and hence also that of Fy of (O1,%1, L1, (, - )1,h1)
Z

or (G1®Q,G1(R) - hy), by [8, 2.2.1]). Let O be a set of rational primes
Z

(see [16, Notation and Convetions]) that are good (see [16] Def. 1.4.1.1]) for
both (Oj,%i, Ly, (-, )i, hs), for i = 0,1, and let So := Spec(Op (ay). Let
H; C Gi(A>") be neat (see [16, Def. 1.4.1.8]) open compact subgroups,
for i = 0,1, such that Ho = (p(AOO’D))il(Hl). For each i = 0,1, let
My, denote the (smooth) moduli scheme over Spec(OF, n) associated with
(Oiy %3y Liy (- - )iy hi) at H; (see [16, Def. 1.4.1.4, Thm. 1.4.1.11, and Cor.
7.2.3.10]). By restricting the Og-endomorphism structures parameterized
by My, to O1-endomorphism structures, we obtain a canonical morphism
M1, O® OF (o) = My, O® Op oy over So. Then we take Xo and X to
Fgy,0 .0

be open-and-closed subschemes of My, @ Op oy and My, O® OF (),
Fp,0

Fg,0
respectively, such that the above morphism Oinduces a morphism f: Xo — Xy
over Sg, which we assume to be a closed immersion.

Fori=0,1, suppose that we have integral PEL data (O;,*;, L, (-, * )i, hi)
(for which p might not be good), together with some suitable choices of
(Oi,%i, Lij, (-, - )ijs hij) and a shared choice of a collection of auziliary
integral PEL data {(Oaux, *aux, Lj,aux, (-5 * )j,aux Bj,aux) Fies (for which p is
good), asin [I7, Sec. 2 and 4]; and that (O1,%1, L1, (-, - )1, h1) also serves as
a choice of an auziliary integral PEL datum for (Og,*0, Lo, (-, * o, ho) (but
without requiring that p is good for either of these two). Then we have homo-
morphisms Go 2 Gq Plaapx Gj,aux, for all j € J. Suppose that we have neat
open compact subgroups Ho C G(Z), Hi C G(Z), and H; aux C Gj’aux(Zp)
such that Hy = (p(A‘X’))_l(’Hl) and such that the images of Hi under
Gl(Z) — Gj’aux(Zp) are neat and contained in H; aux, for all j € J. Let
F denote a subfield of C that is a finite extension of the reflex field of
(Oo,*0, Lo, (-, - Yo, ho), and hence also those of (O1,%1,L1,{-, -)1,h1) and
(Oaux; *aux, Lj,auxs {* 5 * )j,aux Pjaux), for all j € J. With the above data,
we have associated moduli problems My, and My, over Spec(F), and as-
sociated auxiliary moduli problems My, . over Sg := Spec(Op ), to-
gether with canonical finite morphisms My, — My, — [] MHJ.,“X%Q

jelJ

over Spec(F), which extend to canonical finite morphisms MHO — MHI —
[1 M ... overSo by taking normalizations as in [17, Sec. 4]. Then we take
jeJ

Xo and Xy to be open-and-closed subschemes of |\7|7.L0 and |\7|7.L1, respectively,
such that |\7|7.¢(J — |\7|7.L1 induces a morphism f : Xg — Xy over Sy, which we
assume to be a closed immersion.

Suppose that we have a morphism of Shimura data (Go,Dg) — (G1,D1)
defined by some injective homomorphism p : Go — G1 as in , and sup-
pose that we have a Siegel embedding (G1,D1) < (Gaux, Daux) defined by
some injective homomorphism Gi — Gaux, with Gaux = GSpy, o, for some
g > 0. Suppose that we have neat open compact subgroups Ho C Go(A>),
Hi C G1(A%), and Hanx C Caux(A®P) such that Ho = (p(A>)) " (Hy)
and such that the image of Hi under G1(A®) = Gaux(AP) is neat and
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contained in Haux- Let F' denote a subfield of C that is a finite extension of
the reflex: field of (Go, Dg), and hence also that of (G1,D1). Let Xy and Xy be
integral models over Sg := Spec(Op, (,)) of the Shimura varieties associated
with (Go, Do) and (G1,D1) at levels Ho and Hq, respectively, defined by tak-
ing normalizations of the characteristic zero models over F' (which are base
changes of the corresponding canonical models to F') over the Siegel moduli
over Spec(Zy) associated with (Gaux, Daux) and the prime-to-p level Haux,
as in [24, Introduction]. Then we have a canonically induced morphism
f: Xog = Xy over Sg, which we assume to be a closed immersion.

We shall say that we are in Cases , , , or depending on the case
we are in Assumption [2.1l In each case, we have good toroidal compactifications
X; — Xgozr associated with some compatible collections of cone decompositions ;,
for i = 0,1, whose properties we will review in more detail in the next section.

Our main result is the following:

Theorem 2.2. Let f : Xg — X; be as in Assumption 23] Then there exist toroidal
compactifications X; < Xi‘g?, for i = 0,1, associated with some compatible collec-
tions X; of projective smooth cone decompositions (see [2 8], 26] in Case ; see [10],
Thm. 6.4.1.1 and 7.3.3.4] in Case (2)); see [19, Thm. 6.1] in Case [)); and see [24}
Thm. 4.1.5 and Rem. 4.1.6] in Case ({])) such that f extends to a closed immersion

s, P XEs, = Xi%, - Moreover, if we denote by T, the Oxsey, -ideal defining the

boundary X§°§ —X; (with its reduced subscheme structure), fori = 0,1, then we may

require that fg;r’;l(fgl) = T, as Oxor -ideals. We may require that $o and ¥
’ 20

refine any finite number of prescribed compatible collections of cone decompositions.
The proof of Theorem will be completed in Section

Remark 2.3. (1) In Cases and , for example, we can take X; to be the
schematic closure of the base change to Spec(F') of the canonical model of
the Shimura variety associated with the Shimura datum (G; ® Q, G;(R)-h;)

z

(see [I4l, Sec. 8], [I5] Sec. 2], and [23] Sec. 1.2]), for i = 0,1, when Gi%(@
is connected and (G; ® Q, G;(R) - h;) qualifies as a Shimura datum.
Z

(2) In Case 7 in order to show that f : Xy — X; is indeed a closed immersion,
we often have to resort to the moduli interpretations of My, and My, .

(3) In Case , when the levels Ho and H; differ at p from the stabilizers
of Ly and Ly, it is generally more difficult to verify that the morphism
[+ Xg — Xi defined abstractly by taking normalizations is a closed im-
mersion. Practically, when the levels are parahoric at p (and satisfies some
technical assumptions), we can still define X and X; using some explicit
moduli problems—see, for example, [I7, Ex. 2.4 and 13.12, and Rem. 16.5].
However, we do not (yet) have a method to study higher levels in general.

(4) In Case (), the similar verification that f: Xo — X; is a closed immersion
is subtle already when the levels are hyperspecial at p as in [13].

(5) Nevertheless, Theorem provides closed immersions f3's : Xi5 —
ngl as long as the input f : Xo — X; is a closed immersion, and we
included all four cases (which in theory allows arbitrarily high levels at p in
Cases and ) even when the assumption of being a closed immersion
cannot be easily verified in general.
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(6) Certainly, we expect Theorem to extend to integral models of abelian-
type Shimura varieties, generalizing those constructed in Cases , ,
and in Assumption as soon as the their toroidal compactifications
are constructed and shown to have desired properties as in Propositions|3.1
and below. However, we do not expect it to be any easier to verify that
f:Xo — X is indeed a closed immersion.

Remark 2.4. In Theorem the main reason to consider the projectivity of the
cone decompositions is that it ensures that the toroidal compactifications we ob-
tained are schemes rather than merely algebraic spaces.

Remark 2.5. In Theorem the assertion that fg 3 (Zs,) = T, does not follow

from the assertion that fi?'y; is a closed immersion. (See Example [5.1) below.)

Remark 2.6. Since base changes of closed immersions are still closed immersions,
by using [20, Thm. 2.3.2], Theorem implies similar results for partial toroidal
compactifications of well-positioned subschemes of base changes of integral models
of Shimura varieties. We shall leave the precise statements to interested readers.

3. MORPHISMS BETWEEN TOROIDAL COMPACTIFICATIONS

In all cases in Assumption 2.1} we have good toroidal and minimal compactifica-
tions Xfozrl — Sp and X — Sy for i = 0,1, whose qualitative properties we shall
summarize as follows, based on the constructions in [4, 2] [3, 26] 16l 17, 19] (as in
[21, Prop. 2.2] and [20, Prop. 2.1.2 and 2.1.3, and Cor. 2.1.7] and their proofs):

Proposition 3.1. For each i = 0,1, there is a canonical minimal compactification
TP X X
over S, together with a canonical collection of toroidal compactifications

tor tor
Jis, 1 X = X,

over Sy, labeled by certain compatible collections ¥; of cone decompositions, satis-
fying the following properties:

(1) For each ¥;, there is a proper surjective structural morphism

i, P XIE, = X
compatible with J™™ and Ji$, in the sense that J™ = §, o oJi$E .

(2) The scheme X admits a stratification by locally closed subschemes Z; flat
over Sg, each of which is isomorphic to a finite quotient of an analogue of
Xi. (Nevertheless, in Cases and , we can still identity each Z; with
an analogue of X;.)

(3) Each X; is a set {Xz,}z, of cone decompositions ¥z, with the same index
set as that of the strata of X¥®. (In [16], the elements of this index set was
called cusp labels.) For simplicity, we shall suppress such cusp labels and
denote the associated objects with subscripts given by the strata Z;.

(4) For each stratum Z;, the cone decomposition ¥z, is a cone decomposition
of some Pz,, where Pz, is the union of the interior PZ of a homogenous
self-adjoint cone (see [3l Ch. 2]) and its rational boundary components,
which is admissible with respect to some arithmetic group I'z, acting on
Pz, (and hence also on Xz,). Then ¥z, has a subset EZ forming a cone
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decomposition of Pz. If T is a cone in Xz, that is not in EZ, then there
exist a stratum Z} of X whose closure in XX contains Z;, and a cone
7 in Z;, whose I'z;-orbit s uniquely determined by the I'z,-orbit of T.
We nfaay and we shall assume that 3; is smooth, and that, for each Z;
and each o € EZ, the stabilizer I'z, » of o in I'z, is trivial.
For each ¥;, the associated X:OEr admits a stratification by locally closed
subschemes Z; 5 flat over S, labeled by the strata Z; of Xmingnd the
orbits [o] € EZ /Tz,. The stratifications of X{%. and X{™ are compatible
with each other in a precise sense, which we summarize as follows: The
preimage of a stratum Z; of X%ii“ is the (set-theoretic) disjoint union of the
strata Z; [5) of Xg?ﬁl with [o] € ZZ /Tz,. If T is a face of a representative o
of [o], which is identified (as in the property above) with the I'z;-orbit

+
z
contains Z;, then Z; () is contained in the closure of Z;’[T,],

[T'] of some cone 7' in X7,, where Z is a stratum whose closure in XM

For each stratum Z; of X there is a proper surjective morphism
Czi — Zi

(whose precise description is not important for our purpose), together with
a morphism

Ezi — Ozi
of schemes which is a torsor under the pullback of a split torus Ez, with
some character group Sz, over Spec(Z), so that we have

=, ~§ ( Wy (0 )
Zs 7pecﬁczi EGGSBZi ZZ()

for some invertible sheaves ¥z, (£). (Each Uz,(¢) can be viewed as the sub-
sheaf of (Ez, — Cz,)«0=, on which Ez, acts via the character { € Sz,.)
This character group Sz, admits a canonical action of I'z,, and its R-dual
S7, g := Homgz(Sz,,R) canonically contains the above sets Pz, and PZ as
subsets with compatible T'z, -actions.

For each o € Xz,, consider the canonical pairing (-, -) : Sz, xS7 p — R
and 0¥ :=={l €Sz, : (l,y) >0, Vy € o}, oy :={L €8Sz, : ({,y) >0, Vy €
o}, and ot :=={l €Sz, : {{,y) =0, Vy € 0} 2 0" /oy. Then we have the
affine toroidal embedding

=7, — =Z; (U) = Specﬁczi (ZEEEV ‘I’Zi (€)> .

The scheme Ez,(0) has a closed subscheme Zz, , defined by the ideal sheaf
corresponding to ® Wz, (), so that
Y 2

€oy

=Zi,0 = Specﬁczi <€€€El \I/Zi (6))
Then Ez,(c) admits a natural stratification by locally closed subschemes
Ez,- (i.e., the closed subscheme as above of the open subscheme Zz,(7) of
Ez,(0)), where T runs over all the faces of o in ¥z,.
For each given ¥;, and for each Z;, consider the full toroidal embedding

272,52, = RS AC))
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defined by the cone decomposition Xz, (cf. [16, Thm. 6.1.2.8 and Sec. 6.2.5]),
and consider the formal completion

xziyzzi = (Ezi7zzi)/\ U Ez
TEX}Z

i T

of Ezi,gzi along its closed subscheme LéJr Ez,r. Consider, for each o €
TEL,,

EZ, the formal completion
o - A
xzi,a = (‘:'Zi (U)): (o)+

=z

of 2z,(c) along its closed subscheme Zz,(c) = U =z, Then
Tex) ,7Co

Xz,», admits an open covering by X3, , for o running through elements of

ZZ, and we have canonical flat morphisms X3, , < Xz,x, — X%, (of

locally ringed spaces) inducing isomorphisms

(3.2) X5, . = (Xi% )"

and

(3.3) Xz,5,, /T2, o (Xi"él)A U z

+
[rl€xz. /Tz,

i,[7]

More precisely, for each o € EZ, and for each affine open formal sub-
scheme 2 = Spf(R) of X3, ,, under the canonically induced (flat) mor-
phisms W := Spec(R) — X%, and Spec(R) — Zz,(0) induced by , the
stratification of W induced by that of Xz"g coincides with the stratification
of W induced by that of ZEz,(c). In particular, the preimages of X; and Ez,
coincide as an open subscheme WO of W.

As for the morphism f : Xg — X;, we have the following;:

Proposition 3.4. Assume slightly more generally (than in Assumption that
(p(A™>))(Ho) C H1 and hence that the morphism f : Xo — Xy is finite. Then there

ezists a canonical finite morphism
fmin . Xglin — Xrlnin
such that f™" o JRin = JWin o £ over Sy, together with a canonical collection of
proper morphisms
s, Xi%, > Xi%,

such that fs o 3%, = Ji%, o f and f™ o § . = ¢ o ofi's, overSo, labeled
y certain pairs (2o, 2;) of compatible collections of cone decompositions that are
b tai irs (Yo, 2 tible collecti d it that

compatible with each other in a sense that we shall explain below, satisfying the
following properties:

(1) For each stratum Zo of X3", there exists a (unique) stratum Z; of X{in
such that f™™(Zy) C Zy (as subsets of X). Moreover, Zy is both open
and closed in (f™™)~1(Zy), and f™" induces a finite morphism Zy — Z;.

(2) Over any Zy — Z;1 as above, we have a finite morphism

Czo — Czl s
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over which we have a finite morphism
EZO — Ezl,
which induces a finite morphism 2z, — EZz, x Cz, which is equivariant
c

Z1
with the pullback of a group homomorphism of tori

EZO — .Ez1
with finite kernel over Spec(Z) that is dual to a homomorphism
Sz1 — SZO

of character groups with finite cokernel. The R-dual of this last homomor-
phism is an injective homomorphism Sy p < Sj p of R-vector spaces,
inducing a Cartesian diagram of injective maps

P —— P

!

P;,&——Pyz,.

All the above maps from objects associated with Zy to the corresponding
ones associated with Zy are equivariant with a canonical homomorphism
I'z, = I'z,. If {1 € Sz, is mapped to £y € Sz, under Sz, — Sz,, then the
invertible sheaf Wz, (£o) over Cyz, is canonically isomorphic to the pullback of
the invertible sheaf Uz, (¢) over Cz, under the above morphism Cz, — Cz, .

When Ho = (p(A‘X’))_l(’Hl), the homomorphism Sz, — Sz, is surjec-
tive, and hence the dual homomorphism Ez, — Ez, is a closed immersion.
If the image of 0 € ¥z, under Pz, — Pz, is contained in some T € Xz,,
then we have a canonical morphism

Z2,(0) = Specy,, (L0, ¥u(0) = 20 =Spec,, (2, V2 ()

extending =z, — Zz,, and inducing a canonical morphism
Ez,(0) — Ez,(1) x Cz, which is equivariant with the pullback of
Cz,

Ez, = Ez,. Moreover, there is an induced morphism

Z2,.0 = Spec,, (@ Wz,(6)) = Zz, = Spec v, (@ wz,(m).

(4)

(5)

EOGO'J' £1€TJ'

We say that the collections o = {Xz,}z, and 31 = {Xz, }z, are com-
patible with each other or simply compatible if, when Zy is mapped
to Zy as above, the image of each o € Z}LO under the map PZ) — PZ 18
contained in some T € ZZ. We say that ¥ is induced by i if each
o€ EZ; is exactly the preimage of some T € EZ. (If 3¢ is induced by X1,
then they are necessarily compatible.)
The morphism f : Xo — Xy extends to a proper (resp. finite) morphism
s, + Xe5, — X%, as above if and only if Xo and Xy are compatible
(resp. X is induced by 31). When Xy and 31 are compatible, if the image
of o € EZ) under P;O — PZ s contained in T € EZ, then the morphism
g{’;zm induces a morphism Zg 5 — Z1,[7) (which is not necessarily proper),
which can be canonically identified with the morphism Zz, » — Zz, .+ above.
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For each T € EZ, the preimage of Z, [ is the (set-theoretic) disjoint union
of the strata Zg |5 labeled by o € ZZJ that are mapped into T under PZ) —
PZ. If there is a unique such o, which is the case exactly when o is the
preimage of T, then the induced morphism Zy (5] — Z1 (7] is finite.

Suppose that 3g and X1 are compatible. Then there is a proper morphism

Ezo,zzo — Ezl,zzl,
whose formal completion gives a proper morphism

%zo,gZO — le’Zh .
These two morphisms are equivariant with the homomorphism I'z, — I'z,
and induces a proper morphism %207220 /Tz, — %zl,zzl /T'z., which can be
identified (via isomorphisms as in (3.3))) with

tor \A tor \A
(XO,E()) U ZO,[U] - (XLEl) U Zl,[r] .
lelex} /rz, (rlesf, /Tz,

If the image of o € EZ) under P‘Z"0 — PZ is contained in some T € Z'Z'rl,
we have an induced morphism X3, , — X5, _, which can be identified (via
isomorphisms as in (3.2) with

(Xg?éo)/\ U ZL[UI] - (Xg?%l)/\ U Zl [

NSl
olesy 7 resf 7T
0 1

For a fized T € EZ_, the pullback of |i to the open formal subscheme
2,.+ on the target gives a proper morphism
. U X200 = X2, 4
JGZZO , (Pzy—=Pz,)(0)CT
Suppose moreover that ¥q is induced by 1. Then both morphisms
and are finite. For each T € EZ as above, with o € EZ) the preimage
of T, which is the unique element in EZJ such that (Pzr0 — P7 )(0) C 7;
and for each affine open formal subscheme 2, = Spf(R1) of X7, ,, let
W, = Spf(Ro) denote its pullback to X5 . Under the morphisms Wy :=
Spec(R1) — X%, , Wi — Ez,(7), Wy := Spec(Rg) — Xi%,, and Wy —
Ez,(0) induced by morphisms as in , the preimages of X1 and Ez,
coincide as an open subscheme WY of Wy, and their further preimages in
Wo coincide with the preimages of Xo and Zz, as an open subscheme W{.

Proof. Except for the first assertion in , these follow from the same arguments
as in [24] Sec. 2.1.28 and 4.1.12] (which are based on [20] Sec. 4.16, 6.25, and 12.4]
and [I1], Sec. 3.3]) in Cases (1)) and (4)), and as in [I7, Sec. 8-11] and [20} the proof
of Prop. 2.1.3] in Cases and . As for the first assertion in , it follows from
the universal or functorial properties of toroidal compactifications in terms of the
associated cone decompositions, as in [2| 3, Ch. II, Sec. 7], [26, Prop. 6.25], [16]
Thm. 6.4.1.1(6)], [19, Thm. 6.1(6)], and [24, Prop. 4.1.13]. |

Corollary 3.7. In Proposition [3.4], suppose that ¥g is induced by X,. Let Z1 be a
stratum of X1, and let {Zo ;}; be all the strata of X§'™ such that f™™(Zy ;) C Z1
(as subsets of X™™). Consider any T € EZ. For each j, let

0j = (sz,; — PZ)_l(T) € EZ)J.
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Then the pullback of the finite morphism
e, X%, 0%,
under the composition of the canonical morphisms X3, 5 XPE )" | o

T’EEZ,?’C?
(as in (3.2)) and (X% )" .y X%, can be identified with the finite
r’ezzrl T CT ’T
morphism
] O
H%ZO,J‘»‘U = X7,
J

(defined by combining morphisms as in (3.6)).
Proof. This follows from and @ of Proposition O

Corollary 3.8. In Corollary with any T € EZ there inducing o; € ZZ) i’ for
each j, we have a commutative diagram of canonical morphisms '

(3.9) Ez, ,“—— FEz, ,(0;)

|

Ezlc—> Ezl (T)

over Spec(Z), in which the horizontal morphisms are affine toroidal embeddings,
which are open immersions, and where the vertical morphisms are finite. Let xq
be any point of th‘fgl that lies on the stratum Z; ;1. Then, étale locally at x1, the
commutative diagram

tor

0,2

tor
Xo — Xo'5,

| e

tor
X1 JEoK XLZl
R 1

can be identified with a commutative diagram

(3.10) H(Ezo,j X Czo,j)c—>H(Ezo,j(aj> X Czo,j)
Spec(Z) J

i Spec(Z)

J
1 X Czlc—> Ez1 (7’) X Czl

Spec(Z) Spec(Z)

Iy

induced by taking fiber products of some translations of the vertical morphisms in
the diagram (3.9)) by sections of Ez, and of the canonical morphisms Cz, ; — Cz,.
More precisely, there exists an étale neighborhood

TT tor
U1 — Xl,zl
of x1 and an étale morphism

(3.11) U, — Ez,(1) x COf,
Spec(Z)
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which induce by pullback under the finite morphisms fi2's, @ Xi%, — X\%, and
]_[ (Ez,,(0j) x Cgz,,) = Ez,(1) x _Cz, (asin (3.10)) some étale morphisms
Spec(Z) ' Spec(Z)

pec

UO — Xt‘Jr and Uy — || (Ez0 (o) x O, 7.), respectively, such that the preim-
j ' Spec(Z) h

age Uy of Xy in U, coincides with the preimage of Ez,, and such that the preimage

Uo of Uy in Ugy coincides with the preimages of Xo and of [] (Ezoj X C’zoj).
j " Spec(Z) '

Therefore, the pullback of XB"% — Xo (with its reduced subscheme structure) to

Uq coincides (as a subscheme) with the pullback of ]_[ (0Ez,,(0;) x Cgz,,),
Spec(Z) ’

where 0Fz, ;(0;) = Ez, (0;) — Ez,,; (with its reduced subscheme structure), for

each j; and the pullback of Xt‘)r — Xy (with its reduced subscheme structure)

to Uy coincides (as a subscheme) with the pullback of OEz, (1) x Cgz,, where
Spec(Z)

pec

0FEz,(1) := Ez,(1) — Ez, (with its reduced subscheme structure).

Proof. These follow from Corollary and Artin’s approximation (see [I, Thm.
1.12, and the proof of the corollaries in Sec. 2]) as in the proofs of [2I, Prop. 2.2(9)
and Cor. 2.4], 20, Cor. 2.1.7], and [22] Prop. 5.1], which are applicable because
we only need to approximate finitely many formal schemes finite over X7 _, and
because the formation of Henselizations of semi-local rings is compatible with base
change under finite morphisms by [10, IV-4, 18.6.8]; and from the fact that all the
torus torsors are already Zariski locally trivial, as in the proof of [2I, Lem. 2.3].
(Note that the torus torsors might be trivialized by incompatible sections. Hence,
we need to allow the canonical morphisms Ez, . — Ez, to be translated by some
possibly different sections of Ez,, when there are more than one j.) O

Remark 3.12. In Proposition and in Corollaries [3.7] and [B:8 we only need
the weaker assumption that (p(A>))(Ho) C Hi. When Ho = (p(A>)) " (’Hl),
we already know in Proposition 1) that the morphism Ez, , — Ez, in
is a closed immersion, without assuming that f is a closed immersion; but it is

generally not true that the morphism Ez, (c;) — Ez,(7) is a closed immersion
when Ez, , — Ez, is (cf. Remark below), regardless of whether f is

We shall reinstate the full Assumption [2.1] from now on.

4. CONDITIONS ON CONE DECOMPOSITIONS

Motivated by Corollary with the goal of proving Theorem in mind, we
would like to show the existence of collections ¥y and X1 such that X is induced
by ¥ as in Proposition and such that, for each o € ZZ} that is the preimage
under Pz) — PZ of some 7 € ZZ, the canonical morphism Ez, (o) — Ez, () (cf.
(3.9)) is a closed immersion.

Remark 4.1. This condition of being a closed immersion is not satisfied in general.
For example, it is possible to choose the linear algebraic data such that Sz, =
793 — Sz, =2 792 corresponds to the projection to the first two factors, in which
case Sy p = R®? — 8y p = R is the inclusion of the first two coordinates, and
such that we have the followmg
e 7 C Szl,]R is Ry g-spanned by {(0,0,1), (—1,0,2),(1,1,—2)}, in which case
7V is Zso-spanned by the Z-basis {(—1,1,0),(0,1,0),(2,0,1)} of Z¥3.
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e 0 C Sy p is Ryg-spanned by {(1,1),(0,1)}, in which case 0" is Zxo-
spanned by the Z-basis {(—1,1),(1,0)} of Z®2.

e 0 =(Sy, g — Sy r) (7). However, 7¥ — o is not surjective, because
the Z>¢-span of {(—1,1),(0,1),(2,0)} cannot contain (1,0).

e The morphism Ez,(c) — Ez,(7) is given by the morphism Spec(Z[o"]) —
Spec(Z[rV]) induced by 7V — ¢V, and hence is not a closed immersion.

Remark 4.2. In fact, in Remark [1.1] even the induced map Ez,(c)(C) — Ez, (7)(C)
on C-points is not injective: For ? = +1, if z7 : Z[o"] — C is the ring homomor-
phism sending (—1,1) and (1,0) in ¢¥ to 0 and ?, respectively, then the induced
homomorphism y : Z[rV] — C sends (—1,1,0), (0,1,0), and (2,0,1) to 0, 0, and
1, respectively. That is, both the C-points defined by x; and x_; are sent to the
same C-point defined by y. This shows that, already in characteristic zero, the
induced morphism Ez, (o) — Ez,(7) is not universally injective, and hence can-
not induce a universal homeomorphism between the source and its image in the
target. Moreover, for any rational polyhedral cone ¢’ C o, the induced morphism
Ez,(0") — Ez,(7) is not universally injective either.

Nevertheless, we have the following:

Lemma 4.3. Let 0 C S p and 7 C S3 p be any rational polyhedral cones
such that T = (S7 5 < S7 g)(0). Then the canonical morphism Ez,(o) =
Spec(Z[oV]) — Ez, (1) = Spec(Z[r"]) is a closed immersion.

Proof. Given an arbitrary £y € oV, take any lift £1 of it in Sz,, which exists because
Sz, — Sz, is surjective. Given an arbitrary y; € 7, by assumption, there exists
some yg € o such that y; = (S\Z/O,R — S}/l)R)(yo)7 and so that (¢1,y1) = (€o,y0) > 0.
Consequently, ¢; € 7V, and 7V — ¢V is surjective, as desired. O

Lemma 4.4. In Lemma let us identify S%OJR with a subspace of SZ,}R for
simplicity, so that T = o under this identification; and let SV := S\Z/1 N(R-o0) and
S := Homyz(SY,Z), so that we have surjective homomorphisms Sz, — Sz, — S
corresponding to injective homomorphisms of tori E — Ez, — FEz,. For the sake
of clarity, let us denote by ¢ the same cone o in S, = R-o. Let E, Eiy and Ei
be the split tori over Spec(Z) with character groups S, S%O := ker(Sz, — S), and
Si := ker(Sz, — S), respectively. Let us pick any splitting Sz, = S @ Si (as Z-
modules) which induces a splitting Sz, = S @ S%O. Then these splittings are dual to
compatible fiber products Ez, = E X Ei and Ez, = FE X Ei: respectively;
Spec(Z) Spec(Z)
and the canonical injective homomorphism Ez, — Ez, factors as a fiber product
of the identity homomorphism of E with the canonical injective homomorphism
Eé‘o — Ei dual to S%‘l —» S%‘O. Moreover, these splittings extend to compatible
fiber products Ez, (1) = E(s) % Ez. and Ez,(0) = E(s) x Egz., respectively;
Spec(Z) Spec(Z)
and the canonical closed immersion Ez,(0) — Ez,(7) factors as the fiber product
of the identity morphism of E(s) with the same injective group homomorphism
Ezl0 — E'Zl1 as above. Furthermore, any closed immersion Ez,(c) < Ez, (7) that
is a translation of the canonical one by some section of Ez, can be identified with
the product of an isomorphism E(s) = E(s) that is the translation of the identity
morphism on E(s) by some section of E with a closed immersion EZLO — Ei that

is the translation of the canonical one by some section of Ei
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Proof. These follow from the identification 7V = (Sz, — Sz,)"!(¢") in the proof
of Lemma 4.3 and from the various definitions introduced in this lemma. O

Lemma 4.5. In Lemma[d.3] let Ez,(0) := Ez,(0)—Ez, and 0Ez, () := Ez,(1)—
Ez,, as reduced closed subschemes of Ez,(c) and Ez,(7), respectively. Then the
canonical morphism Ez,(0) — Ez,(7) induces a canonical morphism 0Ez,(c) —
OFz, (1) and a canonical isomorphism OFEz, (o) — 0Fz, (T)E ><( )Ez(J (o). If we

7, (T

denote by I, (resp. I,) the Oy, (o) -ideal (resp. Og,, (r)-tdeal) defining 0Ez,(o)
(resp. 0Ez, (7)), then I, = (Ez,(0) — Ez, (T))*(IT) as O, (o)-ideals.

Proof. In the setting of Lemma [f.4] consider the reduced closed subscheme
OE(s) := E(s) — E of E(s). Since Ez, is smooth as a torus, dEz,(c) coincides
with the pullback of OF(¢) under the first projection in the fiber product

Ez,(0) = E(s) x Egz as reduced subschemes of Ez,(c), because they coincide
pec(Z)

as subsets. Similarly, 0Fz, (7) coincides with the pullback of JE(¢) under the first

projection in the fiber product Ez, (1) & E(5) X Ei as reduced subschemes of
Spec(Z)

Ez, (7). Since these two fiber products are compatible with each other, dFz, (o)
coincides with the pullback of OEz, (1) as subschemes, and the lemma follows. O

These justify the following:

Definition 4.6. We say that two compatible collections X9 and 31 of cone decom-
positions as in Proposition [3.4(|4) are strictly compatible with each other or
simply strictly compatible if, for each Zy — Zy as in Proposition , the
image of each o € EZJ under PZ; — PZ is ezactly some T € ZZ.

Remark 4.7. Certainly, if ¥ and X, are strictly compatible as in Definition
then Xy is induced by ¥, and they are compatible, as in Proposition [3.4{[4]).

Lemma 4.8. Under the assumption that f : Xg — Xy is a closed immersion, the

morphism [[ (Ez,, x Cgz,,) — Ez, x _Cz, in Corollary [3.8|is a closed im-
j Spec(Z) Spec(Z)

mersion over the open image of Uy under . Since Ez,, and Fz, are separated
group schemes with sections which are closed immersions, Cz, , — Cz, (and hence
Ez,, = Ez,) are also closed immersions over the further image of Uy in Cz,, for
all 5. Moreover, if ¥y and X1 are strictly compatible as in Definition hen the

morphism [] (Ez,,(0;) % Cz,,) = Ez,(t) x Cz, in Corollary (3.8 is also
j Spec(Z) Spec(Z)

a closed immersion over the open image of U, under (3.11)).

Proof. The first two assertions follow immediately from Corollary By Lemma

the morphism Ez, ,(0;) x Cz,, — Ez,(1) x Cz, is a closed immersion
' Spec(Z) " Spec(Z)

over the open image of Uy, for each j. It remains to show that any point z in the

image of U; and in the image of I (Ez,,(0j) . X(Z) Cz,,) = Ez,(7) . X(Z) Cz,
pec pec

J
lies on at most one of the images of the above closed immersions. Suppose to the
contrary that there are two distinct indices j and j/, together with points y and 3y’ of
Ez,.(0;) x Cgz,, and EZOj,(Uj/) x (g, ,, respectively, which are mapped
Spec(Z) ’ Spec(Z) ’
to the point x of Ez, (1) q X(Z) Cz,. Then z, y, and 3’ have the same image z in
pec
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Cz,, which is also in the images of the closed immersions from C7z,; and Cz ,,
and we obtain (by pullback to z) closed immersions ¢; : Ez, (0j). — Ez,(7).
and ¢j @ Bz, ,(0j). — Ez,(7). over z, which are translations of the canonical
ones by some sections of (Ez, )., whose images overlap at x (also viewed as a point
of Fz,(7).). By Lemma in the notation there, ¢; and ¢;  are, respectively,
fiber products over z of some isomorphisms F(s), — F(s), that are translations
of the identity morphism of E(s). by some sections of F, with closed immersions
(L (E%OJ)Z — (Ez,): and ;s : (Eé-o’j/)z — (E7z,). that are translations of the
canonical ones by some sections of (Ele)z The images of 1; and ;s overlap
at the image w of x in (E%-1 )=, exactly because the images of ¢; and ¢; do at z,
regardless of the above translations of the identity morphism of E(¢), by sections of
E.. Hence, the images of the restrictions (Ez, ;). — (Ez,). and (Ez, ,). = (Ez,)-
of ¢; and ¢,/, respectively, overlap at all points of the preimage W of T in (Ez, ).

When canonically viewed as a subset of Ez, (1) x Cgz,, this W contains z in its
Spec(Z)

closure. Since x is a point of the open image of U, by assumption, W must overlap
with the open image of U; at some point in the open image of U;. Thus, we obtain
a contradiction with the first assertion of this lemma, as desired. [l

By Corollary [3.8] and Lemmas [£.5] and we obtain the following:

Proposition 4.9. If there exist compatible collections g and X1 that are strictly
compatible as in Definition then the induced morphism s X%, — X%,
as in Proposition is a closed immersion extending f : Xo — X1. Moreover, if
we denote by Is,, the ﬁxgog -ideal defining the boundary Xﬁozr — X; (with its reduced

subscheme structure), fori = 0,1, then we have f%‘?fz*l (Zs,) 2 Iy, as ﬁ’x%o -ideals.
In order to prove Theorem [2.2] it remains to establish the following:

Proposition 4.10. There exist compatible collections 3g and X1 that are strictly
compatible as in Definition [4.6], which we may assume to be projective and smooth
and satisfy the condition that, for i = 0,1, and for each Z; and each o € ZZ, the
stabilizer I'z, » of o in I'z, is trivial. Moreover, we may assume that Xy and X,
refine any finite number of prescribed compatible collections of cone decompositions.

Proof. Let us temporarily ignore the assumption on projectivity and smoothness,
and take Xy to be induced by ¥; as in Proposition (cf. [IIl Sec. 3.3]). Note
that, given any Z; and any [7] € ZZ /T'z,, there exist only finitely many Z, mapped
to Z1; and for each such Z, there exist only finitely many [o] € EZ) /T'z, mapped to
[7] under the map EZ) /Tz, = X3, /Tz, (simply because there are only finitely many
possible Zy and [o]). Since ¥ is induced by X1, for any 7 € EZ representing some
[7] as above, each [o] that is mapped to [7] as above is represented by some o € EZJ
that is the preimage of 7 under the injection 87 < S7  asin Proposition.
In this case, the image of o is the intersection of 7 with the image of S7 p <
S7, g~ As a result, up to refining each such 7 by intersections with finitely many
hyperplanes, and up to refining all the finitely many o involved accordingly, we may
assume that ¥y and 3; are strictly compatible (but still not necessarily projective
and smooth). We may also refine both of them, and assume that they refine any
finite number of prescribed compatible collections and satisfy the condition in the
end of the first sentence of the proposition. Finally, up to further refinements, we
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may assume that g and ¥, are both projective and smooth, because as soon as
Yo and 3 are strictly compatible and satisfy the last condition of the proposition,
any further refinements will remain so; and because, when ¥y and ¥, are strictly
compatible, both the projectivity and smoothness of ¥ are automatically inherited
by o, and hence it suffices to refine ¥;. (However, note that such an inheritance
is not necessarily true in general, when Xy is merely induced by %;.) (]

The proof of Theorem [2.2]is now complete.

5. SOME EXAMPLES

Ezample 5.1. In Case , suppose that Go = GLa g and Gy := GLa g x GLa g,

where the two structure morphisms in the fiber product are both the determinant
homomorphism. Then G is naturally a subgroup scheme of Gg x Gy, and the
diagonal morphism of Gy factors through a homomorphism p : Gy — G;. Let
H,+ and H_ denote the Poincaré upper and lower half-planes, respectively, and
let i denote the v/—1 in H,. Let hg : Resc/r Gm,c — Gor = GLar be defined
by a + bi — (‘b‘ ;b), and let h; the composition of hg with pr : Gor — Gir.
Then Go(R) - hg = Hy = Hi [[H-, and Gi(R) - hy = (Hy x Hy) [J(H- x H_).
Let Ho C Go(A™) = GL2(A>) be a principal congruence subgroup of some level
n > 3, and let H; = (Ho x Ho) N G1(A>). Then X, is the modular curve of
principal level n over Sy = Spec(Q), and X; is an open-and-closed subscheme of
Xo X Xg. In this case, the morphism f : Xqg — X; is the closed immersion induced

0
by the diagonal morphism of Xg, and all possible maps Pz, — Pz, can be identified
with either {0} — {0} or the diagonal map R>o — RZ%,. There is a unique choice
of ¥p, and XB‘EO is the usual compactified modular curve. Let ¥} denote the
compatible collection of cone decompositions for X; induced by g x ¥g, which is
given by either {0} or the faces of the whole cone R2>0' Then Xi(,)%/l is an open-and-

tor tor 3 tor . Ytor tor 3
closed subscheme of X’ S>< X0, » and the morphism fzo,z'l FX0m, XLZ,1 is the
0

closed immersion induced by the diagonal morphism of Xg,)io' However, ¥ and X}

are not strictly compatible, and the pullback of Zy; is I%)f rather than Zy,, (which

means the image of fg?)rz'l does not meet the boundary of X'iog/l transversally). (See

Remark ) Nevertheless, by Theorem there exists a refinement 2 of ¥} such
that firs, @ XP%, — X{%, is a closed immersion and such that the pullback of
Ty, is Iy,. In practice, the difference between ¥} and its refinement ¥; is given by
some subdivisions of cones of the form ]R2>0, which correspond to (possibly repeated)
blowups at some (possibly nonreduced closed subschemes over) products of cusps,

after which the image of fg%r,zl meets the boundary of thf’gl transversally.

FEzxzample 5.2. In Case , suppose that we have the following:

(1) Og =Z xZ and O; = Z is diagonally embedded in Oy, and *¢ and %; are
trivial.

(2) Ly = Z%*, with the first (resp. second) factor of Oy = Z x Z acting natu-
rally on the first and third (resp. second and fourth) factors of L; = Z®*
and trivially on the remaining factors.

(3) Let (-, -)1: Ly x L1 — Z(1) be the self-dual pairing defined by composing
the standard symplectic pairing ((xl,xQ,xg, x4), (Y1, Y2, y3,y4)) — T1ys +
ZToYs — x3y1 — Tay2 with a fixed choice of isomorphism 27i : Z — Z(1),



16 KAI-WEN LAN

where 7 is the v/—1 in H4 as in Example and let hq(a + bi) act on
Lir = R%! via the left multiplication by (¢ ") on the first and third
factors, and similarly on the second and fourth factors.

Then (Go ® Q, Go(R) - hg) is the same as the (G1, G1(R) - h1) in Example and
Z
(G1®Q,G1(R)-h1) = (GSpy g, Ha,+), where Hz + is the union of the Siegel upper
2 ;

and lower half-spaces of genus two. In both cases, the reflex field is QQ, so that we
can take F' = Q, and there are no bad primes for the integral PEL data.

Let H1 C Gl(ZD) be a principal congruence subgroup of some level n > 3 that
is prime-to-0, and let Hg := H1 N GO(ZD). Then the moduli problem defined by
(O1,%1,L1, (-, -)1,h1) and H; is a smooth integral model X; of the Siegel three-
fold over So = Spec(Z(ny) parameterizing principally polarized abelian surfaces
with symplectic principal level-n structures; and the moduli problem defined by
(O, *0, Lo, (-, * )o, ho) and Hg is the closed moduli subscheme Xq of X; parame-
terizing principally polarized abelian surfaces of the form (E; >S< Eo, M\ >§ A2), where

(E1, A1) and (FE4, A2) are canonically principally polarized elliptic curves, with prin-
cipal level-n structures satisfying some conditions. At the level of connected com-
ponents, Xy can be viewed as the product of two smooth integral models of modular
curves of principal level n. In this case, we have a closed immersion f : Xy < X,
and Theorem guarantees the existence of some closed immersion of toroidal
compactifications fg%r’zl : XB(EO — Xi(,)il extending f, defined by some collections
Yo and ¥; of cone decompositions that are strictly compatible.

The map ﬁ;o = (P7, — {0})/RZ, — fz = (P'Z~'1 — {0})/R%, can be from
the empty set to the empty set; from a single point to a single point; or from the
vertical half-line iR>o to H4+ (up to some identifications). In the last case, I'z,
acts trivially on iRso because of neatness, while I'z, acts via a neat congruence
subgroup of SLa(Z) on H4 (with trivial stabilizers). Then EZ) gives a subdivision
of iR~ ¢, while EZ gives a triangularization of H that is compatible with I'z, and
descends to a triangularization of H4 /T'z,. Note that any nontrivial subdivision of
iR~ means, when we view the connected components of X, as products of those of
two smooth integral models of modular curves, we have (possibly repeated) blowups
at some subschemes over products of cusps. (This is the end of Example )

FEzxzample 5.3. In Case , suppose that we have the following:

(1) n > 2 is any integer.

(2) K is an imaginary quadratic extension of Q, with maximal order Ok.

(3) Op = O x Ok and 07 = Ok is diagonally embedded in O, and xg and
x1 are the complex conjugations (simultaneously on both factors of Op).

(4) Ly = OF™*! with the first (resp. second) factor of Oy = Ok x O acting
naturally on the first n factors (resp. last factor) of Ly = O;‘?"H and
trivially on the remaining factors.

(5) Let ¢ € Diff(_ji{ sz be any element in the inverse different
that is invariant under the complex conjugation, and let
(,-)1 : LixL; — Z() be the pairing defined by com-
posing  the  pairing ((1:1, T2y ey Tnt1), (Y1,Y2, - - - ,yn+1)) —
Tro, /z (s - (—zy1 + a2y + oo + xn+1yn+1)) with a fixed choice
of isomorphism 27v/—1: Z — Z(1), and let hy(z) act on Ly g = C®"H1 via
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the left multiplication by the complex conjugate Z on the first factor, and
by z itself on the remaining factors.

Then Go @ R =2 G(U,,—11 xUy) 2 GU,,_11 x GUy, where the two structure mor-
VA Gum,r
phisms in the fiber product are similitude homomorphisms; and G; ® R = GU,, ;.

In both cases, the reflex field is K because n > 2, so that we can %ake F = K;
and the bad primes are those ramified in K and divides Trp, /z(¢), and we can
take O to be any set of rational primes that are not bad. Let us choose Hy and
‘H, suitably, so that we have smooth integral models Xqg and X; over Sp, with a
closed immersion f : Xy — Xi, which can be interpreted as mapping a smooth in-
tegral model of a GU,,_;,; Shimura variety to a smooth integral model of a GU,, 1
Shimura variety defined by taking fiber products of the universal abelian scheme
with some CM elliptic curves (which explains the U; part). (It is perhaps better
to work with abelian-type Shimura varieties and arrange Gg %R - G %)R to be

U,—1,1 = Up,1, but the difference is on the centers and hence unimportant for our
purpose.)

By Theorem [2.2] there exists some closed immersion of toroidal compactifications
s, t Xis, — Xi%, extending f, defined by some strictly compatible collections
Yo and X7 of cone decompositions. But note that we have no choice to make for
Yo and ¥;. All possible maps Pz, — Pz, can be identified with either {0} — {0}
or R>p — R>p, and in all cases the cone decompositions are uniquely determined
and trivial (and satisfy all the usual conditions we impose). Hence, Theorem
just says that the canonical morphism f** : X{* — X!°¥ between smooth integral
models of toroidal compactifications over Sy, where all the collections of cone de-
compositions are now justifiably omitted from the notation, is a closed immersion.

Nevertheless, such a discussion is not completely meaningless. The fact that
smooth toroidal compactifications of Xy and X; uniquely exist is well known, but the
fact that closed immersions f : Xg — X; extend as above to closed immersions f°r :
Xger — Xtor is probably less so. Also, as soon as we have such a f**, we can consider
the closed immersion (Idx,, f) : Xo = Xo X X1, which then extends to the closed

0

immersion (Idygor, f*7) : Xg** — X x X{°", which provides the justification for
So

some usual geometric considerations related to the Gan—Gross—Prasad conjecture.
We have similar assertions in Case . (This is the end of Example )

Example 5.4. In Case , suppose that Gg is the special orthogonal group over Q
defined by a quadratic space Vj of signature (n—1,2) at oo, for some n > 2, and let

1
G be the special orthogonal group over Q defined by V; := (Q - e) ® Vi, where the
quadratic form is defined to have value +1 on the additional basis vector e. Then
Go %R = S0,,—1,2 and G; %R 2 SO, 2. Let ¢ be the same /—1 as in Example

Up to suitable choices of the above isomorphisms, we can arrange that hg and hy
are defined by mapping G, ¢ — SOz : 7(cos 6 +isinf) — (Zi’;gg _Cgis‘g%g) into the
second factors of the diagonally embedded compact subgroups SO, _1r X SO2r
and SO, g X SOy r of SO, _12 and SO, 2, respectively. Then the reflex fields of
both Shimura data (Gg, Go(R) - hg) and (G1,G1(R) - hy) are Q, and we can take
F to be Q (or any field extension in C). Let Ho and H; be chosen such that
f: Xo = Xy is a closed immersion over So = Spec(F). Then ﬁ;ﬂ — fz can
be either from the empty set to the empty set; from a single point to a single
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point; or from the hyperbolic (n — 1)-space to the hyperbolic n-space (equivariant
with SO,_1,1 — SO,1, up to some identifications). (The map iR~ — H4 in
Example can be viewed as a special case of the last possibility, with n = 2.)
By Theorem there exists some closed immersion of toroidal compactifications
2 s,  Xey, = Xi%, extending f, for some strictly compatible ¥y and X;.

We have similar assertions in Cases and if we replace special orthogonal
groups above with the corresponding general spin groups, with suitable associated
Shimura data and Siegel embeddings. (This is the end of Example )

6. PERFECTOID TOROIDAL COMPACTIFICATIONS

Finally, as an application, let us verify [0, Hypothesis 2.18]. As explained in [9],
this allows for a substantial simplification of the proof of the main theorems in [9].

Let us explain how [9, Hypothesis 2.18] fits into our setting. In Case (1)), sup-
pose that Gi = GSpy o, for some g > 0, so that p : Go — Gy induces a Siegel
embedding (Gg,Dg) < (G1,D1), making (Gg,Dp) a Hodge-type Shimura datum.
We shall fix the choice of a rational prime p > 0, and assume that the base field
F = C is the completion of an algebraic closure of Q,. Let HY C G1(A™P) be a

neat open compact subgroup, and let H5 := (p(A>F)) _1(?-[{). For each r > 0, con-
sider the principal congruence subgroup H(T) = ker(Gszg( p) — GSp2g (Z/p"))
at p, and let H{” := HIH\). Let M) := (p (@p)) FH)Y and MY = HEHY) =
(p(A>)) 71(7—[?6)). Then we have morphisms between the associated Shimura vari-
eties (") : X(()r) — XY) at levels H(()T) and ’HY), respectively, which are compatible
with each other when we vary r. We shall similarly denote other objects at Hér)
and ’ng) with superscripts “(r)”. By [13| Lem. 2.1.2], up to replacing H} with a
finite index subgroup, we may assume that f(") is a closed immersion, for all r > 0.
By Proposition there exist collections Z(()O) and Ego) for Xéo) and XSO), re-
spectively, that are strictly compatible with each other as in Definition which
we assume to be projective and smooth and satisfy the condition that, for ¢ = 0,1,
and for each Z( ) and each o ext 20001 the stabilizer Fz“” of o in I‘Zm) is trivial.

Note that Proposition can also be applied to morphisms between Shimura va-
rieties associated with the same Shimura datum, but with possibly different levels.
For each r > 0, let E(()T) and ZY) denote the induced collections at levels ’Hér) and

”HY), respectively. Then they are projective and satisfy the analogue of the above
condition on stabilizers, and are strictly compatible with each other Since the

levels H\" at p are principal, for all 7 > 0, and since ’H(T) (p(Qp)) YH )) the

canomcal homomorphlsms S — S, can be 1dent1ﬁed with SZ<0) — piSZ(m,

z{* z{r
for ¢ = 1,2. In particular, the smoothness condition on cone decomp051t10ns re-
mains the same when we vary r > 0. Thus, Z(()r) and Zg ") are also smooth, and we

have verified all the conditions we would like to impose on these collections. By

Proposition 1’ the canonical morphisms X( )f‘;r — X( 2) tf;r, for i = 1,2 and

2R

r > 1" >0, are all finite. Note that each such ﬁnlte morphism is automatically flat
(by [10, IV-3, 15.4.2 ¢’)=-b)]) and therefore universally open (by [10, IV-2, 2.4.6]),
because both its source and target are smooth and of the same equi-dimension.
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For simplicity, we shall omit the subscripts “sz” in the following. We shall
change the font from X to X when we denote the associated adic spaces.
The case ¢ = 0 of the following proposition verifies [9, Hypothesis 2.18]:

Proposition 6.1. Fori = 0,1, there is a perfectoid space Xi(oo)’tor over C' such that
Xi(oo)’tor ~ @T Xi(r)’tor, where “~” has the same meaning as in [28, Def. 2.4.1].

Proof. We shall imitate the proof of [27, Thm. 4.1.1(i)]. Recall that the assertion

Xi(oo)"tor ~ lim_ Xi(r)’mr means there are compatible morphisms Xi(oo)’tor — Xi(r)’tor
inducing a homeomorphism of topological spaces |Xi(oo)’tor| = Hm, |Xi(r)"tor|, as well
X(OO)JOY (c0) R(OO)Hr

as an open covering of X by affinoid adic spaces Spa(R; b ) inducing
)

a homomorphism h_r>n RgT — Rgoo) with dense image, where the direct limit runs

over all » > 0 and all affinoid open subspaces Spa(Rgr), RET)’JF) - Xi(r)’tor through
which the compositions of Spa(RZ(-oo), Rgoo)’+) — Xi(oo)’tor — Xi(r)’tor factor.
By [25] Cor. A.19 and its proof], the above holds when ¢ = 1, and we may

%) in the open covering of A >

T r),+
LR

assume that each member Spa(Rgoo),Rgoo

is affinoid perfectoid and is the preimage of some Spa(R , for all

sufficiently large r. Since f(r)ter . X(()T)’tor — XY)’wr is a closed immersion
by Proposition (and the constructions of Eér) and Egr)), the associated
morphism XO(T)’tor — Xl(r)’tor is a closed immersion of adic spaces. Hence, we
have Xér)’tor (>)< Spa(Rgr),Rgr)’+) = Spa(Rgi),RéT)"F) for some Huber pair
PUCRES
(Rér), R(()T)’Jr) such that RY) — R(()T) is surjective. Let I(") denote the kernel of this
homomorphism. Let Z(") denote the Zariski closed subset of Spa(Rgoo), R§°°)’+), as
in [27, Def. 2.2.1], defined by the image of (") in Rgoo). By comparing definitions,
we can identify Z(") with |Spa(R((f),R(()r)’+)| X |Spa(R§°°),R§OO)’+)\
| spa(Ry"” Ry )]

as closed subsets of |Spa(R§°°),R§°O)’+)|. By [27, Lem. 2.2.2], there is a
canonical affinoid perfectoid space Spa(R(()oo)’(T),Réoo)’(r)"'r), with a morphism
Spa(Réoo)’(T),Réoo)’(r)’Jr) — Spa(Rgoo),Rgoo)’Jr), induced by a canonical ho-
momorphism Rgoo) — Réoo)’(r) with dense image, inducing a homeomorphism
\Spa(R(()oo)’(T)7Réoo)’(r)’+)| 5 Z. Moreover, by the construction in the
proof of [27, Lem. 2.2.2], the composition of R" — R™ — Rgle)(r)
factors through RY) — R(()T). By the universal property explained in [27,
Rem. 2.2.3], for all v/ > r, we have compatible canonical homomorphisms
(Réoo),(?”)’R(()oo),(T),+) N (Réoo),(r’)’R(()oo),(r’),—l-) over (Rgoo),Rgoo)7+)

Let (R(()OO),R(()OO)’+) denote the p-adic completion of ligrlr (R(()OO)’(T),R(()OO)’(T)’+),
where the direct limit runs over all sufficiently large r such that

(R(()OO)’(T),R(()OO)’(T)’JF) are defined as above, which is canonically a Huber

pair over (Rgoo)7R§O°)’+). Since the homomorphisms Rgoo) — R(()OO)’(T) have
dense images, so does the composition of R§°°> — lim R(()OO)’(T) — R((Joo).

(o0

Since the p-th power homomorphism Réoo)’+/p — R, )’+/p is surjective
because the p-th power homomorphisms R(()oc)’(r)’+/p — Rf)oo)’(r)’+/p are,
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Réoc) is a perfectoid C-algebra, by [12l Prop. 3.6.2]. Thus, we have obtained
an affinoid perfectoid space Spa(Réoo),Rém)’Jr) over Spa(Rgoo),Rgoo)’+).
Moreover, for all sufficiently large r, we have compatible homomorphisms
Rér) — R(()oo), and the composition of ligr Rgr) — Rgoo) — R(()OO) fac-
tors through the induced homomorphism lim R(()T) — R(()oo). Since the
homomorphisms hﬂr RY) — Rgoo) — R(()oo) have dense images, so do

their composition and the induced homomorphism lim Rér) — R(()oo). The
corresponding morphisms of adic spaces induce homeomorphisms of topolog-

~

ical spaces |Spa(Ry" RYIH 5 lim | Spa(RS ), RIEI My

lim (| Spa(Rér),R(()T)’+)| X \Spa(Rg""),ng)’*)D. Since the induced
' | Spa(R{” R{7)|

map \Spa(Rgoo),Rl(oo)’Jrﬂ — lim |Spa(R§r),RET)’+)| is a homeomorphism when
i = 1, the same is true when ¢ = 0, by canonically identifying these topological
spaces as subspaces of ], |Spa(RY), RgT)’+)|. Thus, the affinoid perfectoid space
Spa(Réoo), R(()OO)’+) satisfies Spa(R(()OO), Réoo)’+) ~ lim Spa(R(()T), R(()r)’Jr). By gluing

such Spa(R((Joo), Réoo)’+) using [28] Prop. 2.4.3 and 2.4.5] over an open covering of
Xl(oo)’mr by affinoid perfectoid spaces Spa(Rgoo),Rgoo)’+) as above, we obtain a

perfectoid space Xo(oo)’tor over C such that Xéoo)’tor ~ lim_ X()(T)"tor, as desired. [
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