
CLOSED IMMERSIONS OF TOROIDAL COMPACTIFICATIONS

OF SHIMURA VARIETIES
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Abstract. We explain that any closed immersion between Shimura varieties

defined by morphisms of Shimura data extends to some closed immersion be-
tween their projective smooth toroidal compactifications, up to refining the

choices of cone decompositions. We also explain that the same holds for

many closed immersions between integral models of Shimura varieties and
their toroidal compactifications available in the literature.
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1. Introduction

Given any closed immersion between Shimura varieties or their integral mod-
els defined by some morphism of Shimura data (and some additional data, in the
case of integral models), it is natural to ask whether it extends to a closed immer-
sion between their toroidal compactifications. Since the construction of toroidal
compactifications depends on the choices of some compatible collections of cone
decompositions, part of the question is whether this can be achieved by some good
choices of them, which we might want to be refinements of some given ones.

This question is not as trivial as it seems to be. Already in characteristic zero,
the analogous question for minimal compactifications is subtle. In fact, in Scholze’s
groundbreaking work [27], for Hodge-type Shimura varieties, his “perfectoid mini-
mal compactifications” at infinite levels were first constructed using the closures in
the minimal compactifications of Siegel modular varieties, rather than the minimal
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compactifications of the Hodge-type Shimura varieties themselves; but the mor-
phism from the minimal compactification of the Shimura variety to the closure in
the minimal compactification of the Siegel modular variety is generally not even
injective on geometric points. As for toroidal compactifications, if the ambient
toroidal compactification is prescribed, then the closure of the Shimura subvariety
is generally not normal (and hence cannot be a toroidal compactification by itself),
and it might also happen that there exists no morphism that is injective on geo-
metric points from any toroidal compactification of the Shimura subvariety. (See
Remarks 4.1 and 4.2 for a related counter-example.)

In this article, we shall show that, under reasonable assumptions, there exist
compatible collections of cone decompositions, up to refinements, such that the
morphisms between the associated toroidal compactifications are indeed closed im-
mersions (see Theorem 2.2, and Propositions 4.9 and 4.10). We expect this to be
useful for studying cycles of Shimura varieties defined by special subvarieties (see
Section 5 for some examples). As an application, we shall generalize the construc-
tion of “perfectoid toroidal compactifications” from the Siegel case in [25, Appendix]
to all Hodge-type cases, and verify [9, Hypothesis 2.18] (see Section 6).

Acknowledgements. I would like to thank Christopher Skinner for bringing this
question to my attention; and to thank Xin Wan and the Morningside Center of
Mathematics, and Chia-Fu Yu and the Academia Sinica, for their hospitality during
the preparation of this work. I would also like to thank David Loeffler and David
Hansen for helpful questions which led to crucial improvements and corrections.
Finally, I would like to thank Hélène Esnault and Michael Harris for encouraging
me to include an application to the verification of [9, Hypothesis 2.18], and to thank
the anonymous referee(s) for helpful comments.

2. Main results

Let us assume we are in one of the following cases:

Assumption 2.1. (1) For each i = 0, 1, let (Gi,Di) be a Shimura datum (see
[8, 1.2.1]), where Di is a Gi(R)-conjugacy class of a homomorphism hi :
ResC/R Gm,C → Gi,R. Let ρ : G0 → G1 be an injective homomorphism of

algebraic groups over Q such that
(
ρ(R)

)
(D0) ⊂ D1. Let Hi ⊂ Gi(A∞) be

neat (see [26, 0.6]) open compact subgroups, for i = 0, 1, such that H0 =(
ρ(A∞)

)−1
(H1). Let F denote a subfield of C containing the reflex field of

(G0,D0) (which then also contains that of (G1,D1) by [8, 2.2.1]), and let
S0 := Spec(F ). For each i = 0, 1, let Xi denote the base change to F of
the canonical model of the Shimura variety associated with (Gi,Di) at level
Hi. Then we have a canonical morphism f : X0 → X1 over S0, which we
assume to be a closed immersion. (This can be achieved up to replacing
H1 with a finite index subgroup still containing

(
ρ(A∞)

)
(H0), by [7, 1.15].)

(2) For each i = 0, 1, let (Oi, ?i, Li, 〈 · , · 〉i, hi) be an integral PEL datum (see
[18, Def. 1.1.1.1]). Assume that O1 is a subring of O0 preserved by ?0,
that ?1 = ?0|O1 , and that (L0, 〈 · , · 〉0, h0) ∼= (L1, 〈 · , · 〉1, h1) as PEL-type
O1-lattices (see [16, Def. 1.2.1.3]). For each i = 0, 1, let Gi denote the
associated group functor over Spec(Z), as in [16, Def. 1.2.1.6], so that we
have a canonical injective homomorphism ρ : G0 → G1 by definition. Let
F denote a subfield of C that is a finite extension of the reflex field F0 of
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(O0, ?0, L0, 〈 · , · 〉0, h0) (see [16, Def. 1.2.5.4]) (which is also the reflex field
of (G0⊗

Z
Q,G0(R) ·h0), and hence also that of F1 of (O1, ?1, L1, 〈 · , · 〉1, h1)

or (G1⊗
Z
Q,G1(R) · h1), by [8, 2.2.1]). Let 2 be a set of rational primes

(see [16, Notation and Convetions]) that are good (see [16, Def. 1.4.1.1]) for
both (Oi, ?i, Li, 〈 · , · 〉i, hi), for i = 0, 1, and let S0 := Spec(OF,(2)). Let
Hi ⊂ Gi(A∞,2) be neat (see [16, Def. 1.4.1.8]) open compact subgroups,

for i = 0, 1, such that H0 =
(
ρ(A∞,2)

)−1
(H1). For each i = 0, 1, let

MHi denote the (smooth) moduli scheme over Spec(OFi,2) associated with
(Oi, ?i, Li, 〈 · , · 〉i, hi) at Hi (see [16, Def. 1.4.1.4, Thm. 1.4.1.11, and Cor.
7.2.3.10]). By restricting the O0-endomorphism structures parameterized
by MH0

to O1-endomorphism structures, we obtain a canonical morphism
MH0 ⊗

OF0,2

OF,(2) → MH1 ⊗
OF1,2

OF,(2) over S0. Then we take X0 and X1 to

be open-and-closed subschemes of MH0
⊗
OF0,2

OF,(2) and MH1
⊗
OF1,2

OF,(2),

respectively, such that the above morphism induces a morphism f : X0 → X1

over S0, which we assume to be a closed immersion.
(3) For i = 0, 1, suppose that we have integral PEL data (Oi, ?i, Li, 〈 · , · 〉i, hi)

(for which p might not be good), together with some suitable choices of
(Oi, ?i, Li,j, 〈 · , · 〉i,j, hi,j) and a shared choice of a collection of auxiliary
integral PEL data {(Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, hj,aux)}j∈J (for which p is
good), as in [17, Sec. 2 and 4]; and that (O1, ?1, L1, 〈 · , · 〉1, h1) also serves as
a choice of an auxiliary integral PEL datum for (O0, ?0, L0, 〈 · , · 〉0, h0) (but
without requiring that p is good for either of these two). Then we have homo-

morphisms G0
ρ→ G1

ρj,aux→ Gj,aux, for all j ∈ J. Suppose that we have neat

open compact subgroups H0 ⊂ G(Ẑ), H1 ⊂ G(Ẑ), and Hj,aux ⊂ Gj,aux(Ẑp)
such that H0 =

(
ρ(A∞)

)−1
(H1) and such that the images of H1 under

G1(Ẑ) → Gj,aux(Ẑp) are neat and contained in Hj,aux, for all j ∈ J. Let
F denote a subfield of C that is a finite extension of the reflex field of
(O0, ?0, L0, 〈 · , · 〉0, h0), and hence also those of (O1, ?1, L1, 〈 · , · 〉1, h1) and
(Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, hj,aux), for all j ∈ J. With the above data,
we have associated moduli problems MH0 and MH1 over Spec(F ), and as-
sociated auxiliary moduli problems MHj,aux

over S0 := Spec(OF,(p)), to-
gether with canonical finite morphisms MH0 → MH1 →

∏
j∈J

MHj,aux ⊗Z
Q

over Spec(F ), which extend to canonical finite morphisms ~MH0 → ~MH1 →∏
j∈J

MHj,aux over S0 by taking normalizations as in [17, Sec. 4]. Then we take

X0 and X1 to be open-and-closed subschemes of ~MH0 and ~MH1 , respectively,

such that ~MH0 → ~MH1 induces a morphism f : X0 → X1 over S0, which we
assume to be a closed immersion.

(4) Suppose that we have a morphism of Shimura data (G0,D0) → (G1,D1)
defined by some injective homomorphism ρ : G0 → G1 as in (1), and sup-
pose that we have a Siegel embedding (G1,D1) ↪→ (Gaux,Daux) defined by
some injective homomorphism G1 → Gaux, with Gaux

∼= GSp2g,Q, for some
g ≥ 0. Suppose that we have neat open compact subgroups H0 ⊂ G0(A∞),

H1 ⊂ G1(A∞), and Haux ⊂ Gaux(A∞,p) such that H0 =
(
ρ(A∞)

)−1
(H1)

and such that the image of H1 under G1(A∞) → Gaux(A∞,p) is neat and
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contained in Haux. Let F denote a subfield of C that is a finite extension of
the reflex field of (G0,D0), and hence also that of (G1,D1). Let X0 and X1 be
integral models over S0 := Spec(OF,(p)) of the Shimura varieties associated
with (G0,D0) and (G1,D1) at levels H0 and H1, respectively, defined by tak-
ing normalizations of the characteristic zero models over F (which are base
changes of the corresponding canonical models to F ) over the Siegel moduli
over Spec(Z(p)) associated with (Gaux,Daux) and the prime-to-p level Haux,
as in [24, Introduction]. Then we have a canonically induced morphism
f : X0 → X1 over S0, which we assume to be a closed immersion.

We shall say that we are in Cases (1), (2), (3), or (4) depending on the case
we are in Assumption 2.1. In each case, we have good toroidal compactifications
Xi ↪→ Xtor

i,Σi
associated with some compatible collections of cone decompositions Σi,

for i = 0, 1, whose properties we will review in more detail in the next section.
Our main result is the following:

Theorem 2.2. Let f : X0 → X1 be as in Assumption 2.1. Then there exist toroidal
compactifications Xi ↪→ Xtor

i,Σi
, for i = 0, 1, associated with some compatible collec-

tions Σi of projective smooth cone decompositions (see [2, 3, 26] in Case (1); see [16,
Thm. 6.4.1.1 and 7.3.3.4] in Case (2); see [19, Thm. 6.1] in Case (3); and see [24,
Thm. 4.1.5 and Rem. 4.1.6] in Case (4)) such that f extends to a closed immersion
f tor

Σ0,Σ1
: Xtor

0,Σ0
→ Xtor

1,Σ1
. Moreover, if we denote by IΣi the OXtor

i,Σi
-ideal defining the

boundary Xtor
i,Σi
−Xi (with its reduced subscheme structure), for i = 0, 1, then we may

require that f tor,∗
Σ0,Σ1

(IΣ1
) ∼= IΣ0

as OXtor
0,Σ0

-ideals. We may require that Σ0 and Σ1

refine any finite number of prescribed compatible collections of cone decompositions.

The proof of Theorem 2.2 will be completed in Section 4.

Remark 2.3. (1) In Cases (2) and (3), for example, we can take Xi to be the
schematic closure of the base change to Spec(F ) of the canonical model of
the Shimura variety associated with the Shimura datum (Gi⊗

Z
Q,Gi(R)·hi)

(see [14, Sec. 8], [15, Sec. 2], and [23, Sec. 1.2]), for i = 0, 1, when Gi⊗
Z
Q

is connected and (Gi⊗
Z
Q,Gi(R) · hi) qualifies as a Shimura datum.

(2) In Case (2), in order to show that f : X0 → X1 is indeed a closed immersion,
we often have to resort to the moduli interpretations of MH0 and MH1 .

(3) In Case (3), when the levels H0 and H1 differ at p from the stabilizers
of L0 and L1, it is generally more difficult to verify that the morphism
f : X0 → X1 defined abstractly by taking normalizations is a closed im-
mersion. Practically, when the levels are parahoric at p (and satisfies some
technical assumptions), we can still define X0 and X1 using some explicit
moduli problems—see, for example, [17, Ex. 2.4 and 13.12, and Rem. 16.5].
However, we do not (yet) have a method to study higher levels in general.

(4) In Case (4), the similar verification that f : X0 → X1 is a closed immersion
is subtle already when the levels are hyperspecial at p as in [13].

(5) Nevertheless, Theorem 2.2 provides closed immersions f tor
Σ0,Σ1

: Xtor
0,Σ0

→
Xtor

1,Σ1
as long as the input f : X0 → X1 is a closed immersion, and we

included all four cases (which in theory allows arbitrarily high levels at p in
Cases (3) and (4)) even when the assumption of being a closed immersion
cannot be easily verified in general.
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(6) Certainly, we expect Theorem 2.2 to extend to integral models of abelian-
type Shimura varieties, generalizing those constructed in Cases (2), (3),
and (4) in Assumption 2.1, as soon as the their toroidal compactifications
are constructed and shown to have desired properties as in Propositions 3.1
and 3.4 below. However, we do not expect it to be any easier to verify that
f : X0 → X1 is indeed a closed immersion.

Remark 2.4. In Theorem 2.2, the main reason to consider the projectivity of the
cone decompositions is that it ensures that the toroidal compactifications we ob-
tained are schemes rather than merely algebraic spaces.

Remark 2.5. In Theorem 2.2, the assertion that f tor,∗
Σ0,Σ1

(IΣ1) ∼= IΣ0 does not follow

from the assertion that f tor
Σ0,Σ1

is a closed immersion. (See Example 5.1 below.)

Remark 2.6. Since base changes of closed immersions are still closed immersions,
by using [20, Thm. 2.3.2], Theorem 2.2 implies similar results for partial toroidal
compactifications of well-positioned subschemes of base changes of integral models
of Shimura varieties. We shall leave the precise statements to interested readers.

3. Morphisms between toroidal compactifications

In all cases in Assumption 2.1, we have good toroidal and minimal compactifica-
tions Xtor

i,Σi
→ S0 and Xmin

i → S0, for i = 0, 1, whose qualitative properties we shall

summarize as follows, based on the constructions in [4, 2, 3, 26, 16, 17, 19] (as in
[21, Prop. 2.2] and [20, Prop. 2.1.2 and 2.1.3, and Cor. 2.1.7] and their proofs):

Proposition 3.1. For each i = 0, 1, there is a canonical minimal compactification

Jmin
i : Xi ↪→ Xmin

i

over S0, together with a canonical collection of toroidal compactifications

J tor
i,Σi : Xi ↪→ Xtor

i,Σi

over S0, labeled by certain compatible collections Σi of cone decompositions, satis-
fying the following properties:

(1) For each Σi, there is a proper surjective structural morphism∮
i,Σi

: Xtor
i,Σi
→ Xmin

i ,

compatible with Jmin
i and J tor

i,Σi
in the sense that Jmin

i =
∮
i,Σi
◦J tor
i,Σi

.

(2) The scheme Xmin
i admits a stratification by locally closed subschemes Zi flat

over S0, each of which is isomorphic to a finite quotient of an analogue of
Xi. (Nevertheless, in Cases (2) and (3), we can still identity each Zi with
an analogue of Xi.)

(3) Each Σi is a set {ΣZi}Zi of cone decompositions ΣZi with the same index
set as that of the strata of Xmin

i . (In [16], the elements of this index set was
called cusp labels.) For simplicity, we shall suppress such cusp labels and
denote the associated objects with subscripts given by the strata Zi.

(4) For each stratum Zi, the cone decomposition ΣZi is a cone decomposition
of some PZi , where PZi is the union of the interior P+

Zi
of a homogenous

self-adjoint cone (see [3, Ch. 2]) and its rational boundary components,
which is admissible with respect to some arithmetic group ΓZi acting on
PZi (and hence also on ΣZi). Then ΣZi has a subset Σ+

Zi
forming a cone



6 KAI-WEN LAN

decomposition of P+
Zi

. If τ is a cone in ΣZi that is not in Σ+
Zi

, then there

exist a stratum Z′i of Xmin
i , whose closure in Xmin

i contains Zi, and a cone
τ ′ in Σ+

Z′i
, whose ΓZ′i

-orbit is uniquely determined by the ΓZi-orbit of τ .

We may and we shall assume that Σi is smooth, and that, for each Zi
and each σ ∈ Σ+

Zi
, the stabilizer ΓZi,σ of σ in ΓZi is trivial.

(5) For each Σi, the associated Xtor
i,Σi

admits a stratification by locally closed

subschemes Zi,[σ] flat over S0, labeled by the strata Zi of Xmin
i and the

orbits [σ] ∈ Σ+
Zi
/ΓZi . The stratifications of Xtor

i,Σi
and Xmin

i are compatible
with each other in a precise sense, which we summarize as follows: The
preimage of a stratum Zi of Xmin

Hi is the (set-theoretic) disjoint union of the

strata Zi,[σ] of Xtor
i,Σi

with [σ] ∈ Σ+
Zi
/ΓZi . If τ is a face of a representative σ

of [σ], which is identified (as in the property (4) above) with the ΓZ′i
-orbit

[τ ′] of some cone τ ′ in Σ+
Z′i

, where Z′i is a stratum whose closure in Xmin
i

contains Zi, then Zi,[σ] is contained in the closure of Z′i,[τ ′].

(6) For each stratum Zi of Xmin
i , there is a proper surjective morphism

CZi → Zi

(whose precise description is not important for our purpose), together with
a morphism

ΞZi → CZi

of schemes which is a torsor under the pullback of a split torus EZi with
some character group SZi over Spec(Z), so that we have

ΞZi
∼= Spec

OCZi

(
⊕

`∈SZi

ΨZi(`)
)
,

for some invertible sheaves ΨZi(`). (Each ΨZi(`) can be viewed as the sub-
sheaf of (ΞZi → CZi)∗OΞZi

on which EZi acts via the character ` ∈ SZi .)
This character group SZi admits a canonical action of ΓZi , and its R-dual
S∨Zi,R := HomZ(SZi ,R) canonically contains the above sets PZi and P+

Zi
as

subsets with compatible ΓZi-actions.
(7) For each σ ∈ ΣZi , consider the canonical pairing 〈 · , · 〉 : SZi ×S∨Zi,R → R

and σ∨ := {` ∈ SZi : 〈`, y〉 ≥ 0, ∀y ∈ σ}, σ∨0 := {` ∈ SZi : 〈`, y〉 > 0, ∀y ∈
σ}, and σ⊥ := {` ∈ SZi : 〈`, y〉 = 0, ∀y ∈ σ} ∼= σ∨/σ∨0 . Then we have the
affine toroidal embedding

ΞZi ↪→ ΞZi(σ) := Spec
OCZi

(
⊕

`∈σ∨
ΨZi(`)

)
.

The scheme ΞZi(σ) has a closed subscheme ΞZi,σ defined by the ideal sheaf
corresponding to ⊕

`∈σ∨0
ΨZi(`), so that

ΞZi,σ
∼= Spec

OCZi

(
⊕

`∈σ⊥
ΨZi(`)

)
.

Then ΞZi(σ) admits a natural stratification by locally closed subschemes
ΞZi,τ (i.e., the closed subscheme as above of the open subscheme ΞZi(τ) of
ΞZi(σ)), where τ runs over all the faces of σ in ΣZi .

(8) For each given Σi, and for each Zi, consider the full toroidal embedding

ΞZi,ΣZi
= ∪
σ∈ΣZi

ΞZi(σ)



CLOSED IMMERSIONS OF TOROIDAL COMPACTIFICATIONS 7

defined by the cone decomposition ΣZi (cf. [16, Thm. 6.1.2.8 and Sec. 6.2.5]),
and consider the formal completion

XZi,ΣZi
:= (ΞZi,ΣZi

)∧ ∪
τ∈Σ

+
Zi

ΞZi,τ

of ΞZi,ΣZi
along its closed subscheme ∪

τ∈Σ+
Zi

ΞZi,τ . Consider, for each σ ∈

Σ+
Zi

, the formal completion

X◦Zi,σ :=
(
ΞZi(σ)

)∧
ΞZi

(σ)+

of ΞZi(σ) along its closed subscheme ΞZi(σ)+ := ∪
τ∈Σ+

Zi
, τ⊂σ

ΞZi,τ . Then

XZi,ΣZ
admits an open covering by X◦Zi,σ for σ running through elements of

Σ+
Zi

, and we have canonical flat morphisms X◦Zi,σ ↪→ XZi,ΣZi
→ Xtor

i,Σi
(of

locally ringed spaces) inducing isomorphisms

(3.2) X◦Zi,σ
∼→ (Xtor

i,Σi)
∧

∪
τ∈Σ

+
Zi
, τ⊂σ

Zi,[τ]

and

(3.3) XZi,ΣZi
/ΓZi

∼→ (Xtor
i,Σi)

∧
∪

[τ]∈Σ
+
Zi
/ΓZi

Zi,[τ]
.

More precisely, for each σ ∈ Σ+
Zi

, and for each affine open formal sub-

scheme W = Spf(R) of X◦Zi,σ, under the canonically induced (flat) mor-

phisms W := Spec(R)→ Xtor
i,Σi

and Spec(R)→ ΞZi(σ) induced by (3.2), the

stratification of W induced by that of Xtor
i,Σi

coincides with the stratification

of W induced by that of ΞZi(σ). In particular, the preimages of Xi and ΞZi

coincide as an open subscheme W 0 of W .

As for the morphism f : X0 → X1, we have the following:

Proposition 3.4. Assume slightly more generally (than in Assumption 2.1) that(
ρ(A∞)

)
(H0) ⊂ H1 and hence that the morphism f : X0 → X1 is finite. Then there

exists a canonical finite morphism

fmin : Xmin
0 → Xmin

1

such that fmin ◦ Jmin
0 = Jmin

1 ◦ f over S0, together with a canonical collection of
proper morphisms

f tor
Σ0,Σ1

: Xtor
0,Σ0
→ Xtor

1,Σ1

such that f tor
Σ0,Σ1

◦ J tor
0,Σ0

= J tor
1,Σ1
◦ f and fmin ◦

∮
0,Σ0

=
∮

1,Σ1
◦f tor

Σ0,Σ1
over S0, labeled

by certain pairs (Σ0,Σi) of compatible collections of cone decompositions that are
compatible with each other in a sense that we shall explain below, satisfying the
following properties:

(1) For each stratum Z0 of Xmin
0 , there exists a (unique) stratum Z1 of Xmin

1

such that fmin(Z0) ⊂ Z1 (as subsets of Xmin
1 ). Moreover, Z0 is both open

and closed in (fmin)−1(Z1), and fmin induces a finite morphism Z0 → Z1.
(2) Over any Z0 → Z1 as above, we have a finite morphism

CZ0
→ CZ1

,
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over which we have a finite morphism

ΞZ0
→ ΞZ1

,

which induces a finite morphism ΞZ0 → ΞZ1 ×
CZ1

CZ0 which is equivariant

with the pullback of a group homomorphism of tori

EZ0
→ EZ1

with finite kernel over Spec(Z) that is dual to a homomorphism

SZ1
→ SZ0

of character groups with finite cokernel. The R-dual of this last homomor-
phism is an injective homomorphism S∨Z0,R ↪→ S∨Z1,R of R-vector spaces,
inducing a Cartesian diagram of injective maps

P+
Z0

� � //
� _

��

P+
Z1� _

��

PZ0

� � // PZ1
.

All the above maps from objects associated with Z0 to the corresponding
ones associated with Z1 are equivariant with a canonical homomorphism
ΓZ0
→ ΓZ1

. If `1 ∈ SZ1
is mapped to `0 ∈ SZ0

under SZ1
→ SZ0

, then the
invertible sheaf ΨZ0

(`0) over CZ0
is canonically isomorphic to the pullback of

the invertible sheaf ΨZ1(`) over CZ1 under the above morphism CZ0 → CZ1 .

When H0 =
(
ρ(A∞)

)−1
(H1), the homomorphism SZ1

→ SZ0
is surjec-

tive, and hence the dual homomorphism EZ0
→ EZ1

is a closed immersion.
(3) If the image of σ ∈ ΣZ0

under PZ0
↪→ PZ1

is contained in some τ ∈ ΣZ1
,

then we have a canonical morphism

ΞZ0(σ) = Spec
OCZ0

(
⊕

`∈σ∨
ΨZ0

(`)
)
→ ΞZ1

(τ) = Spec
OCZ1

(
⊕

`∈τ∨
ΨZ1

(`)
)

extending ΞZ0
→ ΞZ1

, and inducing a canonical morphism
ΞZ0

(σ) → ΞZ1
(τ) ×

CZ1

CZ0
which is equivariant with the pullback of

EZ0
→ EZ1

. Moreover, there is an induced morphism

ΞZ0,σ = Spec
OCZ0

(
⊕

`0∈σ⊥
ΨZ0(`0)

)
→ ΞZ1,τ = Spec

OCZ1

(
⊕

`1∈τ⊥
ΨZ1(`1)

)
.

(4) We say that the collections Σ0 = {ΣZ0
}Z0

and Σ1 = {ΣZ1
}Zi are com-

patible with each other or simply compatible if, when Z0 is mapped
to Z1 as above, the image of each σ ∈ Σ+

Z0
under the map P+

Z0
↪→ P+

Z1
is

contained in some τ ∈ Σ+
Z1

. We say that Σ0 is induced by Σ1 if each

σ ∈ Σ+
Z0

is exactly the preimage of some τ ∈ Σ+
Z1

. (If Σ0 is induced by Σ1,

then they are necessarily compatible.)
(5) The morphism f : X0 → X1 extends to a proper (resp. finite) morphism

f tor
Σ0,Σ1

: Xtor
0,Σ0

→ Xtor
1,Σ1

as above if and only if Σ0 and Σ1 are compatible

(resp. Σ0 is induced by Σ1). When Σ0 and Σ1 are compatible, if the image
of σ ∈ Σ+

Z0
under P+

Z0
↪→ P+

Z1
is contained in τ ∈ Σ+

Z1
, then the morphism

f tor
Σ0,Σi

induces a morphism Z0,[σ] → Z1,[τ ] (which is not necessarily proper),
which can be canonically identified with the morphism ΞZ0,σ → ΞZ1,τ above.
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For each τ ∈ Σ+
Z1

, the preimage of Z1,[τ ] is the (set-theoretic) disjoint union

of the strata Z0,[σ] labeled by σ ∈ Σ+
Z0

that are mapped into τ under P+
Z0
↪→

P+
Z1

. If there is a unique such σ, which is the case exactly when σ is the
preimage of τ , then the induced morphism Z0,[σ] → Z1,[τ ] is finite.

(6) Suppose that Σ0 and Σ1 are compatible. Then there is a proper morphism

ΞZ0,ΣZ0
→ ΞZ1,ΣZ1

,

whose formal completion gives a proper morphism

(3.5) XZ0,ΣZ0
→ XZ1,ΣZ1

.

These two morphisms are equivariant with the homomorphism ΓZ0
→ ΓZ1

and induces a proper morphism XZ0,ΣZ0
/ΓZ0 → XZ1,ΣZ1

/ΓZi , which can be

identified (via isomorphisms as in (3.3)) with

(Xtor
0,Σ0

)∧ ∪
[σ]∈Σ

+
Z0
/ΓZ0

Z0,[σ]
→ (Xtor

1,Σ1
)∧ ∪
[τ]∈Σ

+
Z1
/ΓZ1

Z1,[τ]
.

If the image of σ ∈ Σ+
Z0

under P+
Z0
→ P+

Z1
is contained in some τ ∈ Σ+

Z1
,

we have an induced morphism X◦Z0,σ
→ X◦Z1,τ

, which can be identified (via

isomorphisms as in (3.2)) with

(Xtor
0,Σ0

)∧ ∪
σ′∈Σ

+
Z0
, σ′⊂σ

Z1,[σ′]
→ (Xtor

1,Σ1
)∧ ∪
τ′∈Σ

+
Z1
, τ′⊂τ

Z1,[τ′]
.

For a fixed τ ∈ Σ+
Zi

, the pullback of (3.5) to the open formal subscheme
X◦Z1,τ

on the target gives a proper morphism

(3.6) ∪
σ∈Σ+

Z0
, (PZ0

→PZ1
)(σ)⊂τ

X◦Z0,σ → X◦Z1,τ .

Suppose moreover that Σ0 is induced by Σ1. Then both morphisms (3.5)
and (3.6) are finite. For each τ ∈ Σ+

Z1
as above, with σ ∈ Σ+

Z0
the preimage

of τ , which is the unique element in Σ+
Z0

such that (P+
Z0
↪→ P+

Z1
)(σ) ⊂ τ ;

and for each affine open formal subscheme W1 = Spf(R1) of X◦Z1,σ
, let

W0 = Spf(R0) denote its pullback to X◦Z0,σ
. Under the morphisms W1 :=

Spec(R1) → Xtor
1,Σ1

, W1 → ΞZ1
(τ), W0 := Spec(R0) → Xtor

0,Σ0
, and W0 →

ΞZ0(σ) induced by morphisms as in (3.2), the preimages of X1 and ΞZ1

coincide as an open subscheme W 0
1 of W1, and their further preimages in

W0 coincide with the preimages of X0 and ΞZ0
as an open subscheme W 0

0 .

Proof. Except for the first assertion in (5), these follow from the same arguments
as in [24, Sec. 2.1.28 and 4.1.12] (which are based on [26, Sec. 4.16, 6.25, and 12.4]
and [11, Sec. 3.3]) in Cases (1) and (4), and as in [17, Sec. 8–11] and [20, the proof
of Prop. 2.1.3] in Cases (2) and (3). As for the first assertion in (5), it follows from
the universal or functorial properties of toroidal compactifications in terms of the
associated cone decompositions, as in [2, 3, Ch. II, Sec. 7], [26, Prop. 6.25], [16,
Thm. 6.4.1.1(6)], [19, Thm. 6.1(6)], and [24, Prop. 4.1.13]. �

Corollary 3.7. In Proposition 3.4, suppose that Σ0 is induced by Σ1. Let Z1 be a
stratum of Xmin

1 , and let {Z0,j}j be all the strata of Xmin
0 such that fmin(Z0,j) ⊂ Z1

(as subsets of Xmin
1 ). Consider any τ ∈ Σ+

Z1
. For each j, let

σj := (P+
Z0,j

↪→ P+
Z1

)−1(τ) ∈ Σ+
Z0,j

.
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Then the pullback of the finite morphism

f tor
Σ0,Σ1

: Xtor
0,Σ0
→ Xtor

1,Σ1

under the composition of the canonical morphisms X◦Z1,τ
∼→ (Xtor

1,Σ1
)∧ ∪
τ′∈Σ

+
Z1
, τ′⊂τ

Z1,[τ′]

(as in (3.2)) and (Xtor
1,Σ1

)∧ ∪
τ′∈Σ

+
Z1
, τ′⊂τ

Z1,[τ′]
→ Xtor

1,Σ1
can be identified with the finite

morphism ∐
j

X◦Z0,j ,σj → X◦Z1,τ

(defined by combining morphisms as in (3.6)).

Proof. This follows from (1) and (6) of Proposition 3.4. �

Corollary 3.8. In Corollary 3.7, with any τ ∈ Σ+
Z1

there inducing σj ∈ Σ+
Z0,j

, for

each j, we have a commutative diagram of canonical morphisms

(3.9) EZ0,j

� � //

��

EZ0,j
(σj)

��

EZ1

� � // EZ1
(τ)

over Spec(Z), in which the horizontal morphisms are affine toroidal embeddings,
which are open immersions, and where the vertical morphisms are finite. Let x1

be any point of Xtor
1,Σ1

that lies on the stratum Z1,[τ ]. Then, étale locally at x1, the
commutative diagram

X0

f

��

Jtor
0,Σ0 // Xtor

0,Σ0

ftor
Σ0,Σ1

��

X1
Jtor

1,Σ1

// Xtor
1,Σ1

can be identified with a commutative diagram

(3.10)
∐
j

(
EZ0,j ×

Spec(Z)
CZ0,j

) � � //

��

∐
j

(
EZ0,j (σj) ×

Spec(Z)
CZ0,j

)
��

EZ1
×

Spec(Z)
CZ1

� � // EZ1
(τ) ×

Spec(Z)
CZ1

induced by taking fiber products of some translations of the vertical morphisms in
the diagram (3.9) by sections of EZ1

and of the canonical morphisms CZ0,j
→ CZ1

.
More precisely, there exists an étale neighborhood

U1 → Xtor
1,Σ1

of x1 and an étale morphism

(3.11) U1 → EZ1
(τ) ×

Spec(Z)
CZ1

,
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which induce by pullback under the finite morphisms f tor
Σ0,Σ1

: Xtor
0,Σ0

→ Xtor
1,Σ1

and∐
j

(
EZ0,j

(σj) ×
Spec(Z)

CZ0,j

)
→ EZ1

(τ) ×
Spec(Z)

CZ1
(as in (3.10)) some étale morphisms

U0 → Xtor
0,Σ0

and U0 →
∐
j

(
EZ0,j (σj) ×

Spec(Z)
CZ0,j

)
, respectively, such that the preim-

age U1 of X1 in U1 coincides with the preimage of EZ1
, and such that the preimage

U0 of U1 in U0 coincides with the preimages of X0 and of
∐
j

(
EZ0,j

×
Spec(Z)

CZ0,j

)
.

Therefore, the pullback of Xtor
0,Σ0
− X0 (with its reduced subscheme structure) to

U0 coincides (as a subscheme) with the pullback of
∐
j

(
∂EZ0,j

(σj) ×
Spec(Z)

CZ0,j

)
,

where ∂EZ0,j
(σj) := EZ0,j

(σj) − EZ0,j
(with its reduced subscheme structure), for

each j; and the pullback of Xtor
1,Σ1

− X1 (with its reduced subscheme structure)

to U1 coincides (as a subscheme) with the pullback of ∂EZ1
(τ) ×

Spec(Z)
CZ1

, where

∂EZ1
(τ) := EZ1

(τ)− EZ1
(with its reduced subscheme structure).

Proof. These follow from Corollary 3.7 and Artin’s approximation (see [1, Thm.
1.12, and the proof of the corollaries in Sec. 2]) as in the proofs of [21, Prop. 2.2(9)
and Cor. 2.4], [20, Cor. 2.1.7], and [22, Prop. 5.1], which are applicable because
we only need to approximate finitely many formal schemes finite over X◦Z1,τ

, and
because the formation of Henselizations of semi-local rings is compatible with base
change under finite morphisms by [10, IV-4, 18.6.8]; and from the fact that all the
torus torsors are already Zariski locally trivial, as in the proof of [21, Lem. 2.3].
(Note that the torus torsors might be trivialized by incompatible sections. Hence,
we need to allow the canonical morphisms EZ0,j → EZ1 to be translated by some
possibly different sections of EZ1 , when there are more than one j.) �

Remark 3.12. In Proposition 3.4, and in Corollaries 3.7 and 3.8, we only need

the weaker assumption that
(
ρ(A∞)

)
(H0) ⊂ H1. When H0 =

(
ρ(A∞)

)−1
(H1),

we already know in Proposition 3.4(2) that the morphism EZ0,j
→ EZ1

in (3.9)
is a closed immersion, without assuming that f is a closed immersion; but it is
generally not true that the morphism EZ0,j (σj) → EZ1(τ) is a closed immersion
when EZ0,j → EZ1 is (cf. Remark 4.1 below), regardless of whether f is.

We shall reinstate the full Assumption 2.1 from now on.

4. Conditions on cone decompositions

Motivated by Corollary 3.8, with the goal of proving Theorem 2.2 in mind, we
would like to show the existence of collections Σ0 and Σ1 such that Σ0 is induced
by Σ1 as in Proposition 3.4(4) and such that, for each σ ∈ Σ+

Z0
that is the preimage

under P+
Z0
→ P+

Z1
of some τ ∈ Σ+

Z1
, the canonical morphism EZ0

(σ)→ EZ1
(τ) (cf.

(3.9)) is a closed immersion.

Remark 4.1. This condition of being a closed immersion is not satisfied in general.
For example, it is possible to choose the linear algebraic data such that SZ1

∼=
Z⊕3 � SZ0

∼= Z⊕2 corresponds to the projection to the first two factors, in which
case S∨Z0,R

∼= R⊕2 ↪→ S∨Z1,R
∼= R⊕3 is the inclusion of the first two coordinates, and

such that we have the following:

• τ ⊂ S∨Z1,R is R>0-spanned by {(0, 0, 1), (−1, 0, 2), (1, 1,−2)}, in which case

τ∨ is Z≥0-spanned by the Z-basis {(−1, 1, 0), (0, 1, 0), (2, 0, 1)} of Z⊕3.
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• σ ⊂ S∨Z0,R is R>0-spanned by {(1, 1), (0, 1)}, in which case σ∨ is Z≥0-

spanned by the Z-basis {(−1, 1), (1, 0)} of Z⊕2.
• σ = (S∨Z0,R ↪→ S∨Z1,R)−1(τ). However, τ∨ → σ∨ is not surjective, because

the Z≥0-span of {(−1, 1), (0, 1), (2, 0)} cannot contain (1, 0).
• The morphism EZ0

(σ)→ EZ1
(τ) is given by the morphism Spec(Z[σ∨])→

Spec(Z[τ∨]) induced by τ∨ → σ∨, and hence is not a closed immersion.

Remark 4.2. In fact, in Remark 4.1, even the induced map EZ0(σ)(C)→ EZ1(τ)(C)
on C-points is not injective: For ? = ±1, if x? : Z[σ∨] → C is the ring homomor-
phism sending (−1, 1) and (1, 0) in σ∨ to 0 and ?, respectively, then the induced
homomorphism y : Z[τ∨] → C sends (−1, 1, 0), (0, 1, 0), and (2, 0, 1) to 0, 0, and
1, respectively. That is, both the C-points defined by x1 and x−1 are sent to the
same C-point defined by y. This shows that, already in characteristic zero, the
induced morphism EZ0(σ) → EZ1(τ) is not universally injective, and hence can-
not induce a universal homeomorphism between the source and its image in the
target. Moreover, for any rational polyhedral cone σ′ ⊂ σ, the induced morphism
EZ0

(σ′)→ EZ1
(τ) is not universally injective either.

Nevertheless, we have the following:

Lemma 4.3. Let σ ⊂ S∨Z0,R and τ ⊂ S∨Z1,R be any rational polyhedral cones

such that τ = (S∨Z0,R ↪→ S∨Z1,R)(σ). Then the canonical morphism EZ0
(σ) ∼=

Spec(Z[σ∨])→ EZ1
(τ) ∼= Spec(Z[τ∨]) is a closed immersion.

Proof. Given an arbitrary `0 ∈ σ∨, take any lift `1 of it in SZ1
, which exists because

SZ1
→ SZ0

is surjective. Given an arbitrary y1 ∈ τ , by assumption, there exists
some y0 ∈ σ such that y1 = (S∨Z0,R ↪→ S∨Z1,R)(y0), and so that 〈`1, y1〉 = 〈`0, y0〉 ≥ 0.

Consequently, `1 ∈ τ∨, and τ∨ → σ∨ is surjective, as desired. �

Lemma 4.4. In Lemma 4.3, let us identify S∨Z0,R with a subspace of S∨Z1,R for

simplicity, so that τ = σ under this identification; and let S∨ := S∨Z1
∩ (R · σ) and

S := HomZ(S∨,Z), so that we have surjective homomorphisms SZ1
� SZ0

� S
corresponding to injective homomorphisms of tori E ↪→ EZ0

↪→ EZ1
. For the sake

of clarity, let us denote by ς the same cone σ in S∨R = R · σ. Let E, E⊥Z0
, and E⊥Z1

be the split tori over Spec(Z) with character groups S, S⊥Z0
:= ker(SZ0 � S), and

S⊥Z1
:= ker(SZ1

� S), respectively. Let us pick any splitting SZ1
∼= S ⊕ S⊥Z1

(as Z-

modules) which induces a splitting SZ0
∼= S⊕S⊥Z0

. Then these splittings are dual to

compatible fiber products EZ1
∼= E ×

Spec(Z)
E⊥Z1

and EZ0
∼= E ×

Spec(Z)
E⊥Z0

, respectively;

and the canonical injective homomorphism EZ0
↪→ EZ1

factors as a fiber product
of the identity homomorphism of E with the canonical injective homomorphism
E⊥Z0

↪→ E⊥Z1
dual to S⊥Z1

� S⊥Z0
. Moreover, these splittings extend to compatible

fiber products EZ1
(τ) ∼= E(ς) ×

Spec(Z)
E⊥Z1

and EZ0
(σ) ∼= E(ς) ×

Spec(Z)
E⊥Z0

, respectively;

and the canonical closed immersion EZ0
(σ) ↪→ EZ1

(τ) factors as the fiber product
of the identity morphism of E(ς) with the same injective group homomorphism
E⊥Z0

↪→ E⊥Z1
as above. Furthermore, any closed immersion EZ0

(σ) ↪→ EZ1
(τ) that

is a translation of the canonical one by some section of EZ1 can be identified with

the product of an isomorphism E(ς)
∼→ E(ς) that is the translation of the identity

morphism on E(ς) by some section of E with a closed immersion E⊥Z0
↪→ E⊥Z1

that

is the translation of the canonical one by some section of E⊥Z1
.
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Proof. These follow from the identification τ∨ = (SZ1
� SZ0

)−1(σ∨) in the proof
of Lemma 4.3, and from the various definitions introduced in this lemma. �

Lemma 4.5. In Lemma 4.3, let ∂EZ0(σ) := EZ0(σ)−EZ0 and ∂EZ1(τ) := EZ1(τ)−
EZ1

, as reduced closed subschemes of EZ0
(σ) and EZ1

(τ), respectively. Then the
canonical morphism EZ0

(σ) → EZ1
(τ) induces a canonical morphism ∂EZ0

(σ) →
∂EZ1

(τ) and a canonical isomorphism ∂EZ0
(σ)

∼→ ∂EZ1
(τ) ×

EZ1
(τ)
EZ0

(σ). If we

denote by Iσ (resp. Iτ ) the OEZ0
(σ)-ideal (resp. OEZ1

(τ)-ideal) defining ∂EZ0(σ)

(resp. ∂EZ1
(τ)), then Iσ ∼=

(
EZ0

(σ)→ EZ1
(τ)
)∗

(Iτ ) as OEZ0
(σ)-ideals.

Proof. In the setting of Lemma 4.4, consider the reduced closed subscheme
∂E(ς) := E(ς) − E of E(ς). Since E⊥Z0

is smooth as a torus, ∂EZ0
(σ) coincides

with the pullback of ∂E(ς) under the first projection in the fiber product
EZ0(σ) ∼= E(ς) ×

Spec(Z)
E⊥Z0

as reduced subschemes of EZ0(σ), because they coincide

as subsets. Similarly, ∂EZ1(τ) coincides with the pullback of ∂E(ς) under the first
projection in the fiber product EZ1(τ) ∼= E(ς) ×

Spec(Z)
E⊥Z1

as reduced subschemes of

EZ1(τ). Since these two fiber products are compatible with each other, ∂EZ0(σ)
coincides with the pullback of ∂EZ1

(τ) as subschemes, and the lemma follows. �

These justify the following:

Definition 4.6. We say that two compatible collections Σ0 and Σ1 of cone decom-
positions as in Proposition 3.4(4) are strictly compatible with each other or
simply strictly compatible if, for each Z0 → Z1 as in Proposition 3.4(1), the
image of each σ ∈ Σ+

Z0
under P+

Z0
↪→ P+

Z1
is exactly some τ ∈ Σ+

Z1
.

Remark 4.7. Certainly, if Σ0 and Σ1 are strictly compatible as in Definition 4.6,
then Σ0 is induced by Σ1, and they are compatible, as in Proposition 3.4(4).

Lemma 4.8. Under the assumption that f : X0 → X1 is a closed immersion, the
morphism

∐
j

(
EZ0,j ×

Spec(Z)
CZ0,j

)
→ EZ1 ×

Spec(Z)
CZ1 in Corollary 3.8 is a closed im-

mersion over the open image of U1 under (3.11). Since EZ0,j
and EZ1

are separated
group schemes with sections which are closed immersions, CZ0,j

→ CZ1
(and hence

ΞZ0,j
→ ΞZ1

) are also closed immersions over the further image of U1 in CZ1
, for

all j. Moreover, if Σ0 and Σ1 are strictly compatible as in Definition 4.6, then the
morphism

∐
j

(
EZ0,j (σj) ×

Spec(Z)
CZ0,j

)
→ EZ1(τ) ×

Spec(Z)
CZ1 in Corollary 3.8 is also

a closed immersion over the open image of U1 under (3.11).

Proof. The first two assertions follow immediately from Corollary 3.8. By Lemma
4.3, the morphism EZ0,j

(σj) ×
Spec(Z)

CZ0,j
→ EZ1

(τ) ×
Spec(Z)

CZ1
is a closed immersion

over the open image of U1, for each j. It remains to show that any point x in the
image of U1 and in the image of

∐
j

(
EZ0,j

(σj) ×
Spec(Z)

CZ0,j

)
→ EZ1

(τ) ×
Spec(Z)

CZ1

lies on at most one of the images of the above closed immersions. Suppose to the
contrary that there are two distinct indices j and j′, together with points y and y′ of
EZ0,j (σj) ×

Spec(Z)
CZ0,j and EZ0,j′ (σj′) ×

Spec(Z)
CZ0,j′ , respectively, which are mapped

to the point x of EZ1
(τ) ×

Spec(Z)
CZ1

. Then x, y, and y′ have the same image z in
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CZ1
, which is also in the images of the closed immersions from CZ0,j

and CZ0,j′ ,

and we obtain (by pullback to z) closed immersions φj : EZ0,j (σj)z → EZ1(τ)z
and φj′ : EZ0,j′ (σj′)z → EZ1

(τ)z over z, which are translations of the canonical

ones by some sections of (EZ1
)z, whose images overlap at x (also viewed as a point

of EZ1
(τ)z). By Lemma 4.4, in the notation there, φj and φj′ are, respectively,

fiber products over z of some isomorphisms E(ς)z
∼→ E(ς)z that are translations

of the identity morphism of E(ς)z by some sections of Ez with closed immersions
ψj : (E⊥Z0,j

)z → (E⊥Z1
)z and ψj′ : (E⊥Z0,j′

)z → (E⊥Z1
)z that are translations of the

canonical ones by some sections of (E⊥Z1
)z. The images of ψj and ψj′ overlap

at the image w of x in (E⊥Z1
)z, exactly because the images of φj and φj′ do at x,

regardless of the above translations of the identity morphism of E(ς)z by sections of
Ez. Hence, the images of the restrictions (EZ0,j

)z → (EZ1
)z and (EZ0,j′ )z → (EZ1

)z
of φj and φj′ , respectively, overlap at all points of the preimage W of x in (EZ1

)z.
When canonically viewed as a subset of EZ1

(τ) ×
Spec(Z)

CZ1
, this W contains x in its

closure. Since x is a point of the open image of U1 by assumption, W must overlap
with the open image of U1 at some point in the open image of U1. Thus, we obtain
a contradiction with the first assertion of this lemma, as desired. �

By Corollary 3.8 and Lemmas 4.5 and 4.8, we obtain the following:

Proposition 4.9. If there exist compatible collections Σ0 and Σ1 that are strictly
compatible as in Definition 4.6, then the induced morphism f tor

Σ0,Σ1
: Xtor

0,Σ0
→ Xtor

1,Σ1

as in Proposition 3.4 is a closed immersion extending f : X0 → X1. Moreover, if
we denote by IΣi the OXtor

i,Σi
-ideal defining the boundary Xtor

i,Σi
−Xi (with its reduced

subscheme structure), for i = 0, 1, then we have f tor,∗
Σ0,Σ1

(IΣ1
) ∼= IΣ0

as OXtor
i,Σ0

-ideals.

In order to prove Theorem 2.2, it remains to establish the following:

Proposition 4.10. There exist compatible collections Σ0 and Σ1 that are strictly
compatible as in Definition 4.6, which we may assume to be projective and smooth
and satisfy the condition that, for i = 0, 1, and for each Zi and each σ ∈ Σ+

Zi
, the

stabilizer ΓZi,σ of σ in ΓZi is trivial. Moreover, we may assume that Σ0 and Σ1

refine any finite number of prescribed compatible collections of cone decompositions.

Proof. Let us temporarily ignore the assumption on projectivity and smoothness,
and take Σ0 to be induced by Σ1 as in Proposition 3.4(4) (cf. [11, Sec. 3.3]). Note
that, given any Z1 and any [τ ] ∈ Σ+

Z1
/ΓZ1 , there exist only finitely many Z0 mapped

to Z1; and for each such Z0, there exist only finitely many [σ] ∈ Σ+
Z0
/ΓZ0

mapped to

[τ ] under the map Σ+
Z0
/ΓZ0

→ Σ+
Z1
/ΓZ1

(simply because there are only finitely many

possible Z0 and [σ]). Since Σ0 is induced by Σ1, for any τ ∈ Σ+
Z1

representing some

[τ ] as above, each [σ] that is mapped to [τ ] as above is represented by some σ ∈ Σ+
Z0

that is the preimage of τ under the injection S∨Z0,R ↪→ S∨Z1,R as in Proposition 3.4(2).

In this case, the image of σ is the intersection of τ with the image of S∨Z0,R ↪→
S∨Z1,R. As a result, up to refining each such τ by intersections with finitely many
hyperplanes, and up to refining all the finitely many σ involved accordingly, we may
assume that Σ0 and Σ1 are strictly compatible (but still not necessarily projective
and smooth). We may also refine both of them, and assume that they refine any
finite number of prescribed compatible collections and satisfy the condition in the
end of the first sentence of the proposition. Finally, up to further refinements, we
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may assume that Σ0 and Σ1 are both projective and smooth, because as soon as
Σ0 and Σ1 are strictly compatible and satisfy the last condition of the proposition,
any further refinements will remain so; and because, when Σ0 and Σ1 are strictly
compatible, both the projectivity and smoothness of Σ1 are automatically inherited
by Σ0, and hence it suffices to refine Σ1. (However, note that such an inheritance
is not necessarily true in general, when Σ0 is merely induced by Σ1.) �

The proof of Theorem 2.2 is now complete.

5. Some examples

Example 5.1. In Case (1), suppose that G0 = GL2,Q and G1 := GL2,Q ×
Gm,Q

GL2,Q,

where the two structure morphisms in the fiber product are both the determinant
homomorphism. Then G1 is naturally a subgroup scheme of G0×G0, and the
diagonal morphism of G0 factors through a homomorphism ρ : G0 → G1. Let
H+ and H− denote the Poincaré upper and lower half-planes, respectively, and
let i denote the

√
−1 in H+. Let h0 : ResC/R Gm,C → G0,R = GL2,R be defined

by a + bi 7→
(
a −b
b a

)
, and let h1 the composition of h0 with ρR : G0,R → G1,R.

Then G0(R) · h0 = H± = H+

∐
H−, and G1(R) · h1 = (H+×H+)

∐
(H−×H−).

Let H0 ⊂ G0(A∞) = GL2(A∞) be a principal congruence subgroup of some level
n ≥ 3, and let H1 := (H0×H0) ∩ G1(A∞). Then X0 is the modular curve of
principal level n over S0 = Spec(Q), and X1 is an open-and-closed subscheme of
X0×

S0

X0. In this case, the morphism f : X0 → X1 is the closed immersion induced

by the diagonal morphism of X0, and all possible maps PZ0
→ PZ1

can be identified
with either {0} → {0} or the diagonal map R≥0 → R2

≥0. There is a unique choice

of Σ0, and Xtor
0,Σ0

is the usual compactified modular curve. Let Σ′1 denote the
compatible collection of cone decompositions for X1 induced by Σ0×Σ0, which is
given by either {0} or the faces of the whole cone R2

>0. Then Xtor
1,Σ′1

is an open-and-

closed subscheme of Xtor
0,Σ0
×
S0

Xtor
0,Σ0

, and the morphism f tor
Σ0,Σ′1

: Xtor
0,Σ0
→ Xtor

1,Σ′1
is the

closed immersion induced by the diagonal morphism of Xtor
0,Σ0

. However, Σ0 and Σ′1
are not strictly compatible, and the pullback of IΣ′1

is I⊗2
Σ0

rather than IΣ0
(which

means the image of f tor
Σ0,Σ′1

does not meet the boundary of Xtor
1,Σ′1

transversally). (See

Remark 2.5.) Nevertheless, by Theorem 2.2, there exists a refinement Σ1 of Σ′1 such
that f tor

Σ0,Σ1
: Xtor

0,Σ0
→ Xtor

1,Σ1
is a closed immersion and such that the pullback of

IΣ1 is IΣ0 . In practice, the difference between Σ′1 and its refinement Σ1 is given by
some subdivisions of cones of the form R2

>0, which correspond to (possibly repeated)
blowups at some (possibly nonreduced closed subschemes over) products of cusps,
after which the image of f tor

Σ0,Σ1
meets the boundary of Xtor

1,Σ1
transversally.

Example 5.2. In Case (2), suppose that we have the following:

(1) O0 = Z×Z and O1 = Z is diagonally embedded in O0, and ?0 and ?1 are
trivial.

(2) L1 = Z⊕4, with the first (resp. second) factor of O0 = Z×Z acting natu-
rally on the first and third (resp. second and fourth) factors of L1 = Z⊕4

and trivially on the remaining factors.
(3) Let 〈 · , · 〉1 : L1×L1 → Z(1) be the self-dual pairing defined by composing

the standard symplectic pairing
(
(x1, x2, x3, x4), (y1, y2, y3, y4)

)
7→ x1y3 +

x2y4 − x3y1 − x4y2 with a fixed choice of isomorphism 2πi : Z → Z(1),
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where i is the
√
−1 in H+ as in Example 5.1, and let h1(a + bi) act on

L1,R ∼= R⊕4 via the left multiplication by
(
a −b
b a

)
on the first and third

factors, and similarly on the second and fourth factors.

Then (G0⊗
Z
Q,G0(R) · h0) is the same as the (G1,G1(R) · h1) in Example 5.1, and

(G1⊗
Z
Q,G1(R) ·h1) = (GSp4,Q,H2,±), where H2,± is the union of the Siegel upper

and lower half-spaces of genus two. In both cases, the reflex field is Q, so that we
can take F = Q, and there are no bad primes for the integral PEL data.

Let H1 ⊂ G1(Ẑ2) be a principal congruence subgroup of some level n ≥ 3 that

is prime-to-2, and let H0 := H1 ∩ G0(Ẑ2). Then the moduli problem defined by
(O1, ?1, L1, 〈 · , · 〉1, h1) and H1 is a smooth integral model X1 of the Siegel three-
fold over S0 = Spec(Z(2)) parameterizing principally polarized abelian surfaces
with symplectic principal level-n structures; and the moduli problem defined by
(O0, ?0, L0, 〈 · , · 〉0, h0) and H0 is the closed moduli subscheme X0 of X1 parame-
terizing principally polarized abelian surfaces of the form (E1×

S
E2, λ1×

S
λ2), where

(E1, λ1) and (E2, λ2) are canonically principally polarized elliptic curves, with prin-
cipal level-n structures satisfying some conditions. At the level of connected com-
ponents, X0 can be viewed as the product of two smooth integral models of modular
curves of principal level n. In this case, we have a closed immersion f : X0 ↪→ X1,
and Theorem 2.2 guarantees the existence of some closed immersion of toroidal
compactifications f tor

Σ0,Σ1
: Xtor

0,Σ0
↪→ Xtor

1,Σ1
extending f , defined by some collections

Σ0 and Σ1 of cone decompositions that are strictly compatible.

The map P
+

Z0
:= (P+

Z0
− {0})/R×>0 → P

+

Z1
:= (P+

Z1
− {0})/R×>0 can be from

the empty set to the empty set; from a single point to a single point; or from the
vertical half-line iR>0 to H+ (up to some identifications). In the last case, ΓZ0

acts trivially on iR>0 because of neatness, while ΓZ1
acts via a neat congruence

subgroup of SL2(Z) on H+ (with trivial stabilizers). Then Σ+
Z0

gives a subdivision

of iR>0, while Σ+
Z1

gives a triangularization of H+ that is compatible with ΓZ1
and

descends to a triangularization of H+/ΓZ1 . Note that any nontrivial subdivision of
iR>0 means, when we view the connected components of X0 as products of those of
two smooth integral models of modular curves, we have (possibly repeated) blowups
at some subschemes over products of cusps. (This is the end of Example 5.2.)

Example 5.3. In Case (2), suppose that we have the following:

(1) n ≥ 2 is any integer.
(2) K is an imaginary quadratic extension of Q, with maximal order OK .
(3) O0 = OK ×OK and O1 = OK is diagonally embedded in O0, and ?0 and

?1 are the complex conjugations (simultaneously on both factors of O0).
(4) L1 = O⊕n+1

K , with the first (resp. second) factor of O0 = OK ×OK acting

naturally on the first n factors (resp. last factor) of L1 = O⊕n+1
K and

trivially on the remaining factors.
(5) Let ε ∈ Diff−1

OK/Z be any element in the inverse different

that is invariant under the complex conjugation, and let
〈 · , · 〉1 : L1×L1 → Z(1) be the pairing defined by com-
posing the pairing

(
(x1, x2, . . . , xn+1), (y1, y2, . . . , yn+1)

)
7→

TrOK/Z
(
ε · (−x1y1 + x2y2 + · · · + xn+1yn+1)

)
with a fixed choice

of isomorphism 2π
√
−1 : Z→ Z(1), and let h1(z) act on L1,R ∼= C⊕n+1 via
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the left multiplication by the complex conjugate z on the first factor, and
by z itself on the remaining factors.

Then G0⊗
Z
R ∼= G(Un−1,1×U1) ∼= GUn−1,1 ×

Gm,R
GU1, where the two structure mor-

phisms in the fiber product are similitude homomorphisms; and G1⊗
Z
R ∼= GUn,1.

In both cases, the reflex field is K because n ≥ 2, so that we can take F = K;
and the bad primes are those ramified in K and divides TrOK/Z(ε), and we can
take 2 to be any set of rational primes that are not bad. Let us choose H0 and
H1 suitably, so that we have smooth integral models X0 and X1 over S0, with a
closed immersion f : X0 → X1, which can be interpreted as mapping a smooth in-
tegral model of a GUn−1,1 Shimura variety to a smooth integral model of a GUn,1

Shimura variety defined by taking fiber products of the universal abelian scheme
with some CM elliptic curves (which explains the U1 part). (It is perhaps better
to work with abelian-type Shimura varieties and arrange G0⊗

Z
R → G1⊗

Z
R to be

Un−1,1 → Un,1, but the difference is on the centers and hence unimportant for our
purpose.)

By Theorem 2.2, there exists some closed immersion of toroidal compactifications
f tor

Σ0,Σ1
: Xtor

0,Σ0
↪→ Xtor

1,Σ1
extending f , defined by some strictly compatible collections

Σ0 and Σ1 of cone decompositions. But note that we have no choice to make for
Σ0 and Σ1. All possible maps PZ0

→ PZ1
can be identified with either {0} → {0}

or R≥0 → R≥0, and in all cases the cone decompositions are uniquely determined
and trivial (and satisfy all the usual conditions we impose). Hence, Theorem 2.2
just says that the canonical morphism f tor : Xtor

0 → Xtor
1 between smooth integral

models of toroidal compactifications over S0, where all the collections of cone de-
compositions are now justifiably omitted from the notation, is a closed immersion.

Nevertheless, such a discussion is not completely meaningless. The fact that
smooth toroidal compactifications of X0 and X1 uniquely exist is well known, but the
fact that closed immersions f : X0 → X1 extend as above to closed immersions f tor :
Xtor

0 → Xtor
1 is probably less so. Also, as soon as we have such a f tor, we can consider

the closed immersion (IdX0 , f) : X0 → X0×
S0

X1, which then extends to the closed

immersion (IdXtor
0
, f tor) : Xtor

0 → Xtor
0 ×

S0

Xtor
1 , which provides the justification for

some usual geometric considerations related to the Gan–Gross–Prasad conjecture.
We have similar assertions in Case (3). (This is the end of Example 5.3.)

Example 5.4. In Case (1), suppose that G0 is the special orthogonal group over Q
defined by a quadratic space V0 of signature (n−1, 2) at∞, for some n ≥ 2, and let

G1 be the special orthogonal group over Q defined by V1 := (Q · e)
⊥
⊕V0, where the

quadratic form is defined to have value +1 on the additional basis vector e. Then
G0⊗

Q
R ∼= SOn−1,2 and G1⊗

Q
R ∼= SOn,2. Let i be the same

√
−1 as in Example 5.1.

Up to suitable choices of the above isomorphisms, we can arrange that h0 and h1

are defined by mapping Gm,C → SO2,R : r(cos θ+ i sin θ) 7→
(

cos 2θ − sin 2θ
sin 2θ cos 2θ

)
into the

second factors of the diagonally embedded compact subgroups SOn−1,R×SO2,R
and SOn,R×SO2,R of SOn−1,2 and SOn,2, respectively. Then the reflex fields of
both Shimura data (G0,G0(R) · h0) and (G1,G1(R) · h1) are Q, and we can take
F to be Q (or any field extension in C). Let H0 and H1 be chosen such that

f : X0 → X1 is a closed immersion over S0 = Spec(F ). Then P
+

Z0
→ P

+

Z1
can

be either from the empty set to the empty set; from a single point to a single
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point; or from the hyperbolic (n− 1)-space to the hyperbolic n-space (equivariant
with SOn−1,1 → SOn,1, up to some identifications). (The map iR>0 → H+ in
Example 5.2 can be viewed as a special case of the last possibility, with n = 2.)
By Theorem 2.2, there exists some closed immersion of toroidal compactifications
f tor

Σ0,Σ1
: Xtor

0,Σ0
↪→ Xtor

1,Σ1
extending f , for some strictly compatible Σ0 and Σ1.

We have similar assertions in Cases (1) and (4) if we replace special orthogonal
groups above with the corresponding general spin groups, with suitable associated
Shimura data and Siegel embeddings. (This is the end of Example 5.4.)

6. Perfectoid toroidal compactifications

Finally, as an application, let us verify [9, Hypothesis 2.18]. As explained in [9],
this allows for a substantial simplification of the proof of the main theorems in [9].

Let us explain how [9, Hypothesis 2.18] fits into our setting. In Case (1), sup-
pose that G1 = GSp2g,Q, for some g ≥ 0, so that ρ : G0 → G1 induces a Siegel
embedding (G0,D0) ↪→ (G1,D1), making (G0,D0) a Hodge-type Shimura datum.
We shall fix the choice of a rational prime p > 0, and assume that the base field
F = C is the completion of an algebraic closure of Qp. Let Hp1 ⊂ G1(A∞,p) be a

neat open compact subgroup, and let Hp0 :=
(
ρ(A∞,p)

)−1
(Hp1). For each r ≥ 0, con-

sider the principal congruence subgroup H(r)
1,p := ker

(
GSp2g(Zp) → GSp2g(Z/pr)

)
at p, and let H(r)

1 := Hp1H
(r)
1,p. Let H(r)

0,p :=
(
ρ(Qp)

)−1
(H(r)

1,p) and H(r)
0 := Hp0H

(r)
0,p =(

ρ(A∞)
)−1

(H(r)
1 ). Then we have morphisms between the associated Shimura vari-

eties f (r) : X
(r)
0 → X

(r)
1 at levels H(r)

0 and H(r)
1 , respectively, which are compatible

with each other when we vary r. We shall similarly denote other objects at H(r)
0

and H(r)
1 with superscripts “(r)”. By [13, Lem. 2.1.2], up to replacing Hp1 with a

finite index subgroup, we may assume that f (r) is a closed immersion, for all r ≥ 0.

By Proposition 4.10, there exist collections Σ
(0)
0 and Σ

(0)
1 for X

(0)
0 and X

(0)
1 , re-

spectively, that are strictly compatible with each other as in Definition 4.6, which
we assume to be projective and smooth and satisfy the condition that, for i = 0, 1,

and for each Z
(0)
i and each σ ∈ Σ+

Z
(0)
i

, the stabilizer Γ
Z

(0)
i ,σ

of σ in Γ
Z

(0)
i

is trivial.

Note that Proposition 3.4 can also be applied to morphisms between Shimura va-
rieties associated with the same Shimura datum, but with possibly different levels.

For each r ≥ 0, let Σ
(r)
0 and Σ

(r)
1 denote the induced collections at levels H(r)

0 and

H(r)
1 , respectively. Then they are projective and satisfy the analogue of the above

condition on stabilizers, and are strictly compatible with each other. Since the

levels H(r)
1,p at p are principal, for all r ≥ 0, and since H(r)

0,p =
(
ρ(Qp)

)−1
(H(r)

1,p), the

canonical homomorphisms S
Z

(0)
i
→ S

Z
(r)
i

can be identified with S
Z

(0)
i

↪→ 1
prS

Z
(0)
i

,

for i = 1, 2. In particular, the smoothness condition on cone decompositions re-

mains the same when we vary r ≥ 0. Thus, Σ
(r)
0 and Σ

(r)
1 are also smooth, and we

have verified all the conditions we would like to impose on these collections. By

Proposition 3.4(5), the canonical morphisms X
(r),tor

i,Σ
(r)
i

→ X
(r′),tor

i,Σ
(r′)
i

, for i = 1, 2 and

r ≥ r′ ≥ 0, are all finite. Note that each such finite morphism is automatically flat
(by [10, IV-3, 15.4.2 e′)⇒b)]) and therefore universally open (by [10, IV-2, 2.4.6]),
because both its source and target are smooth and of the same equi-dimension.
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For simplicity, we shall omit the subscripts “Σ
(r)
i ” in the following. We shall

change the font from X to X when we denote the associated adic spaces.
The case i = 0 of the following proposition verifies [9, Hypothesis 2.18]:

Proposition 6.1. For i = 0, 1, there is a perfectoid space X (∞),tor
i over C such that

X (∞),tor
i ∼ lim←−r X

(r),tor
i , where “∼” has the same meaning as in [28, Def. 2.4.1].

Proof. We shall imitate the proof of [27, Thm. 4.1.1(i)]. Recall that the assertion

X (∞),tor
i ∼ lim←−r X

(r),tor
i means there are compatible morphisms X (∞),tor

i → X (r),tor
i

inducing a homeomorphism of topological spaces |X (∞),tor
i | ∼→ lim←−r |X

(r),tor
i |, as well

as an open covering of X (∞),tor
i by affinoid adic spaces Spa(R

(∞)
i , R

(∞),+
i ) inducing

a homomorphism lim−→ R
(r)
i → R

(∞)
i with dense image, where the direct limit runs

over all r ≥ 0 and all affinoid open subspaces Spa(R
(r)
i , R

(r),+
i ) ⊂ X (r),tor

i through

which the compositions of Spa(R
(∞)
i , R

(∞),+
i ) ↪→ X (∞),tor

i → X (r),tor
i factor.

By [25, Cor. A.19 and its proof], the above holds when i = 1, and we may

assume that each member Spa(R
(∞)
1 , R

(∞),+
1 ) in the open covering of X (∞),tor

1

is affinoid perfectoid and is the preimage of some Spa(R
(r)
1 , R

(r),+
1 ), for all

sufficiently large r. Since f (r),tor : X
(r),tor
0 → X

(r),tor
1 is a closed immersion

by Proposition 4.9 (and the constructions of Σ
(r)
0 and Σ

(r)
1 ), the associated

morphism X (r),tor
0 → X (r),tor

1 is a closed immersion of adic spaces. Hence, we

have X (r),tor
0 ×

X (r),tor
1

Spa(R
(r)
1 , R

(r),+
1 ) ∼= Spa(R

(r)
0 , R

(r),+
0 ) for some Huber pair

(R
(r)
0 , R

(r),+
0 ) such that R

(r)
1 → R

(r)
0 is surjective. Let I(r) denote the kernel of this

homomorphism. Let Z(r) denote the Zariski closed subset of Spa(R
(∞)
1 , R

(∞),+
1 ), as

in [27, Def. 2.2.1], defined by the image of I(r) in R
(∞)
1 . By comparing definitions,

we can identify Z(r) with |Spa(R
(r)
0 , R

(r),+
0 )| ×

| Spa(R
(r)
1 ,R

(r),+
1 )|

|Spa(R
(∞)
1 , R

(∞),+
1 )|

as closed subsets of |Spa(R
(∞)
1 , R

(∞),+
1 )|. By [27, Lem. 2.2.2], there is a

canonical affinoid perfectoid space Spa(R
(∞),(r)
0 , R

(∞),(r),+
0 ), with a morphism

Spa(R
(∞),(r)
0 , R

(∞),(r),+
0 ) → Spa(R

(∞)
1 , R

(∞),+
1 ), induced by a canonical ho-

momorphism R
(∞)
1 → R

(∞),(r)
0 with dense image, inducing a homeomorphism

|Spa(R
(∞),(r)
0 , R

(∞),(r),+
0 )| ∼→ Z(r). Moreover, by the construction in the

proof of [27, Lem. 2.2.2], the composition of R
(r)
1 → R

(∞)
1 → R

(∞),(r)
0

factors through R
(r)
1 → R

(r)
0 . By the universal property explained in [27,

Rem. 2.2.3], for all r′ ≥ r, we have compatible canonical homomorphisms

(R
(∞),(r)
0 , R

(∞),(r),+
0 )→ (R

(∞),(r′)
0 , R

(∞),(r′),+
0 ) over (R

(∞)
1 , R

(∞),+
1 ).

Let (R
(∞)
0 , R

(∞),+
0 ) denote the p-adic completion of lim−→r

(R
(∞),(r)
0 , R

(∞),(r),+
0 ),

where the direct limit runs over all sufficiently large r such that

(R
(∞),(r)
0 , R

(∞),(r),+
0 ) are defined as above, which is canonically a Huber

pair over (R
(∞)
1 , R

(∞),+
1 ). Since the homomorphisms R

(∞)
1 → R

(∞),(r)
0 have

dense images, so does the composition of R
(∞)
1 → lim−→r

R
(∞),(r)
0 → R

(∞)
0 .

Since the p-th power homomorphism R
(∞),+
0 /p → R

(∞),+
0 /p is surjective

because the p-th power homomorphisms R
(∞),(r),+
0 /p → R

(∞),(r),+
0 /p are,
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R
(∞)
0 is a perfectoid C-algebra, by [12, Prop. 3.6.2]. Thus, we have obtained

an affinoid perfectoid space Spa(R
(∞)
0 , R

(∞),+
0 ) over Spa(R

(∞)
1 , R

(∞),+
1 ).

Moreover, for all sufficiently large r, we have compatible homomorphisms

R
(r)
0 → R

(∞)
0 , and the composition of lim−→r

R
(r)
1 → R

(∞)
1 → R

(∞)
0 fac-

tors through the induced homomorphism lim−→r
R

(r)
0 → R

(∞)
0 . Since the

homomorphisms lim−→r
R

(r)
1 → R

(∞)
1 → R

(∞)
0 have dense images, so do

their composition and the induced homomorphism lim−→r
R

(r)
0 → R

(∞)
0 . The

corresponding morphisms of adic spaces induce homeomorphisms of topolog-

ical spaces |Spa(R
(∞),(r)
0 , R

(∞),(r),+
0 )| ∼→ lim←−r |Spa(R

(∞),(r)
0 , R

(∞),(r),+
0 )| ∼→

lim←−r
(
|Spa(R

(r)
0 , R

(r),+
0 )| ×

| Spa(R
(r)
1 ,R

(r),+
1 )|

|Spa(R
(∞)
1 , R

(∞),+
1 )|

)
. Since the induced

map |Spa(R
(∞)
i , R

(∞),+
i )| → lim←−r |Spa(R

(r)
i , R

(r),+
i )| is a homeomorphism when

i = 1, the same is true when i = 0, by canonically identifying these topological

spaces as subspaces of
∏
r |Spa(R

(r)
1 , R

(r),+
1 )|. Thus, the affinoid perfectoid space

Spa(R
(∞)
0 , R

(∞),+
0 ) satisfies Spa(R

(∞)
0 , R

(∞),+
0 ) ∼ lim←−r Spa(R

(r)
0 , R

(r),+
0 ). By gluing

such Spa(R
(∞)
0 , R

(∞),+
0 ) using [28, Prop. 2.4.3 and 2.4.5] over an open covering of

X (∞),tor
1 by affinoid perfectoid spaces Spa(R

(∞)
1 , R

(∞),+
1 ) as above, we obtain a

perfectoid space X (∞),tor
0 over C such that X (∞),tor

0 ∼ lim←−r X
(r),tor
0 , as desired. �
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Société Mathématique de France, Paris, 2015.

13. M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010),
no. 4, 967–1012.

14. R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5

(1992), no. 2, 373–444.
15. K.-W. Lan, Comparison between analytic and algebraic constructions of toroidal compactifi-

cations of PEL-type Shimura varieties, J. Reine Angew. Math. 664 (2012), 163–228.

16. , Arithmetic compactification of PEL-type Shimura varieties, London Mathematical
Society Monographs, vol. 36, Princeton University Press, Princeton, 2013.

17. , Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum

Math. Sigma 4 (2016), e1, 98.
18. , Compactifications of PEL-type Shimura varieties and Kuga families with ordinary

loci, World Scientific, Singapore, 2017.
19. , Integral models of toroidal compactifications with projective cone decompositions, Int.

Math. Res. Not. IMRN 2017 (2017), no. 11, 3237–3280.

20. K.-W. Lan and B. Stroh, Compactifications of subschemes of integral models of Shimura
varieties, Forum Math. Sigma 6 (2018), e18, 105.

21. , Nearby cycles of automorphic étale sheaves, Compos. Math. 154 (2018), no. 1, 80–

119.
22. , Nearby cycles of automorphic étale sheaves, II, in Cogdell et al. [6], pp. 83–106.

23. K.-W. Lan and J. Suh, Vanishing theorems for torsion automorphic sheaves on compact

PEL-type Shimura varieties, Duke Math. J. 161 (2012), no. 6, 1113–1170.
24. K. Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of Hodge

type, Ann. Sci. Ecole Norm. Sup. (4) 52 (2019), no. 2, 393–514.
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