
ELEVATORS FOR DEGENERATIONS OF PEL STRUCTURES
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Abstract. We show that the maximal rank of mixed characteristic degenera-

tions of abelian varieties parameterized by a PEL-type Shimura variety are the

same as the maximal rank of equicharacteristic zero degenerations (of abelian
varieties parameterized by the same Shimura variety). As a byproduct, we ob-

tain a simple proof of Yasuo Morita’s conjecture in 1975 that an abelian variety

with additional structures parameterized by a compact PEL-type Shimura va-
riety has potential good reductions everywhere.

1. Introduction

All known integral models of toroidal compactifications of PEL-type Shimura
varieties have natural stratifications characterized by the degeneration patterns
of the universal abelian schemes. It is common wishful thinking that the (better
understood) characteristic zero story should give us a fairly suggestive picture about
the boundary stratification in general, including cases of bad reduction.

In this article, we shall partially justify this wishful thinking (for all PEL-type
Shimura varieties at once) by showing (at least) the ranks (of torus parts of degen-
erations) match in all characteristics. Let us be more precise about this statement.

Let O be an order in a semisimple algebra, finite-dimensional over Q, together
with a positive involution ?. By a PEL-type O-lattice (L, 〈 · , · 〉, h0) (as in [10, Def.
1.2.1.3]), we mean the following data:

(1) An O-lattice, namely a Z-lattice L with the structure of an O-module.
(2) An alternating pairing 〈 · , · 〉 : L×L → Z(1) satisfying 〈bx, y〉 = 〈x, b?y〉

for any x, y ∈ L and b ∈ O, together with an R-algebra homomorphism
h0 : C → EndO⊗

Z
R(L⊗

Z
R) satisfying 〈h0(z)x, y〉 = 〈x, h0(zc)y〉 for any

x, y ∈ L and z ∈ C, and satisfying (2π
√
−1)−1〈x, h0(

√
−1)x〉 > 0 for any

nonzero x ∈ L. (In [10, Def. 1.2.1.3] h0 was denoted by h.)

The datum of (O, ?, L, 〈 · , · 〉, h0) defines a group functor G over Spec(Z) (as in
[10, Def. 1.2.1.5]), and defines the reflex field F0 (as in [10, Def. 1.2.5.4]). Let H be
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a neat open compact subgroup of G(Ẑ) (as in [15, 0.6] or [10, Def. 1.4.1.8]). Then
the data of (O, ?, L, 〈 · , · 〉, h0) and H define a moduli problem MH over Spec(F0)
by [10, Def. 1.4.1.4] (with 2 = ∅ and so that OF0,(2) = F0 there), parameterizing
tuples (A, λ, i, αH) over schemes S over Spec(F0) of the following form:

(1) A→ S is an abelian scheme.
(2) λ : A→ A∨ is a polarization.
(3) i : O ↪→ EndS(A) is an O-endomorphism structure as in [10, Def. 1.3.3.1].
(4) LieA/S with its O⊗

Z
Q-module structure given naturally by i satisfies the

determinantal condition in [10, Def. 1.3.4.2] given by (L⊗
Z
R, 〈 · , · 〉, h0).

(5) αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑ, 〈 · , · 〉) as in

[10, Def. 1.3.7.8].

By [10, Thm. 1.4.1.12 and Cor. 7.2.3.10], MH is representable by a (smooth) quasi-
projective scheme over Spec(F0) under the assumption that H is neat.

Consider the set X = G(R)h0 of G(R)-conjugates h : C → EndO⊗
Z
R(L⊗

Z
R) of

the polarization h0 : C → EndO⊗
Z
R(L⊗

Z
R). Then it is well known (see [9, §8] or

[11, §2]) that there exists a quasi-projective variety ShH,alg over C, together with
a canonical open and closed immersion ShH,alg ↪→ MH ⊗

F0

C when H is neat, such

that the double-coset space ShH := G(Q)\X×G(A∞)/H can be identified with the
analytification of ShH,alg. Moreover, if we denote by ShH,can the schematic image
of ShH,alg → MH, the latter being defined over Spec(F0), then ShH,can is a scheme
defined over Spec(F0) such that ShH,can ⊗

F0

C ∼= ShH,alg. This allows us to talk about

tuples (A, λ, i, αH) parameterized by ShH,can.
Consider semi-abelian schemes defined as in [4, Ch. I, §2]. By the rank of a

fiber of a semi-abelian scheme, we mean the rank (as a free abelian group) of the
character group of the torus part of any geometric fiber above the fiber. By a
degeneration over a discrete valuation ring R based at ShH,can, we mean a semi-
abelian scheme A→ Spec(R), together with a morphism Spec(Frac(R))→ ShH,can,
such that A⊗

R
Frac(R) is the pullback of the universal abelian variety over ShH,can

under Spec(Frac(R)) → ShH,can. By the rank of a degeneration A → Spec(R) as
above, we mean the rank of the special fiber of A. Note that we allow the rank to
be zero, in which case A is an abelian scheme over Spec(R).

Definition 1.1. For any characteristic p ≥ 0 (of fields), we define rp to be the
maximal rank among degenerations over discrete valuation rings R based at ShH,can

with residue characteristic p. (The number p is allowed to be zero.)

The invariant r0 can be calculated explicitly, because of the following facts:

(1) The relation between the theory of degeneration and the algebraic construc-
tion of toroidal compactifications in the PEL-type cases is well understood.
(See [4] and [10].)

(2) The algebraic and analytic constructions of toroidal compactifications are
known to be compatible over C. (See [11] for an explanation using explicit
identifications of theta functions. We will not need this fact in this article.)

(3) The analytic compactifications over C can be described group-theoretically.
(See [2], [1], [7], and [15].)
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Concretely, a degeneration of rank r corresponds to an O⊗
Z
Q-submodule of L⊗

Z
Q,

totally isotropic under 〈 · , · 〉 and of dimension r over Q, determining a rational
parabolic subgroup of G⊗

Z
Q. The relation between such parabolic subgroups of

G⊗
Z
Q and the rational boundary components of X is well known.

On the other hand, there is no obvious way to calculate the invariant rp for all
characteristics p ≥ 0. When p is not a so-called bad prime in the sense of [10, Def.
1.4.1.1], the invariant rp agrees with r0 because of the existence of a smooth toroidal
compactification (with boundary stratified by smooth locally closed subschemes)
over Z(p) constructed using the theory of degeneration. (See [10, Thm. 6.4.1.1].)
However, this does not cover the cases when p is a bad prime. Our motivation for
this article is to supply an argument independent of the residue characteristics. (We
emphasize that the residue characteristic is irrelevant not only in the statement of
the result, but also in the proof. No p is special in this problem!)

The main result of this article is the following:

Theorem 1.2. With the setting as above, we have r0 = rp for every p ≥ 0.

Let us sketch the proof of Theorem 1.2 (and give an outline of the article) as
follows. (In this sketch, for simplicity, we will abbreviate degenerations over discrete
valuations based at ShH,can as degenerations.)

Our first objective will be to prove Theorem 4.1, which asserts the inequality
rp ≤ r0 for every p ≥ 0. This will follow from the existence of what we will call the
elevators. Roughly speaking, for a given mixed characteristics degeneration of rank
r, an elevator is a semi-abelian scheme over a noetherian normal domain, such that
the given degeneration is a pullback of such a semi-abelian scheme, and such that
at least one of its one characteristic zero fibers has rank equal to r. We will review
the background terminologies in Sections 2.1 and 2.2, and give the precise definition
of elevators in Section 2.3. We will then explain the construction of elevators in
Section 3, using techniques developed in the construction of boundary charts of
toroidal compactifications in [4] and [10].

Once Theorem 4.1 is established, the special case rp = r0 = 0 for every p ≥ 0
of the above inequality implies Yasuo Morita’s original conjecture in [12]. (Note
that rp = 0 for every p ≥ 0 implies that all abelian varieties parameterized by
ShH,can have potential good reductions everywhere.) We shall explain this impli-
cation in Section 4.2, giving also a criterion of properness for integral models of
PEL-type Shimura varieties in Theorem 4.9, with no assumption on the residue
characteristics.

Then we will prove Theorem 5.1, which asserts the opposite inequality r0 ≤ rp for
every characteristic p ≥ 0. The preparatory Proposition 5.2 (for proving Theorem
5.1) is the only step we use results in [10] not essentially known in [4], which
allows us to choose an equicharacteristic zero degeneration of rank r0, such that the
abelian part of its (characteristic zero) special fiber extends to abelian schemes over
discrete valuation rings of all possible mixed characteristics. (This extension uses
Theorem 4.9, which we have just proved.) Starting with such mixed characteristics
abelian schemes, by a construction similar to the one (of elevators) in Section 3, we
obtain degenerations of rank r0 over discrete valuation rings of all possible mixed
characteristics, as desired.

Finally, Theorem 1.2 follows as a combination of Theorems 4.1 and 5.1.
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Following the referee’s suggestion, we have included several commutative dia-
grams summarizing the constructions. Although these diagrams will not be log-
ically needed in the proofs, we hope they will be helpful for understanding the
arguments.

2. Terminologies

We shall follow [10, Notations and Conventions] unless otherwise specified. (The
references to [10] uses the original numbering in the submitted thesis, but the reader
is encouraged to consult the revision available on the author’s website, sometimes
with slightly modified numberings, for corrections and improvements.)

2.1. Degenerating families. Let O be as in Section 1. We shall denote pullbacks
of objects to rings or schemes by subscripts when there is no confusion.

Definition 2.1. Let S be any normal locally noetherian scheme over Spec(Z). A
degenerating family of type (PE,O) is a tuple (A, λ, i) over S such that:

(1) A is a semi-abelian scheme over S.
(2) There exists an open dense subscheme S1 of S such that AS1

is an abelian
scheme. In this case, there is a unique semi-abelian scheme A∨ (up to
unique isomorphism), called the dual semi-abelian scheme of A, such that
A∨S1

is the dual abelian scheme of AS1 .
(3) λ : A → A∨ is a group homomorphism that induces by restriction a polar-

ization λS1
of AS1

.
(4) i : O → EndS(A) is a map that defines by restriction an O-structure iS1

:
O → EndS1(AS1) of (AS1 , λS1). (See [10, Def. 1.3.3.1].)

2.2. Theory of degeneration data. Let O be as above.
Let R be a noetherian normal domain complete with respect to an ideal I, with

rad(I) = I for convenience. Let S := Spec(R), K := Frac(R), η := Spec(K) the
generic point of S, R0 := R/I, and S0 := Spec(R0). We shall denote the pullbacks
to η or S0 by subscripts η or 0, respectively.

Definition 2.2 (cf. [10, Def. 5.1.1.4]). With notations and assumptions as above,

the category DEGsplit
PE,O(R, I) has objects consisting of degenerating families (A, λ, i)

of type (PE,O) (over S = Spec(R)) such that A0 is an extension of an abelian
scheme B0 by a split torus T0 over S0.

By the theory of degeneration data for polarized abelian varieties in [4, Ch.
II and III] (explained in [10, Ch. 4]), generalized by functoriality for polarized
abelian varieties with endomorphisms (see [10, Sec. 5.1.1]), the so-called Mumford’s
construction induces an equivalence of categories

Msplit
PE,O(R, I) : DDsplit

PE,O(R, I)→ DEGsplit
PE,O(R, I)

(B, λB , iB , X, Y, φ, c, c
∨, τ) 7→ (A, λ, i)

realizing (A, λ, i) (up to isomorphism) as the image of an object in DDsplit
PE,O(R, I)

given by the following data:

(1) An abelian scheme B over S, a polarization λB : B → B∨ of B, and an
O-endomorphism structure iB : O ↪→ EndS(B) of (B, λB).
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(2) Two O-lattices X and Y of the same rank over S, with an O-equivariant
embedding φ : Y → X. (Here X and Y correspond, respectively, to the
character groups of the torus parts of A and A∨. We shall denote the
actions of an element b ∈ O on X and Y by iX(b) and iY (b), respectively.
When the context is clear, we shall simply denote the actions by b.)

(3) Two O-equivariant morphisms c : X → B∨ and c∨ : Y → B of group
schemes over S, satisfying the compatibility cφ = λBc

∨. (By abuse of
notation, we denote by X and Y the constant group schemes XS and YS
over S, respectively.)

(4) A trivialization of biextensions τ : 1Y ×X,η
∼→ (c∨× c)∗P⊗−1

B,η with sym-
metric pullback under IdY ×φ : Y ×Y → Y ×X, satisfying the following
conditions:
(a) (Compatibility with O-actions:) For any b ∈ O, we have a canonical

identification of sections (iY (b)× IdX)∗τ = (IdY ×iX(b?))∗τ under the
canonical isomorphism (iB(b)× IdB∨)∗PB ∼= (IdB ×(iB(b))

∨
)∗PB .

(b) (Positivity :) For any y ∈ Y and χ ∈ X, the trivialization τ(y, χ)
defines an isomorphism of invertible sheaves from (c∨(y), c(χ))∗PB,η
to 1η. Under this isomorphism (which we again denote by τ(y, χ)), the
canonical R-integral structure (c∨(y), c(χ))∗PB of (c∨(y), c(χ))∗PB,η
determines an invertible R-submodule Iy,χ of K. Then the positivity
condition is that Iy,φ(y) ⊂ I for all nonzero y in Y . (Clearly, I0,0 = R.)

We say that (B, λB , iB , X, Y, φ, c, c
∨, τ) is the degeneration data of (A, λ, i). The

theory works even when X and Y are zero. (Then, by [4, Ch. I, 2.8], A ∼= B is an
abelian scheme over S, and the positivity condition for τ is trivially verified.)

We shall suppress I from the notation when it is clear from the context. (This
is the case, for example, when R is a discrete valuation ring.)

2.3. Elevators for degenerations of PEL structures.

Definition 2.3. Let R� be a complete discrete valuation ring such that the char-
acteristic of K� := Frac(R�) is zero. Let k� be the residue field of R�. Suppose
(A�, λ�, i�)→ Spec(R�) is a degenerating family of type (PE,O). An elevator for
(A�, λ�, i�) is the following set of data:

(1) A complete discrete valuation ring R with residue field k, together with a
finite étale morphism Spec(R)→ Spec(R�).

(2) A noetherian normal domain R̃, together with a degenerating family (Ã, λ̃, ĩ)

of type (PE,O) over R̃.

(3) A morphism Spec(R)→ Spec(R̃), together with an isomorphism

(A�, λ�, i�) ⊗
R�
R
∼→ (Ã, λ̃, ĩ)⊗

R̃

R.

(In particular, the characteristic of K̃ := Frac(R̃) is zero.)

(4) There is at least one (functorial) point Spec(k̃) → Spec(R̃⊗
Z
Q) such that

Ãk̃ and A�k� have the same rank.

Note that an elevator is not quite a deformation. The ring R̃ can stay the
same when we replace R� or R with a much larger ring. The intuition is that
an elevator should be part of something like a moduli space of degenerations of a
similar pattern.
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3. Construction of elevators

Theorem 3.1. Let R� and (A�, λ�, i�) be as in Definition 2.3. Then there exists
an elevator for (A�, λ�, i�) satisfying the following additional conditions:

(1) The ring R̃ is a noetherian normal domain over R, complete with re-

spect to some ideal Ĩ such that rad(Ĩ) = Ĩ, and (Ã, λ̃, ĩ) is an object of

DEGsplit
PE,O(R̃, Ĩ).

(2) Suppose (B, λB , iB , X, Y, φ, c, c
∨, τ) is the degeneration data associated with

(A�, λ�, i�) ⊗
R�
R, and suppose (B̃, λB̃ , iB̃ , X̃, Ỹ , φ̃, c̃, c̃

∨, τ̃) is the degenera-

tion data associated with (Ã, λ̃, ĩ). Then (B̃, λB̃ , iB̃ , X̃, Ỹ , φ̃, c̃, c̃
∨) (with τ̃

omitted) is isomorphic to (B, λB , iB , X, Y, φ, c, c
∨)⊗

R
R̃.

The two additional conditions in Theorem 3.1 mean that only the period τ̃ is
being elevated. All other data are essentially intact.

The relations among the rings R�, K�, k�, R, K, k, R̃, K̃, and k̃ can be sum-
marized by the following commutative diagram (of their spectra):

η� = Spec(K�)

generic
point

��

η = Spec(K)

generic
point

��

oo η̃ = Spec(K̃)

generic
point

��

S� = Spec(R�) S = Spec(R) //

finite
étaleoo Spec(R̃)

uu

Spec(R̃⊗
Z
Q)

char. 0
fiberoo

Spec(k�)

special
point

OO

Spec(k)

special
point

OO

//oo Spec(R̃/Ĩ)

closed
immersion

OO

Spec(k̃)

(functorial)
point

OO

char. 0
point

oo

The curly arrow from Spec(R̃) to S = Spec(R) in this diagram is not required in
the definition of an elevator (see Definition 2.3), but will be a byproduct of the
construction.

The proof of Theorem 3.1 will be carried out in subsequent subsections. Our
main references will be [4] and [10]. Our formulations follow mainly [10, Sec. 6.2],
but our approach follows [4, Ch. IV] very closely. The main new step is the trick in
the beginning of Section 3.4, which allows us to work without worrying about bad
reductions.

3.1. Choice of R and degeneration data. Let R� → R be a finite étale mor-
phism of complete discrete valuation rings such that the pullbacks of the torus parts
of A� and A�∨ are split over R. Let S := Spec(R), K := Frac(R), η := Spec(K)
the generic point of S, and k the residue field of R.

The degenerating family (A�S , λ
�
S , i
�
S) of type (PE,O) over S defines an object in

DEGsplit
PE,O(R), with degeneration data (B, λB , iB , X, Y, φ, c, c

∨, τ) in DDsplit
PE,O(R).

3.2. Chart for the datum τ without positivity condition. Let S denote the
finitely generated abelian group

S := (Y ⊗
Z
X)/

(
y⊗φ(y′)− y′⊗φ(y)
(by)⊗χ− y⊗(b?χ)

)
y,y′∈Y,
χ∈X,b∈O

.
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Let Sfree denote the free quotient of S, namely the quotient of S by its torsion
subgroup Stor. Let E := Hom(S,Gm), Etor := Hom(Stor,Gm), and Efree :=
Hom(Sfree,Gm) denote the group schemes of multiplicative type of finite type over
Spec(Z). Then Efree is a split torus, and Etor is finite and of multiplicative type.

For each y ∈ Y and each χ ∈ X, the pullback (c∨(y), c(χ))∗PB is an invert-
ible sheaf over S. The (functorial) biextension structure of PB , the symmetry of
(IdB ×λB)∗PB , and the compatibility cφ = λBc

∨, allow us to associate a well
defined invertible sheaf Ψ(`) with each ` ∈ S, satisfying the following properties:

(1) If ` = [y⊗χ], the image of y⊗χ ∈ Y ⊗
Z
X under the canonical

morphism Y ⊗
Z
X → S, then there is a canonical isomorphism

Ψ(`) ∼= (c∨(y), c(χ))∗PB .
(2) For `, `′ ∈ S, we have a canonical isomorphism ∆∗`,`′ : Ψ(`) ⊗

OS
Ψ(`′) ∼=

Ψ(`+ `′) of invertible sheaves over S.
(3) The collection of isomorphisms ∆∗`,`′ satisfy necessary conditions making

the OS-module ⊕
`∈S

Ψ(`) an OS-algebra, and so that

Ξ := Spec
OS

(
⊕
`∈S

Ψ(`)
)

has a canonical structure of an E-torsor over S.
(4) The same isomorphisms ∆∗`,`′ for `, `′ ∈ Stor defines similarly an Etor-torsor

Ξtor := Spec
OS

(
⊕

`∈Stor

Ψ(`)
)

over S, together with a canonical (surjective) morphism Ξ → Ξtor having
the structure of an Efree-torsor. In particular, this morphism is smooth and
of finite type.

By construction, the scheme Ξ → S is the universal space for trivializations
1Y ×X

∼→ (c∨× c)∗P⊗−1
B of biextensions with symmetric pullbacks under IdY ×φ :

Y ×Y → Y ×X, and with compatibility with O-actions (but without the positivity
condition). Let τ̆ be the universal object over Ξ. Then the universal property of
Ξ→ S determines a canonical morphism

(3.2) η → Ξ

lifting the canonical morphism η → S, such that the trivialization τ : 1Y ×X,η
∼→

(c∨× c)∗P⊗−1
B,η over η is the pullback of the universal object τ̆ over Ξ.

3.3. Chart for the datum τ with positivity condition. Let S∨ := HomZ(S,Z)
and S∨R := S∨⊗

Z
R ∼= HomZ(S,R). By definition of S, the R-vector space S∨R is

isomorphic to the space of symmetric pairings ( · , · ) : (Y ⊗
Z
R) × (Y ⊗

Z
R) → R

satisfying (bx, y) = (x, b?y) for any x, y ∈ Y ⊗
Z
R and b ∈ O. Then we define an

element in S∨R to be positive definite if the associated pairing is.
A cone in S∨R is a subset stable under the natural multiplication action of the

group R>0. A rational polyhedral cone in S∨R is a cone of the form σ = R>0v1 +
. . .+ R>0vn with v1, . . . , vn ∈ S∨Q = S∨⊗

Z
Q. We say that σ is nondegenerate if its

closure does not contain any nonzero R-vector subspace. We say a nondegenerate
σ is smooth if the v1, . . . , vn can be chosen to be part of a Z-basis of S∨. The
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canonical pairing 〈 · , · 〉can. : S×S∨ → Z defines by extension of scalar a canonical
pairing 〈 · , · 〉can. : S×S∨R → R. For any rational polyhedral cone σ in S∨R , we define
its dual in S to be the semi-group (with unit 0)

σ∨ := {x ∈ S : 〈x, y〉can. ≥ 0,∀y ∈ σ},

and we define σ∨0 to be the semi-subgroup (without unit 0) of σ∨ defined by

σ∨0 := {x ∈ S : 〈x, y〉can. > 0,∀y ∈ σ}.

Note that σ∨ always contains Stor.
For each nondegenerate rational polyhedral cone σ in S∨R, we define the affine

toroidal embedding of Ξ along σ to be

Ξ(σ) := Spec
OS

(
⊕

`∈σ∨
Ψ(`)

)
.

Here the OS-algebra structure of ⊕
`∈σ∨

Ψ(`) is induced by the same morphisms ∆∗`,`′

used in the definition Ξ. By construction, we have an open embedding Ξ ↪→ Ξ(σ)
extending the action of E. Since σ∨ always contains Stor, there is a canonical
surjection Ξ(σ) → Ξtor. Then the usual theory (as in [8]) of toroidal embeddings
for the torus Sfree implies that the morphism Ξ(σ)→ Ξtor is smooth if σ is smooth.

The scheme Ξ(σ) has a natural closed subscheme Ξσ (often not having the same
underlying topological space as the complement Ξ(σ) − Ξ), called the σ-stratum,
defined by the OS-sheaf of ideals ⊕

`∈σ∨0
Ψ(`) in ⊕

`∈σ∨
Ψ(`), and is mapped to itself

under the action of E on Ξ(σ). Let us define a subgroup σ⊥ of S by

σ⊥ := {x ∈ S : 〈x, y〉can. = 0,∀y ∈ σ}.

Then Eσ := Hom(σ⊥,Gm) is a quotient group of E. The induced action of E on
Ξσ factors through Eσ, and makes Ξσ → S a torsor under Eσ. Since σ⊥ contains
Stor, its torsion subgroup is exactly Stor. Then the canonical morphism Ξσ → Ξtor

is surjective, and it is smooth because it is a torsor under the split torus Eσ,free

with character group σ⊥free := σ⊥/Stor.
Let P+ be the cone in S∨R corresponding to positive definite pairings. Let υ

denote the discrete valuation of K with valuation ring R. For each y ∈ Y and
χ ∈ X, let Iy,χ be determined by the trivialization τ : 1Y ×X,η

∼→ (c∨× c)∗P⊗−1
B,η

as in Section 2.2. Then the positivity of τ means υ(Iy,φ(y)) > 0 for any y 6= 0, and
the association (y, y′) 7→ υ(Iy,φ(y′)) ∈ Z defines by extension of scalar a positive

definite pairing (Y ⊗
Z
R)×(Y ⊗

Z
R)→ R, corresponding to an element bτ in P+.

Let us take any smooth nondegenerate rational polyhedral cone σ in P+ that con-
tains bτ . Define the affine toroidal embedding Ξ ↪→ Ξ(σ) and the closed σ-stratum
Ξσ of Ξ(σ) over S as explained above. Then both Ξ(σ) and Ξσ are smooth over
Ξtor. Since σ contains bτ , the morphism (3.2) extends to a morphism

(3.3) S = Spec(R)→ Ξ(σ)

mapping the special point Spec(k) of S to Ξσ.
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Let us summarize the construction thus far in the following commutative dia-
gram:

η = Spec(K)

generic
point

��

// Ξ

open
immersion

��

Efree-torsor
(smooth)

""

S = Spec(R) // Ξ(σ)
smooth // Ξtor

Etor-torsor
(finite flat)

// S

Spec(k)

special
point

OO

// Ξσ

closed
immersion

OO

Eσ,free-torsor

(smooth)

<<

The composition of the arrows in the middle row is the identity morphism IdS :
S → S. (However, Ξ is not a scheme over η, and Ξσ is not a scheme over Spec(k).
It is important that both Ξ and Ξσ are schemes over S.)

3.4. Choice of the elevator. The morphism S → Ξ(σ) → Ξtor induced by (3.3)
gives in particular a section of the structural morphism Ξtor → S. Let us denote
by Ξ◦, Ξ◦(σ), and Ξ◦σ the pullbacks of the smooth schemes Ξ, Ξ(σ), and Ξσ over
Ξtor along this section S → Ξtor. By abuse of notation, let us denote the pullback
of the universal object τ̆ over Ξ to Ξ◦ by the same notation τ̆ . Then the morphism
(3.3) induces a morphism

(3.4) S = Spec(R)→ Ξ◦(σ)

mapping η = Spec(K) to Ξ◦ (resp. Spec(k) to Ξ◦σ), such that the trivialization

τ : 1Y ×X,η
∼→ (c∨× c)∗P⊗−1

B,η over η is the pullback of τ̆ over Ξ◦.

Let R̃pre be the local ring of Ξ◦(σ) at the image of Spec(k) → Ξ◦(σ). Let Ĩpre

be the ideal of definition of the σ-stratum of Spec(R̃pre) induced by the σ-stratum

Ξ◦σ of Ξ◦(σ). (The ideal Ĩpre is not supposed to be the same as the maximal ideal

defining the image of Spec(k).) Let R̃ be the completion of R̃pre with respect to Ĩpre,

and let Ĩ be the induced ideal of definition. Since Ξ◦(σ) is smooth over Spec(R),

the ring R̃ is a noetherian normal domain. Then the data of R̃ and Ĩ allow us to

talk about the categories DEGsplit
PE,O(R̃, Ĩ) and DDsplit

PE,O(R̃, Ĩ). (See Section 2.2.) Let

K̃ := Frac(R̃) and η̃ := Spec(K̃).
Then we have an updated commutative diagram:

η = Spec(K)

generic
point

��

,,η̃ = Spec(K̃)

generic
point

��

// Ξ◦

��

Efree-torsor
(smooth)

  
S = Spec(R) // Spec(R̃)

Ĩpre-adic
completion

// Spec(R̃pre)

localization
at image of

Spec(k)
// Ξ◦(σ)

smooth // S

Spec(k)

special
point

OO

// Spec(R̃/Ĩ)

closed
immersion

OO

Spec(R̃pre/Ĩpre)

closed
immersion

OO

// Ξ◦σ

closed
immersion

OO

Eσ,free-torsor

(smooth)

>>

Let (B̃, λB̃ , iB̃ , X, Y, φ, c̃, c̃
∨) be the pullback of (B, λB , iB , X, Y, φ, c, c

∨) to R̃,

and let τ̃ : 1Y ×X,η̃
∼→ (c∨× c)∗P⊗−1

B,η̃ be the pullback of τ̆ to η̃. Then we obtain

a tautological tuple (B̃, λB̃ , iB̃ , X, Y, φ, c̃, c̃
∨, τ̃) over R̃, which defines an object in

DDsplit
PE,O(R̃, Ĩ). Accordingly, Mumford’s construction Msplit

PE,O(R̃, Ĩ) gives an object



10 KAI-WEN LAN

(Ã, λ̃, ĩ) of DEGsplit
PE,O(R̃, Ĩ). By functoriality of Mumford’s construction, the pull-

back of (Ã, λ̃, ĩ) → Spec(R̃) along the morphism Spec(R) → Spec(R̃) induced by
(3.4) is isomorphic to (A�, λ�, i�) ⊗

R�
R→ Spec(R).

Since Ξ◦σ is smooth over S = Spec(R), the σ-stratum of Spec(R̃) has at least

one (functorial) point Spec(k̃) in characteristic zero. Since the character groups of

the torus parts of Ã are constant and equal to X for points on the σ-stratum of

Spec(R̃), the dimensions of the torus parts of Ãk̃ and Ak are the same.

Thus, the data of Spec(R) → Spec(R�), Spec(R) → Spec(R̃), Spec(k̃) →
Spec(R̃), and (Ã, λ̃, ĩ) → Spec(R̃) define an elevator for (A�, λ�, i�) → Spec(R�)
as in Definition 2.3. This completes the proof of Theorem 3.1.

4. Upper-bounds for maximal ranks of degenerations

4.1. Application of existence of elevators.

Theorem 4.1. With the setting as in Theorem 1.2, we have the inequality rp ≤ r0

for every p ≥ 0.

Proof. Suppose that there is a degeneration A� of rank r over some discrete valua-
tion ring R� based at ShH,can. The induced morphism Spec(K�)→ ShH,can ↪→ MH
defines an object (A�1, λ

�
1, i
�
1, α
�
H) of MH(Spec(K�)), such that A�1 is isomorphic to

the pullback of A� to K�. By a result of Raynaud [4, Ch. I, 2.8] (or [10, Prop.
3.3.1.7]), the additional structures (λ�1, i

�
1) of A�1 extend uniquely to structures

(λ�, i�) of A� over R�. Then we have a degenerating family (A�, λ�, i�)→ Spec(R�)
of type (PE,O) extending (A�1, λ

�
1, i
�
1). Moreover, Theorem 3.1 guarantees the ex-

istence of a degenerating family (Ã, λ̃, ĩ)→ Spec(R̃) such that the pullback of Ã to

Spec(R̃⊗
Z
Q) has a fiber of rank r.

Let S1 be the maximal dense subscheme of Spec(R̃⊗
Z
Q) over which Ã is an

abelian scheme. Let Ksep denote a separable closure of K. Then there exists
an affine integral scheme S′1 finite étale over S1, together with a morphism

Spec(Ksep)→ S′1 lifting Spec(K)→ S1, such that (ÃS′1 , λ̃S′1 , ĩS′1) satisfies the Lie al-
gebra condition given by (L⊗

Z
R, 〈 · , · 〉, h0) and is equipped with a level H-structure

α̃H of type (L⊗
Z
Ẑ, 〈 · , · 〉), and such that the pullbacks of (ÃS′1 , λ̃S′1 , ĩS′1 , α̃H)→ S′1

and (A�1, λ
�
1, i
�
1, α
�
H) → Spec(K�) to Spec(Ksep) are isomorphic to each other.

(See [10, Def. 1.3.4.2, Lem. 1.2.5.13, and Cor. 1.3.6.7].) Let S′1 → MH be the

morphism determined by (ÃS′1 , λ̃S′1 , ĩS′1 , α̃H) by the universal property of MH.
By construction, the two compositions of morphisms Spec(Ksep) → S′1 → MH
and Spec(Ksep) → Spec(K) → Spec(K�) → ShH,can ↪→ MH define the same
point. Since S′1 is connected, the canonical morphism S′1 → MH factors through
S′1 → ShH,can ↪→ MH.

Let RM be a discrete valuation ring, with a morphism Spec(RM)→ Spec(R̃⊗
Z
Q)

whose restriction to the generic point factors through S′1 → Spec(R̃⊗
Z
Q) and whose

restriction to the special point factors through Spec(k̃) → Spec(R̃⊗
Z
Q). Such an

RM exists because Spec(R̃⊗
Z
Q) is noetherian and integral. Then the pullback of
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(Ã, λ̃, ĩ) → Spec(R̃) to Spec(RM) is a degeneration of rank r based at ShH,can,
showing that r ≤ r0 as desired. �

The relations among the base schemes involved in the proof of Theorem 4.1 can
be summarized by the following commutative diagram (cf. the diagram following
Theorem 3.1), in which the dotted arrows are induced by the solid arrows by the
connectedness of S′1:

ShH,can

��

S′1

finite
étale

��

//

77

MH

η�

generic
point

��

00

η

generic
point

��

oo //

Spec(Ksep)

ww

11

S1

dense
subscheme

��

generic
point of

Spec(RM)

oo

ff

��

OO

XX

S� S //

finite
étaleoo Spec(R̃) Spec(R̃⊗

Z
Q)

char. 0
fiberoo Spec(RM)oo

Spec(k�)

special
point

OO

Spec(k)

special
point

OO

//oo Spec(R̃/Ĩ)

closed
immersion

OO

Spec(k̃)

(functorial)
point

OO

char. 0
point

oo
special
point of

Spec(RM)

oo

OO

Corollary 4.2 (of Theorem 4.1). With the setting as in Theorem 1.2, if r0 = 0,
then rp = 0 for every p ≥ 0.

4.2. Morita’s conjecture. Yasuo Morita’s original conjecture in [12], concerning
potential good reduction everywhere of abelian varieties with PEL structures, can
be reformulated in our language as follows:

Conjecture 4.3 (Yasuo Morita). With the setting as above, if the analytic space
ShH is compact, then rp = 0 for every p ≥ 0.

Remark 4.4. By [3, 11.4 and 11.6], the assumption that the analytic space ShH is
compact is equivalent to the assumption that the group G(Q) contains no unipotent
element other than the identity.

Let us begin with a simple reduction step:

Lemma 4.5. The analytic space ShH is compact if and only if the scheme ShH,can

is projective (and hence proper) over Spec(F0).

Proof. By [2, 10.11], ShH,alg is projective over Spec(C) if ShH is compact. By [6,
IV-3, 9.1.5], ShH,can is projective over Spec(F0) because ShH,alg

∼= ShH,can ⊗
F0

C. �

Theorem 4.6. Conjecture 4.3 is true.

Proof. By Lemma 4.5, we see that r0 = 0 if the analytic space ShH is compact.
Then Conjecture 4.3 follows from Corollary 4.2. �
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Remark 4.7. Although our proof of Conjecture 4.3 might appear to be simple, we
would like to mention that our approach is (as yet) the only known one that does
not involve assumptions of the following kinds:

(1) The size of L is small in the sense that L⊗
Z
Q is (or is close to being) a simple

module of O⊗
Z
Q. (See [12] or [9, end of §5] for more precise statements.)

(2) For some (archimedean or non-archimedean) place v of Q, the group G(Qv)
(or some analogue using some Mumford–Tate group) contains no unipotent
element other than the identity. (See [12], [14], [16].)

Remark 4.8. Since the proof of [16] uses [4, Ch. IV, Thm. 6.7], which is in turn based
on a delicate gluing argument beyond the application of the theory of degeneration
data in [4, Ch. II and III], our approach is logically the simplest among the known
ones on Morita’s original conjecture in [12]. Nevertheless, we do not claim that
our approach can be modified to tackle the stronger version of Morita’s conjecture
formulated using Mumford–Tate groups as in [14] and [16].

Let us include a criterion of properness strengthening [10, Thm. 5.3.3.1]:

Theorem 4.9. Let O′F0
be the localization of OF0

at some (possibly empty) mul-
tiplicative subset of non-units. Let M′ be a scheme separated of finite type over
Spec(O′F0

). Suppose the following conditions are satisfied:

(1) There is an open dense subscheme M′′ of M′ such that M′′ → Spec(O′F0
)

is smooth.
(2) There exists a morphism f : M′F0

:= M′ ⊗
O′F0

F0 → MH (over Spec(F0)) such

that, for any complete discrete valuation ring R� with fraction field K� of
characteristic zero, and with algebraically closed residue field, a morphism
ξ1 : Spec(K�) → M′F0

defining an object (A�1, λ
�
1, i
�
1, α
�
H) of MH(Spec(K�))

by composition with f extends to a morphism ξ : Spec(R�)→ M′ whenever
the abelian scheme A�1 extends to an abelian scheme over Spec(R�).

(3) The morphism f in (2) factors through some open and closed subscheme
M◦ ↪→ MH.

(4) The scheme M◦ is proper over Spec(F0).

Then M′ → Spec(O′F0
) is proper.

Proof. To show that M′ → Spec(O′F0
) is proper, we need to verify the valuative cri-

terion for it. By (1), it suffices to show that, for any Spec(R�)→ Spec(O′F0
) where

R� is a complete discrete valuation ring R� with fraction field K� (of characteristic
zero) and with algebraically closed residue field k�, any morphism ξ1 : Spec(K�)→
M′F0

extends to a morphism ξ : Spec(R�)→ M′.
By composition with f in (2), the morphism ξ1 : Spec(K�)→ M′F0

induces a mor-
phism f ◦ξ1 : Spec(K�)→ MH defining an object (A�1, λ

�
1, i
�
1, α
�
H) of MH(Spec(K�)).

Then, as in the first paragraph of the proof of Theorem 4.1, we have a degenerating
family (A�, λ�, i�) of type (PE,O) over Spec(R�) extending (A�1, λ

�
1, i
�
1).

By Theorem 3.1, we obtain a degenerating family (Ã, λ̃, ĩ) of type (PE,O) over

R̃, together with morphisms Spec(R) → Spec(R�) and Spec(R) → Spec(R̃) sat-
isfying the additional properties in Definition 2.3. Let S1 be the maximal dense

subscheme of Spec(R̃⊗
Z
Q) over which Ã is an abelian scheme, and let Ksep denote

a separable closure of K. As in the second paragraph of the proof of Theorem
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4.1, there exists a finite étale morphism S′1 � S1 from an integral scheme, such

that (ÃS′1 , λ̃S′1 , ĩS′1) is equipped with the additional structures defining a canonical
morphism S′1 → MH, and such that the composition of morphisms Spec(Ksep) →
Spec(K) → Spec(K�)

f◦ξ1→ MH factors through this S′1 → MH. Then S′1 → MH
factors through S′1 → M◦ ↪→ MH by (3) and the connectedness of S′1.

Consider an arbitrary spectrum of a discrete valuation ring with generic point

above S1 and with special point above a point of Spec(R̃⊗
Z
Q). The pullback of

(Ã, λ̃, ĩ) to this spectrum defines a degeneration of an object of M◦ ↪→ MH. By
the usual theory of Néron models, or by a result of Raynaud [4, Ch. I, 2.7] (or [10,
Prop. 3.3.1.7]), the degeneration is uniquely determined by its generic fiber. By
(4), such a degeneration has to be rank zero, which means its special fiber is above

a point of S1. Hence S1 has to be the whole Spec(R̃⊗
Z
Q).

Since there exists at least one point Spec(k̃)→ Spec(R̃⊗
Z
Q) such that the torus

part of Ãk̃ has the same dimension as the torus part of A�k� , we see that the torus
part of A�k� is trivial. This shows that A� → Spec(R�) is an abelian scheme, and
the theorem follows from (2). �

Corollary 4.10. Let M◦ be an open and closed subscheme of MH. (For exam-
ple, we can take M◦ to be the image of the canonical embedding ShH,can ↪→ MH.)
Consider the natural (quasi-finite) morphism from M◦ to a suitable coarse Siegel
moduli scheme (with possibly non-principal polarizations) over Spec(Z) (constructed
in [13]). Take the closure of the schematic image of this natural morphism, and
take the normalization M′ of this closure in the “function field” of M◦. (We allow
the “function field” to be a product of fields.) If M◦ → Spec(F0) is proper, then the
scheme M′ is projective over Spec(OF0

).

Proof. By construction, the conditions in Theorem 4.9 are all satisfied by M′, with
O′F0

= OF0
(localizing at the empty set). Thus M′ is proper over Spec(OF0

) by
Theorem 4.9, and hence projective over Spec(OF0) by quasi-projectivity of the
coarse Siegel moduli scheme over Spec(Z). �

5. Lower-bounds for maximal ranks of degenerations

Since the ranks of fibers of a semi-abelian scheme are non-deceasing under spe-
cialization (by arguments using torsion points, as in [5, IX, 2.2.1 and 2.2.3]), it is
natural to expect the following result:

Theorem 5.1. With the setting as in Theorem 1.2, we have the equality r0 ≤ rp
for every characteristic p ≥ 0.

To prove Theorem 5.1, it suffices to construct a degeneration of rank r0 over a
discrete valuation ring with residue characteristic p for each characteristic p ≥ 0.
Although alternative approaches might exist, we prefer to exploit an implication of
the main results of [10], so that a construction similar to the one for elevators in
Section 2.3 can be carried out. (However, we will only need the conclusion of [10] in
characteristic zero. That is, although we will use the algebraic construction of the
toroidal compactifications over Spec(F0), we will never use their smooth integral
models.)
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5.1. Boundary stratum of toroidal compactifications. Let us fix a charac-
teristic p ≥ 0.

According to [10, Thm. 6.4.1.1 and Thm. 7.3.3.4], MH → Spec(F0) admits a
projective smooth toroidal compactification Mtor

H = Mtor
H,Σ → Spec(F0), subject to

some combinatorial choice of Σ, with a stratification by locally closed subschemes.
The universal object over MH extends (after forgetting level structures) to a degen-
erating family (A, λ, i) of type (PE,O) over Mtor

H , and the restriction of A to each

stratum of Mtor
H has constant (split) torus parts. Let Shtor

H,can denote the schematic

closure of ShH,can in Mtor
H . Since ShH,can ↪→ MH is open and closed, and since

Mtor
H is regular, Shtor

H,can ↪→ Mtor
H is again open and closed. The stratification of

Mtor
H thus induces a stratification of Shtor

H,can with similar properties. By the semi-
stable reduction theorem [4, Ch. I, 2.6] (or [10, Thm. 3.3.2.4]), the properness of
Shtor
H,can → Spec(F0) shows that the maximal rank r0 among degenerations over

equicharacteristic zero discrete valuation rings based at ShH,can is achieved over at

least one (locally closed) stratum of Shtor
H,can. Moreover, since ranks of fibers of a

semi-abelian scheme are non-deceasing under specialization (as mentioned above),
we may require that this stratum is closed (and hence proper over Spec(F0)). Let
us pick any such (closed) stratum Z◦ of Shtor

H,can, which is the intersection of Shtor
H,can

with a (locally closed) stratum Z of Mtor
H .

Proposition 5.2. There exists a degeneration (A◦, λ◦, i◦) over a complete discrete
valuation ring R◦ based at ShH,can, which is up to isomorphism the image under

Msplit
PE,O(R◦) of some tuple (B◦, λB◦ , iB◦ , X, Y, φ, c

◦, c◦∨, τ◦) in DDsplit
PE,O(R◦), satis-

fying the following conditions:

(1) There exists a morphism S◦ := Spec(R◦) → Mtor
H , with generic point of

S◦ mapped to ShH,can and special point of S◦ mapped to Z◦, such that
(A◦, λ◦, i◦) is isomorphic to the pullback of (A, λ, i) under this morphism.
Then rkZX = rkZ Y = r0 according to the choice of Z◦.

(2) There exists a complete discrete valuation ring R of residue characteristic
p, with fraction field K := Frac(R) the residue field of R◦, together with

a tuple (B, λB , iB , X, Y, φ, c, c
∨) forming part of an object in DDsplit

PE,O(R),
such that

(5.3) (B◦, λB◦ , iB◦ , X, Y, φ, c
◦, c◦∨) ∼= (B, λB , iB , X, Y, φ, c, c

∨)⊗
R
R◦.

Proof. According to the construction in [10, Sec. 6.2], Z is canonically a torus-torsor
over a scheme CZ proper smooth (and surjective) over some moduli problem MZ

H
(whose definition is analogous to that of MH). Moreover, the formal completion of
Mtor
H along Z is isomorphic to a formal scheme XZ over CZ. (To form the formal

completion along a locally closed stratum, we first remove the other strata appearing
in the closure of this stratum from the total space, and then form the formal
completion of the remaining space along this stratum.) Then Z◦ is also a torus-

torsor (under the same torus) over a scheme CZ◦ proper smooth (and surjective)

over an open and closed subscheme MZ◦

H of MZ
H, and the formal completion of

Shtor
H,can along Z◦ is isomorphic to a formal scheme XZ◦ over CZ◦ .
Let R be any complete discrete valuation ring with algebraically closed residue

field of characteristic p, with (characteristic zero) fraction field K = Frac(R), such
that there exists a morphism Spec(K)→ Z◦. This induces canonically a morphism

ξ : Spec(K)→ CZ◦ .
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Let R◦ be any complete discrete valuation ring with fraction field K◦ and residue
field K, together with a morphism from Spf(R◦) to the pullback of XZ◦ under ξ,
which defines canonically a morphism ξ◦ : Spec(R◦) → Mtor

H whose restriction to
the generic point η◦ := Spec(K◦) of Spec(R◦) factors through ShH,can ↪→ Mtor

H ,
and whose restriction to the special point Spec(K) of Spec(R◦) factors through
Spec(K)→ Z◦ → Mtor

H .
Let (A◦, λ◦, i◦) be the pullback of (A, λ, i) under ξ◦ : Spec(R◦) → Mtor

H . Since
the torus part of the special fiber of A◦ is constant, (A◦, λ◦, i◦) is up to isomor-

phism the image under Msplit
PE,O(R◦) of some tuple (B◦, λB◦ , iB◦ , X, Y, φ, c

◦, c◦∨, τ◦)

in DDsplit
PE,O(R◦). Since the canonical morphism Spf(R◦) → XZ◦ → CZ◦ factors

through the pullback of XZ◦ under ξ, by the universal property of CZ, there exists
a tuple (BK , λBK , iBK , cK , c

∨
K) over K such that (BK , λBK , iBK , cK , c

∨
K)⊗

K
R◦ ∼=

(B◦, λB◦ , iB◦ , c
◦, c◦∨).

The relations among the base schemes involved in characteristic zero can be
summarized in the following commutative diagram, in which “str.” means structural
morphisms and “cmpl.” means formal completions:

η◦ = Spec(K◦) //

generic
point

��

ShH,can
� � //

��

MH

��

S◦ = Spec(R◦) //

ξ◦

))

str.

��

Shtor
H,can

� � // Mtor
H

Spf(R◦) //

cmpl.

OO

str.

��

pullback of

XZ◦ under ξ
//

str.

��

XZ◦ �
�

//

cmpl.

OO

str.

��

XZ

cmpl.

OO

str.

��

Spec(K) //

special
point

OO

pullback of

Z◦ under ξ
//

OO

��

Z◦ �
�

//

OO

��

Z

OO

��

Spec(K) Spec(K)
ξ
// CZ◦ �

�
//

��

CZ

��

MZ◦

H
� � // MZ

H

Since Z◦ → Spec(F0) is proper, MZ◦

H → Spec(F0) is also proper. By Corollary

4.10, the abelian scheme BK parameterized by MZ◦

H has potential good reduction
everywhere. In particular, it extends to an abelian scheme B over R. By a result of
Raynaud [4, Ch. I, 2.8] (or [10, Prop. 3.3.1.7]), the additional structures (λBK , iBK )
of BK extend uniquely to structures (λB , iB) of B over R. Since X (resp. Y ) is
finitely generated, the morphism cK : X → B∨K (resp. c∨K : Y → BK) is determined
by finitely many Spec(K)-valued points of B∨K (resp. BK), and each of these points
extends to a unique Spec(R)-valued point of B∨ (resp. B) by properness of B∨ →
Spec(R) (resp. B → Spec(R)). Thus we obtain a morphism c : X → B∨ (resp.
c∨ : Y → B) extending cK (resp. c∨K), and the tuple (B, λB , iB , X, Y, φ, c, c

∨) over
R satisfies (5.3), as desired. �
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Remark 5.4. In the proof of Proposition 5.2, we referred to Corollary 4.10 rather
than the seemingly more relevant Theorem 4.6, because MZ◦

H might not be the
Shimura variety (analogous to ShH,can) attached to the data defining the moduli
problem MZ

H.

5.2. Elevators in the opposite direction. Let us keep the setting in Proposition
5.2. Let S := Spec(R) and η := Spec(K).

Using the tuple (B, λB , iB , X, Y, φ, c, c
∨) → S, let S, Sfree, Stor, E, Efree, Etor,

Ξ, Ξtor, and τ̆ be constructed as in Section 3.2. Let bτ◦ ∈ P+ be defined by τ◦

as in Section 3.3. Let us take any top-dimensional smooth nondegenerate rational
polyhedral cone σ in P+ that contains bτ◦ , and construct Ξ(σ) and Ξσ (as in Section
3.3) using the cone σ.

The degeneration data of (A◦, λ◦, i◦) defines a canonical morphism Spec(R◦)→
Ξ(σ) mapping the special point η = Spec(K) of Spec(R◦) to the σ-stratum Ξσ.
Since σ is top-dimensional, σ⊥ = Stor in S. Hence the structural morphism Ξσ →
Ξtor is an isomorphism, and we obtain a morphism η → Ξtor lifting the canonical
morphism η → S. Since Ξtor → S is finite, the morphism η → Ξtor extends to a
section of the structural morphism Ξtor → S. By taking pullbacks along the section
S → Ξσ, we obtain schemes Ξ◦, Ξ◦(σ), and Ξ◦σ smooth over S as in Section 3.4,
together with the universal object τ̆ over Ξ◦ by abuse of notation.

Let R̃pre be the noetherian normal domain underlying the affine scheme Ξ◦(σ)

(smooth over S = Spec(R)), and let Ĩpre be the ideal of definition of the σ-stratum

Ξ◦σ of Ξ◦(σ). Let R̃ be the completion of R̃pre with respect to Ĩpre, and let Ĩ be

the induced ideal of definition. Since Ξ◦(σ) is smooth over S = Spec(R), R̃pre

is excellent, and hence the ring R̃ remains to be a noetherian normal domain.

Then the data of R̃ and Ĩ allow us to talk about the categories DEGsplit
PE,O(R̃, Ĩ)

and DDsplit
PE,O(R̃, Ĩ). (See Section 2.2.) Let K̃ := Frac(R̃) and η̃ := Spec(K̃).

Let (B̃, λB̃ , iB̃ , X, Y, φ, c̃, c̃
∨) be the pullback of (B, λB , iB , X, Y, φ, c, c

∨) to R̃, and

let τ̃ : 1Y ×X,η̃
∼→ (c∨× c)∗P⊗−1

B,η̃ be the pullback of τ̆ to η̃. Then we obtain a

tautological tuple (B̃, λB̃ , iB̃ , X, Y, φ, c̃, c̃
∨, τ̃) over R̃, which defines an object in

DDsplit
PE,O(R̃, Ĩ), and hence an object (Ã, λ̃, ĩ) of DEGsplit

PE,O(R̃, Ĩ) by Mumford’s con-

struction Msplit
PE,O(R̃, Ĩ).

Let S1 be the maximal dense subscheme of Spec(R̃⊗
Z
Q) over which Ã is an

abelian scheme. By [4, Ch. III, Prop. 5.10 and Cor. 5.11] (or [10, Prop. 4.5.3.10

and Cor. 4.5.3.11]), τ̃ : 1Y ×X,η̃
∼→ (c∨× c)∗P⊗−1

B,η̃ extends to a trivialization of

biextensions τS1 : 1Y ×X,S1

∼→ (c∨× c)∗P⊗−1
B,S1

. By the above construction, there is

a morphism from S◦ = Spec(R◦) to Spec(R̃⊗
Z
Q), mapping the generic point η◦ =

Spec(K◦) to S1, such that the pullback of the tuple (B̃, λB̃ , iB̃ , X, Y, φ, c̃, c̃
∨, τS1

)

to Spec(R◦) is isomorphic to (B◦, λB◦ , iB◦ , X, Y, φ, c
◦, c◦∨, τ◦). By functoriality

of Mumford’s construction, this shows that the pullbacks of (Ã, λ̃, ĩ) → Spec(R̃)
and (A◦, λ◦, i◦) → Spec(R◦) to Spec(K◦) are isomorphic to each other. Let
(K◦)sep denote a separable closure of K◦. Let S′1 � S1 be a finite étale mor-
phism from an integral scheme, such that the composition of canonical morphisms
Spec((K◦)sep)→ Spec(K◦)→ S1 lifts to a canonical morphism Spec((K◦)sep)→ S′1
(matching pullbacks of all tautological data). Then, as in the second paragraph
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of the proof of Theorem 4.1, the canonical morphism S′1 → MH factors through
S′1 → ShH,can ↪→ MH.

5.3. Ends of proofs. Let RO be a mixed characteristic discrete valuation ring of

residue characteristic p, with a morphism Spec(RO)→ Spec(R̃) whose restriction to

the generic point factors through S′1 → Spec(R̃) and whose restriction to the special

point factors through Spec(R̃/Ĩ) → Spec(R̃). Such an RO exists because Spec(R̃)

is noetherian and integral. Since the pullback of Ã to Spec(R̃/Ĩ) is the extension
of the pullback of the abelian scheme B by the torus with constant character group

X, the pullback of Ã to Spec(RO) is a degeneration of rank rkZX = r0 based at
ShH,can, showing that r0 ≤ rp. This completes the proof of Theorem 5.1. �

Now Theorem 1.2 follows as a combination of Theorems 4.1 and 5.1. �
The relations among the base schemes involved in the proof of Theorem 5.1 can

be summarized in the following commutative diagram (cf. the diagram following
the proof of Theorem 4.1), in which the dotted arrows are induced by the solid
arrows by the connectedness of S′1:

ShH,can

��

S′1

finite
étale

��

//

66

MH

generic
point of

Spec(RO)

��

//

11

11

S1

dense
subscheme

��

η◦ = Spec(K◦)oo

generic
point

��

OO

XX

Spec((K◦)sep)

  

``

Spec(RO) // Spec(R̃) Spec(R̃⊗
Z
Q)

char. 0
fiberoo S◦ = Spec(R◦)oo

str.

��special
point of

Spec(RO)

OO

char. p
point

// Spec(R̃/Ĩ)

closed
immersion

OO

S = Spec(R)
!!

99

η = Spec(K)
char. 0
point

oo

special
point

OO

(The arrows from Spec(R̃) and Spec(R̃/Ĩ) to S = Spec(R) exist because of their
construction; cf. the commutative diagram in Section 3.4.)
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