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Abstract. We present a short proof that, for PEL-type Shimura varieties,

subcanonical extensions of automorphic bundles, whose global sections over
toroidal compactifications of Shimura varieties are represented by cuspidal au-

tomorphic forms, have no higher direct images under the canonical morphism

to the minimal compactification, in characteristic zero or in positive charac-
teristics greater than an explicitly computable bound.
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1. Introduction

The main goal of this article is to present a short proof of Theorem 1.1 below,
as an application of a certain vanishing theorem of automorphic bundles in mixed
characteristics. (We refer to [16, 19, 20] for the precise definitions and descriptions
of smooth integral models of PEL-type Shimura varieties and their various com-
pactifications, and of the automorphic bundles and their canonical and subcanonical
extensions.)

Let π : Mtor
H,Σ → Mmin

H denote the canonical proper morphism from any projective
smooth toroidal compactification to the minimal compactification of a p-integral
model MH of a PEL-type Shimura variety at a neat levelH ⊂ G(Ẑp), where p is good
for the integral PEL datum (O, ?, L, 〈 · , · 〉, h0) defining MH, as in [20, §4.1] (and
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the references there). Let Wν0,R := Wν0,Z⊗Z
R be a representation of M1 of weight

ν0 ∈ X+
M1

over a coefficient ring R, where Wν0,Z denotes a Weyl module of weight
ν0 of a split model Msplit of M1 over Z, as in [19, §2.6]. Let W ν0,R

:= EM1,R(Wν0,R)
be the corresponding automorphic bundle over MH as in [19, Def. 1.16 and §6.3],

and let W sub
ν0,R := Esub

M1,R
(Wν0,R) be its subcanonical extension over Mtor

H,R, as in [20,

Def. 4.12 and §7]. (We similarly define Wν,R, W ν,R, and W sub
ν,R for all ν ∈ X+

M1
.)

Theorem 1.1. With the setting as above, there exists a bound C(ν0) depending
only on the integral PEL datum (O, ?, L, 〈 · , · 〉, h0) and the weight ν0, such that

(1.2) Riπ∗W
sub
ν0,R

= 0

for all i > 0 when the residue characteristics of R are zero or p greater than C(ν0).
(See Lemma 3.3 below for an explicit choice of C(ν0).)

To help the reader understand the restriction imposed by C(ν0), let us spell out
the bound in some simple special cases. If ν0 = 0, then we can take C(ν0) to be
the relative dimension d of MH over the base scheme S0 (see Example 3.9 below).
If MH is a p-integral model of the Siegel modular variety of genus three, then the
weight ν0 is of the form (k1, k2, k3; k0) for some integers k0 and k1 ≥ k2 ≥ k3, and
we can take C(ν0) to be 6+(k1−k3)+(k2−k3) (see Example 3.10 below with r = 3
there). If MH is a p-integral model of a Picard modular surface, then the weight ν0

is of the form (k1, k2, k3; k0) for some integers k0, k1, and k2 ≥ k3, and we can take
C(ν0) to be 2 + (k2 − k3) (see Example 3.12 below with (r − q, q) = (2, 1) there).
(In all cases, C(ν0) is insensitive to shifting the weight ν0 by a “parallel weight”.
See Section 3C below for more examples.)

We note that, when R = C, global sections of W sub
ν0,R over Mtor

H,Σ can be repre-

sented by holomorphic cuspidal automorphic forms. (See, e.g., [11, Prop. 5.4.2]; see

also [10] for a survey on how the higher cohomology of W sub
ν0,R

can be represented by
nonholomorphic automorphic forms. See [15] for the comparison between algebraic
and analytic constructions hidden behind this.) Combined with the Leray spec-

tral sequence, Theorem 1.1 allows one to identify the cohomology of W sub
ν0,R

over

Mtor
H,Σ with the cohomology of π∗W

sub
ν0,R

over Mmin
H . Although the coherent sheaf

π∗W
sub
ν0,R

is not locally free in general, there are reasons for Mmin
H to be useful for

the construction of p-adic modular forms and p-adic Galois representations.
Special cases of Theorem 1.1 have been independently proved in [2, 1] (in the

Siegel and Hilbert cases, for trivial weight ν0) and in [12] (in the unitary case, for
all weights ν0), without any assumption on the residue characteristic p. The idea in
[12] has also been carried out for all PEL-type cases in [17]. Such results have played
crucial roles in positive characteristics in [2, 1, 5, 23], and in characteristic zero in
[12, 26]. The proofs in [2, 1] and [12, 17] directly used the toroidal and minimal
boundary structures, and hence can be considered more elementary, which is why
they work for all residue characteristics p; but they are lengthier and arguably more
complicated. It is not easy to see from their proofs why Theorem 1.1 should be true.
(It is not even clear how the two strategies in [2, 1] and [12, 17] are related to each
other.) Thus it is desirable to find a proof more closely related to other vanishing
statements, at least when the residue characteristics are zero or sufficiently large.
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It was first observed by the second author that this is indeed possible—in charac-
teristic zero, the trivial-weight case can be deduced from Grauert and Riemenschnei-
der’s vanishing theorem [8]; in positive characteristics, under suitable assumptions
(involving choices of projective but generally nonsmooth cone decompositions Σ
for the toroidal compactification Mtor

H,Σ, whose existence is not very clearly docu-

mented in the literature), it is also possible to deduce the statement from Deligne
and Illusie’s and Kato’s vanishing theorems [4, 14]. Then the first author made the
observations that the assumption on cone decompositions can be relaxed by using
Esnault and Viehweg’s vanishing theorem [6] as in [18], and that (along similar
lines) cases of nontrivial weights can be treated using stronger vanishing theorems
in [20]. (In the Siegel case, one can also use [24, 25].)

In Section 2, we will present the proof of Theorem 1.1 and highlight the main
inputs. In Section 3, we will carry out some elementary computations needed in
the proof of Theorem 1.1, and find an explicit choice of C(ν0). In Section 4, we
sketch a logically simpler proof for the trivial-weight case.

2. Proof of the theorem

Let π : Mtor
H,Σ → Mmin

H , ν0 ∈ X+
M1

, and W sub
ν0,R

be as in Section 1. Since Mtor
H,Σ,1

and Mmin
H,1 are proper over S1 = Spec(R1) (see [20, §4.1] and the references there

for the notation), which are in particular separated and of finite type, for the
purpose of proving Theorem 1.1, we may write R as an inductive limit over its
sub-R1-algebras, and assume that R is of finite type over R1, which is in particular
noetherian. Then we may base change to R and abusively denote Mtor

H,Σ,R → Mmin
H,R

by the same notation π. Our goal is to show that Riπ∗W
sub
ν0,R

= 0 for all i > 0.

As in [19, §2.6], we shall denote by X+,<p
M1

the subset of X+
M1

consisting of p-small

weights, namely the weights ν ∈ X+
M1

such that (ν + ρM1
, α) ≤ p for all roots

α ∈ ΦM1
, where ρM1

is the usual half sum of positive roots.

2A. Application of Serre’s fundamental theorem. By [20, Prop. 7.13], there

exists some weight ν1 ∈ X+,<p
M1

such that Wν1,R is free of rank-one as an R-module,

and such that there exists an ample line bundle ων1
over Mmin

H,R such that

(2.1) π∗ων1
∼= W can

ν1,R,

the canonical extension W can
ν1,R

of W ν1,R
. Since (by definition)

(2.2) W sub
ν0+Nν1,R

∼= W sub
ν0,R ⊗

OMtor
H,Σ,R

(W can
ν1,R)⊗N ,

for all integers N , by the projection formula [9, 0I, 5.4.10.1] we have

(2.3) Riπ∗W
sub
ν0+Nν1,R

∼= (Riπ∗W
sub
ν0,R) ⊗

O
Mmin
H,R

ω⊗Nν1
.

Then we have the following:

Lemma 2.4. There exists some integer N1 ≥ 0 such that, for all integers N ≥ N1

and all i ≥ 0, the sheaves Riπ∗W
sub
ν0+Nν1,R

over Mmin
H,R are generated by their global

sections and satisfy Hj(Mmin
H,R, R

iπ∗W
sub
ν0+Nν1,R

) = 0 for all j > 0.

Proof. Since π is proper and Mmin
H,R is noetherian, by the theorem of finiteness [9, III,

3.2.1], the sheaves Riπ∗W
sub
ν0,R

are coherent over Mmin
H,R for all i ≥ 0, and are nonzero
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only for finitely many i. Since ων1
is ample over Mmin

H,R, the lemma follows from

(2.3) and Serre’s fundamental theorem for projective schemes [9, III, 2.2.1]. �

2B. Shifting weights into the holomorphic chamber. Let w0 (resp. w1) be the

longest Weyl element in WM1 (resp. WM1) (see [19, §2.4]), so that (−w0)Φ+
M1

= Φ+
M1

and Wν
∼= W∨−w0(ν) for all ν ∈ X+,<p

M1
, and l(w1) = d = dimS1

(MH,1).

Remark 2.5. When R = C, for any µ ∈ X+
G1

, sections in H0(Mtor
H,Σ,R, (W

∨
w1·µ,R)sub)

are represented by holomorphic cusp forms of weight (−w0)(w1 · µ) ∈ X+
M1

, which
contribute via the dual BGG spectral sequence to

Hd
log-dR(Mtor

H,R, (V
∨
[µ],R)sub) ∼= Hd

dR,c(MH,R, V
∨
[µ],R)

(compactly supported of middle degree), compatible with their contribution to the
better understood L2 cohomology of MH,R. (For more explanations, see [7, Thm.
9], [10, §2], and [11, Prop. 5.4.2]; see also the comparisons with transcendental
results in [19, 20] and the references there.) Thus we consider weights of the form

(−w0)(w1 · µ) = (−w0w1)(µ) + (−w0)(w1 · 0)

holomorphic; these holomorphic weights form a translation of the dominant cham-
ber X+

G1
because (−w0w1) preserves X+

G1
.

Proposition 2.6. There exists an integer N2, a positive parallel weight ν2 ∈ X+
M1

,

and a weight µ0 ∈ X+
G1

, all of which can be explicitly determined, such that

(2.7) ν0 +N2ν1 − ν2 = −w0(w1 · µ0)

This proposition is elementary in nature. One can prove Proposition 2.6 using
general principles that also work for all reductive groups defining Shimura varieties.
However, we shall spell out a (less elegant) case-by-case argument, which has the
advantage of giving explicit choices of N2, ν2, and µ0 of small sizes.

We will assume Proposition 2.6 in the remainder of this section, and postpone
its proof until Section 3A. In Lemma 3.3, we will give an explicit choice of C(µ0),
depending only on (O, ?, L, 〈 · , · 〉, h0) and the weight ν0, such that C(ν0) ≥ |µ0|re
(see [19, Def. 3.9]) for some triple (N2, ν2, µ0) as in Proposition 2.6.

2C. Application of automorphic vanishing.

Corollary 2.8. Let (N2, ν2, µ0) be any triple as in Proposition 2.6. Suppose that
p > |µ0|re and that N is any integer satisfying N ≥ N2. Then we have

Hi(Mtor
H,Σ,R,W

sub
ν0+Nν1,R

) = 0

for every i > 0

Proof. By definition, the subset X+,<p
M1

of X+
M1

is preserved by translations by par-
allel weights. Moreover, by [19, Rem. 2.30], and by the same argument as in the

proof of [19, Lem. 7.20], we have ν0 ∈ X+,<p
M1

under the assumption that p > |µ0|re.

Then the assertion Hi(Mtor
H,Σ,R,W

sub
ν0+Nν1,R

) = 0 follows from [20, Thm. 8.13(2)],

because ν := ν0 +Nν1 and ν+ := (N −N2)ν1 + ν2 satisfy the condition there, with

µ(ν−ν+) = µ0 ∈ X+,<rep
G1

and w(ν) = w1 (so that d− l(w(ν)) = d− l(w1) = 0). �

Remark 2.9 (Erratum). There are typos in [20, Thm. 8.13]: Both instances of

X+,<Wp
G1

there should be X+,<rep
G1

, which is what was used in [20, Cor. 7.24], on
which the theorem depends.
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2D. End of the proof of Theorem 1.1. Let N1 be as in Lemma 2.4, and let
(N2, ν2, µ0) be any triple as in Proposition 2.6 satisfying C(ν0) ≥ |µ0|re for some
C(ν0) (which will be given in Lemma 3.3 below). Suppose that p > C(ν0) and that
N is any integer satisfying N ≥ N1 and N ≥ N2. By Lemma 2.4 and by the Leray
spectral sequence, and by Corollary 2.8, we have

(2.10) H0(Mmin
H,R, R

iπ∗W
sub
ν0+Nν1,R

) ∼= Hi(Mtor
H,Σ,R,W

sub
ν0+Nν1,R

) = 0

for all i > 0. Since Riπ∗W
sub
ν0+Nν1,R

is generated by its global sections (by Lemma
2.4), it follows that

(2.11) Riπ∗W
sub
ν0+Nν1,R

= 0

for all i > 0. By combining (2.3) and (2.11), we obtain the desired vanishing (1.2)
for all i > 0 (under the assumption that p > C(ν0) ≥ |µ0|re).

Suppose that the residue characteristics of R are all zero. By shrinking R and
enlarging R by flat descent, we may replace the setup with a different one in which
p > C(ν0) ≥ |µ0|re, and obtain the desired vanishing from the above.

Thus, Theorem 1.1 follows. �

3. Elementary computations

We shall freely use the notation in [19, §2 and §7]. The material in this section
can be read without any knowledge of algebraic geometry or Shimura varieties.

3A. Proof of Proposition 2.6. We can rewrite (2.7) as

ν0 +N2ν1 − ν2 = −w0(w1µ0 + w1ρ− ρ) = µ′0 + (−w0)(w1 · 0),

where µ′0 = −(w0w1)(µ0) ∈ X+
G1

satisfies V[µ′
0]
∼= V ∨[µ0], because w0w1 is the longest

Weyl element in WG1
. Hence it suffices to find N2 and ν2 such that

(3.1) µ′0 = ν0 +N2ν1 − ν2 − (−w0)(w1 · 0) ∈ X+
G1
.

Let us write νj = ((νj,τ )τ∈Υ/c; νj,0) = (((νj,τ,iτ )1≤iτ≤rτ )τ∈Υ/c; νj,0) ∈ X+
M1

, for
j = 0, 1, 2. We shall also denote by ρτ (resp. w0,τ , resp. w1,τ ) the corresponding
factors of ρ (resp. w0, resp. w1). Then we need

(3.2) µ′0,τ = ν0,τ +N2ν1,τ − ν2,τ − (−w0,τ )(w1,τ · 0) ∈ X+
Gτ

for each factor Gτ of G1. There are two cases:

(1) If τ = τ ◦ c, then Gτ
∼= Sp2rτ ⊗Z

R1 or Gτ
∼= O2rτ ⊗Z

R1, and Mτ
∼=

GLrτ ⊗
Z
R1. If Gτ

∼= Sp2rτ ⊗Z
R1, set dτ = 1

2rτ (rτ + 1) and r′τ = rτ + 1.

If Gτ
∼= O2rτ ⊗Z

R1, set dτ = 1
2rτ (rτ −1) and r′τ = rτ . Set eτ = (1, 1, . . . , 1).

If d[τ ]Q =
∑

τ ′∈[τ ]Q

dτ ′ = 0, then we must have Gτ
∼= O2rτ ⊗Z

R1 and rτ ≤ 1,

in which case (3.2) is trivially true if we take µ′0,τ = ν0,τ , any N2 ∈ Z, and
ν2,τ = N2ν1,τ − (−w0,τ )(w1,τ · 0). Hence we may assume that d[τ ]Q > 0.
By assumption, we know that ν0,τ,1 ≥ ν0,τ,2 ≥ . . . ≥ ν0,τ,rτ , and that
ν1,τ = k1,τeτ , where k1,τ > 0 depends only on the equivalence class [τ ]Q
of τ (see [19, Def. 7.12]). Also, we have ρτ = (r′τ , r

′
τ − 1, . . . , r′τ − rτ ) and

(−w0,τ )(w1,τ · 0) = r′τeτ . Thus, in order for (3.2) to hold, we need

ν0,rτ +Nk1,τ − k2,τ ≥ rτ + 1 = r′τ
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if Gτ
∼= Sp2rτ ⊗Z

R1, or

ν0,rτ−1 +Nk1,τ − k2,τ − rτ ≥ |ν0,rτ +Nk1,τ − k2,τ − rτ |

if Gτ
∼= O2rτ ⊗Z

R1. We may take:

(a) µ′0,τ := ν0,τ − ν0,[τ ]Qeτ , where ν0,[τ ]Q := min
τ ′∈[τ ]Q

(ν0,τ ′,rτ );

(b) µ0,τ := −(w0,τw1,τ )(µ′0,τ ) = µ′0,τ ; and
(c) Nτ to be any integer satisfying ν0,[τ ]Q +Nτk1,τ > r′τ , so that

ν0,τ +Nν1,τ − µ′0,τ − (−w0,τ )(w1,τ · 0) = (ν0,[τ ]Q +Nk1,τ − r′τ ) eτ ,

with a positive coefficient ν0,[τ ]Q +Nk1,τ − r′τ > 0 for every N ≥ Nτ .
(2) If τ 6= τ ◦ c, then Gτ

∼= GLrτ ⊗Z
R1 and Mτ

∼= (GLqτ ×GLpτ )⊗
Z
R1. Set

dτ = pτqτ , eτ = (1, 1, . . . , 1, 0, 0, . . . , 0) with 1’s in the first qτ entries, and
e′τ = (0, 0, . . . , 0,−1,−1, . . . ,−1) with −1’s in the last pτ entries. If d[τ ]Q =∑
τ ′∈[τ ]Q/c

dτ ′ = 0, then we must have pτqτ = 0 for all τ ∈ [τ ]Q, in which case

(3.2) is trivially true if we take µ′0,τ = ν0,τ , any N2 ∈ Z, and ν2,τ = N2ν1,τ−
(−w0,τ )(w1,τ ·0). Hence we may assume that d[τ ]Q > 0. By assumption, we
know that ν0,τ,1 ≥ ν0,τ,2 ≥ . . . ≥ ν0,τ,qτ and ν0,τ,qτ+1 ≥ ν0,τ,qτ+2 ≥ . . . ≥
ν0,τ,rτ , and that ν1,τ = k1,τeτ + k1,τ◦ce

′
τ , where [k1]τ = k1,τ + k1,τ◦c > 0

depends only on the equivalence class [τ ]Q of τ (see [19, Prop. 7.15]). Also,
we have ρτ = 1

2 (rτ − 1, rτ − 3, . . . ,−rτ + 1) and (−w0,τ )(w1,τ · 0) = pτeτ +
qτe
′
τ . Thus, in order for (3.2) to hold, we need

ν0,qτ +Nk1,τ − k2,τ − pτ ≥ ν0,qτ+1 −Nk1,τ◦c + k2,τ◦c + qτ ,

or equivalently

(ν0,qτ − ν0,qτ+1) +N [k1]τ − [k2]τ ≥ pτ + qτ = rτ .

We may take:
(a) µ′0,τ := ν0,τ − ν0,[τ ]Qeτ − (ν′0,τ,1 − ν0,[τ ]Q)(eτ − e′τ ), where

ν0,[τ ]Q := min
τ ′∈[τ ]Q,dτ′ 6=0

(ν0,τ ′,qτ′ − ν0,τ ′,qτ′+1),

ν′0,τ,1 :=

{
ν0,τ,1 if qτ > 0,

ν0,τ,1 + ν0,[τ ]Q if qτ = 0.

(b) µ0,τ := −(w0,τw1,τ )(µ′0,τ ), which ends with µ0,τ,rτ = 0 because µ′0,τ
starts with µ′0,τ,1 = 0; and

(c) Nτ to be any integer satisfying ν0,[τ ]Q +Nτ [k1]τ > rτ , so that

ν0,τ +Nν1,τ − µ′0,τ − (−w0,τ )(w1,τ · 0)

= (ν0,τ,1 +Nk1,τ − pτ ) eτ + (ν0,[τ ]Q − ν0,τ,1 +Nk1,τ◦c − qτ ) eτ ,

with sum of coefficients

(ν0,τ,1 +Nk1,τ − pτ ) + (ν0,[τ ]Q − ν0,τ,1 +Nk1,τ◦c − qτ ) = ν0,[τ ]Q +N [k1]τ − rτ > 0

for every N ≥ Nτ .
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Now set:

N2 := max
τ∈Υ/c

(Nτ );

µ0 := ((µ0,τ )τ∈Υ/c;µ0,0) with any value of µ0,0;

µ′0 := (−w0w1)(µ0);

ν2 := ν0 +N2ν1 − µ′0 − (−w0)(w1 · 0).

Then the triple (N2, ν2, µ0) satisfies (3.1) and hence also (2.7), as desired, because
each of its factors (N2, ν2,τ , µ0,τ ) satisfies (3.2) by the above. �

3B. Explicit choice of C(ν0).

Lemma 3.3. The minimal size |µ0|re (see [19, Def. 3.9]) among all µ0 appearing
in some (N2, ν2, µ0) satisfying (2.7) in Proposition 2.6 is smaller than or equal to

(3.4) C(ν0) :=
∑
τ∈Υ/c

Cτ (ν0,τ ),

where each Cτ (ν0,τ ) is defined as follows:

(1) If τ = τ ◦ c, then we set dτ := 1
2rτ (rτ + 1) (resp. dτ := 1

2rτ (rτ − 1)) if
Gτ
∼= Sp2rτ ⊗Z

R1 (resp. Gτ
∼= O2rτ ⊗Z

R1), ν0,[τ ]Q := min
τ ′∈[τ ]Q

(ν0,τ ′,rτ ), and

(3.5) Cτ (ν0,τ ) := dτ +
∑

1≤iτ≤rτ

(ν0,τ,iτ − ν0,[τ ]Q).

(2) If τ 6= τ ◦ c, then we set dτ := pτqτ ,

ν0,[τ ]Q := min
τ ′∈[τ ]Q,dτ′ 6=0

(ν0,τ ′,qτ′ − ν0,τ ′,qτ′+1),

ν′0,τ,1 :=

{
ν0,τ,1 if qτ > 0,

ν0,τ,1 + ν0,[τ ]Q if qτ = 0,

and

(3.6) Cτ (ν0,τ ) := dτ +
∑

1≤iτ≤qτ

(ν′0,τ,1 − ν0,τ,iτ ) +
∑

qτ<iτ≤rτ

(ν′0,τ,1 − ν0,[τ ]Q − ν0,τ,iτ ).

Proof. These follow from the definition of |µ0|re = d +
∑

τ∈Υ/c

( ∑
1≤iτ≤rτ

µ0,τ,iτ

)
and

the explicit choices of µ0,τ in the proof of Proposition 2.6. �

Remark 3.7. By using [20, (7.9) and (7.11)], it is possible to reduce the proof of
Theorem 1.1 to the case where the integral PEL datum is Q-simple, and replace
(3.4) with

(3.8) C ′(ν0) := max
[τ ]Q

(
C[τ ]Q(ν0,[τ ]Q)

)
,

where:

(1) C[τ ]Q(ν0,[τ ]Q) = 0, if d[τ ]Q =
∑

τ ′∈[τ ]Q/c

dτ ≤ 1;

(2) C[τ ]Q(ν0,[τ ]Q) =
∑

τ ′∈[τ ]Q/c

Cτ (ν0,τ ), where Cτ (ν0,τ ) are as in (3.5) and (3.6),

otherwise.

We leave the details to the interested readers.
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3C. Some examples. To help the reader understand the notation and formulas,
we include some examples of familiar special cases.

Example 3.9 (trivial weight). If ν0 = 0, then (2.7) holds for µ0 = 0 and any
sufficiently large N2, and we have C(ν0) =

∑
τ∈Υ/c

Cτ (ν0,τ ) =
∑

τ∈Υ/c

dτ = d in (3.4).

Example 3.10 (Siegel case). Suppose (O, ?, L, 〈 · , · 〉, h0) is given with O = Z with
trivial ?, with (L, 〈 · , · 〉) given by Z⊕ 2r with some standard self-dual symplectic
pairing, and with any conventional choice of h0. Then we are in the so-called Siegel
case. There is a unique τ ∈ Υ with τ = τ ◦c, which we can suppress in our notation,
and each ν0 ∈ X+

M1
can be represented by a tuple ((ν0,1, ν0,2, . . . , ν0,r); ν0,0), where

ν0,1 ≥ ν0,2 ≥ . . . ≥ ν0,r are integers. Then µ0 can be chosen to be

ν0 − ν0,r((1, 1, . . . , 1, 1); 0) = ((ν0,1 − ν0,r, . . . , ν0,r−1 − ν0,r, 0); ν0,0)

(where the last entry is irrelevant), and we have C(ν0) = 1
2r(r+1)+

∑
1≤i<r

(ν0,i−ν0,r)

(see (3.5)).

Example 3.11 (“Q-similitude Hilbert case”). Suppose (O, ?, L, 〈 · , · 〉, h0) is given
with O = OF with trivial ?, where F is a totally real number field, with (L, 〈 · , · 〉)
given by O⊕ 2

F with some standard symplectic pairing defined by trace, and with
any conventional choice of h0; and suppose p is any prime number unramified in
OF . Then we are essentially in the so-called Hilbert case, although we only consider
elements in ResF/Q GL2 with similitudes in Gm (rather than ResF/Q Gm). There
are d elements τ ∈ Υ corresponding to the d = [F : Q] homomorphisms from OF
to an algebraic closure of Qp, which all satisfy τ = τ ◦ c and determine a unique
equivalence class [τ ]Q (of Galois orbits of τ), and our coefficient ring R is chosen
to contain the images of all these homomorphisms, over which all linear algebraic
data are split. Each ν0 ∈ X+

M1
can be represented by a tuple ((ν0,τ )τ∈Υ; ν0,0), where

each ν0,τ = (ν0,τ,1) consists of just one integer ν0,τ,1. Then ν0,[τ ]Q = min
τ∈Υ

(ν0,τ,1),

and µ0 can be chosen to be ν0− ν0,[τ ]Q((1)τ∈Υ; 0) = ((ν0,τ,1− ν0,[τ ]Q)τ∈Υ; ν0,0), and
we have C(ν0) = d+

∑
τ∈Υ

(ν0,τ,1 − ν0,[τ ]Q) (see (3.5)).

Example 3.12 (simplest unitary case). Suppose (O, ?, L, 〈 · , · 〉, h0) is given with
O = OF , where F is an imaginary quadratic extension of Q with an embedding
F ↪→ C, with ? given by complex conjugation, with (L, 〈 · , · 〉) given by a Hermitian
module over O⊕ rF with signature (r−q, q) at∞ (using the given F ↪→ C), and with
any conventional choice of h0 (respecting the signature); and suppose p is any
prime number unramified in OF . Then we obtain the simplest (nontrivial) unitary
case. There is a unique representative τ of orbits in Υ/c such that τ 6= τ ◦ c and
(pτ , qτ ) = (r − q, q), matching the signatures at ∞ and at p; hence we shall always
choose this τ and suppress τ from the notation. Each ν0 ∈ X+

M1
can be represented

by a tuple ((ν0,1, ν0,2, . . . , ν0,q, ν0,q+1, . . . , ν0,r); ν0,0), where ν0,1 ≥ ν0,2 ≥ . . . ≥ ν0,q

and ν0,q+1 ≥ . . . ≥ ν0,r are integers. If q > 0, then µ0 can be chosen to be

(ν0,1 − ν0,q + ν0,q+1 − ν0,r, . . . , ν0,1 − ν0,q, ν0,1 − ν0,q, . . . , ν0,1 − ν0,2, 0; ν0,0)

(note the reversed order and the repeated term ν0,1 − ν0,q), and we have

C(ν0) = (r − q)q +
∑

1≤i≤q

(ν0,1 − ν0,i) +
∑
q<i≤r

(ν0,1 − ν0,q + ν0,q+1 − ν0,i).
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If q = 0, then µ0 can be chosen to be (ν0,1 − ν0,r, . . . , ν0,1 − ν0,2, 0; ν0,0) and we
have C(ν0) =

∑
1≤i≤r

(ν0,τ,1 − ν0,i); but d = 0 and the map π is trivial—C(ν0) = 0

suffices. (See (3.6) and Remark 3.7.)

4. Simpler proof for the trivial-weight case

In this final section, we sketch a logically simpler proof for the trivial-weight
case ν0 = 0, which does not require the various advanced technical inputs in [20,
§§1–3] (such as the theory of F -spans in [22]). The key is to give a simpler proof
of the vanishing statement in Corollary 2.8 when ν0 = 0 (with a suitable choice of
(N2, ν2, µ0)). By standard arguments, as in the proof of [20, Thm. 8.2], we may
and we shall assume that R is a perfect field extension of the residue field of R1.

Using the extended Kodaira–Spencer isomorphism (see [16, Thm. 6.4.1.1(4)])
and the very construction of canonical extensions of automorphic bundles using the
relative Lie algebra of the universal abelian scheme, one can show that

W can
(−w0)(w1·0)

∼= (W∨w1·0)can ∼= ΩdMtor
H,Σ,1/S1

(log∞) := ∧d(Ω1
Mtor

H,Σ,1/S1
(log∞))

as line bundles over Mtor
H,Σ,1 (ignoring Tate twists). (The proof is left to the inter-

ested readers.) Moreover, the proof of Proposition 2.6 in Section 3A shows that
we can take µ0 = 0 in Proposition 2.6, with some integer N2 such that the weight
ν2 = N2ν1 − (−w0)(w1 · 0) is positive and parallel. Then we have

W sub
Nν1
∼= W sub

ν2
⊗

Mtor
H,Σ,1

W can
(−w0)(w1·0)

∼= W sub
ν2

⊗
Mtor

H,Σ,1

ΩdMtor
H,Σ,1/S1

(logD),

where D is the boundary divisor Mtor
H,Σ,1−MH,1 (with reduced subscheme structure).

By [20, Prop. 4.2(5) and Cor. 7.14], there exists a (usually nonreduced) divisor
D′ with D′red = D, and some r0 > 0, such that the line bundle (W can

ν2
)⊗ r(−D′) is

ample for all integers r ≥ r0. (This follows from [16, Thm. 7.3.3.4], which implies
that there exists some D′ as above such that OMtor

H,Σ,1
(−D′) is relatively ample over

Mmin
H,1.) By base change from R1 to R, this is exactly the condition (∗) needed in

[6, Thm. 11.5]. Then, by [6, Thm. 11.5] and by Serre duality, we obtain

Hi(Mtor
H,Σ,R,W

sub
Nν1,R

) = Hi(Mtor
H,Σ,R,W

sub
ν2,R

⊗
OMtor

H,Σ,1

ΩdMtor
H,Σ,1/S1

(logD)) = 0

for all i > 0. (This is the same approach taken in [18].) This gives the desired
vanishing statement in Corollary 2.8 when ν0 = 0, and we can conclude as in
Section 2D. This argument does not depend on [20, Thm. 8.13(2)], and hence not
on the various advanced technical inputs in [20, §§1–3].
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