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ABSTRACT. We construct the compatible system of l-adic representations associ-
ated to a regular algebraic cuspidal automorphic representation of GL,, over a CM
(or totally real) field and check local-global compatibility for the l-adic representa-
tion away from [ and a finite number of rational primes above which the CM field
or the automorphic representation ramify. The main innovation is that we impose
no self-duality hypothesis on the automorphic representation.

INTRODUCTION
Our main theorem is as follows (see corollary [7.14]).

Theorem A. Let p denote a rational prime and let v : @p = C. Suppose that E
is a CM (or totally real) field and that 7 is a cuspidal automorphic representation
of GL,(Ag) such that mw has the same infinitesimal character as an irreducible
algebraic representation p, of RS(SGLn. Then there is a unique continuous semi-
simple representation
Tpa(m) 1 Gg — GL,(Q,)

such that, if ¢ # p is a rational prime above which 7 is unramified and if v|q is a
prime of E, then ry,,(7) is unramified at v and

rp,z(ﬁ)ﬁ/ls/EU = ’L_ll"eCEv (7Tv| det |1(}1_”)/2)‘

Here recg, denotes the local Langlands correspondence for E,. It may be possible
to extend the local-global compatibility to other primes v. Ila Varma is considering
this question.

The key point is that we make no self-duality assumption on 7. In the presence of
such a self-duality assumption (‘polarizability’, see [BLGGT]) the existence of 7, ()
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has been known for some years (see [Shl] and |[CH]). In almost all polarizable cases
rp.(7) is realized in the cohomology of a Shimura variety, and in all polarizable cases
7. (m)®? is realized in the cohomology of a Shimura variety (see |[Cal). In contrast,
according to unpublished computations of one of us (M.H.) and of Laurent Clozel,
in the non-polarizable case the representation r,,(7) will never occur in the Betti or
etale cohomology of a Shimura variety. Rather we construct it as a p-adic limit of
representations which do occur in such cohomology groups.

We sketch our argument. We may easily reduce to the case of an imaginary CM field
F which contains an imaginary quadratic field in which p splits. For all sufficiently
large integers N, we construct a 2n-dimensional representation R, (2~ (7| det [|V)>°)
such that for good primes v we have

Ry(vH(m|[det |[|V)>*) [y, =
1 recy, (| det |3 FT%) @ 0 Trecy, (| det [3 T T/ Vieel =2,

as a p-adic limit of (presumably irreducible) p-adic representations associated to
polarizable, regular algebraic cuspidal automorphic representations of G Ly, (Ap). It
is then elementary algebra to reconstruct r,,(m).

We work on the quasi-split unitary similitude group G,, associated to F?". Note
that GG,, has a maximal parabolic subgroup P;(n) with Levi component

Ly ) = GLy x RS{GL,,.
(We will give all these groups integral structures.) We set

oo,p
II(N) = Ind g}iimiﬂ(l x 1 (| det [|V)P).
Then our strategy is to realize II(N), for sufficiently large N, in a space of overcon-
vergent p-adic cusp forms for GG, of finite slope. Once we have done this, we can
use an argument of Katz (see [Katzl]) to find congruences modulo arbitrarily high
powers of p to classical (holomorphic) cusp forms on G,, (of other weights). (Alter-
natively it is presumably possible to construct an eigenvariety in this setting, but we
have not carried this out.) One can attach Galois representations to these classical
cusp forms by using the trace formula to lift them to polarizable, regular algebraic,
discrete automorphic representations of G' Lo, (Ar) (see e.g. [Sh2]) and then applying
the results of [Sh1] and [CHJ.

We learnt the idea that one might try to realize II(/V) in a space of overconvergent
p-adic cusp forms for G,, (of finite slope) from Chris Skinner. The key problem was
how to achieve such a realization. To sketch our approach we must first establish
some more notation.

To a neat open compact subgroup U of GG,, we can associate a Shimura variety
Xn.v/SpecQ. It is a moduli space for abelian n[F : Q]-folds with an isogeny action
of F' and certain additional structures. It is not proper. It has a canonical normal
compactification ff}}l and, to certain auxiliary data A, one can attach a smooth
compactification X,, ya which naturally lies over Xflngl and whose boundary is a
simple normal crossings divisor. To a representation p of Ly, (over Q) one can
attach a locally free sheaf &,/ X, v together with a canonical (locally free) extension
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Eun,p to X, ua, whose global sections are holomorphic automorphic forms on G, ‘of
weight p and level U’. (The space of global sections does not depend on A.) The
product of &y A, with the ideal sheaf of the boundary of X, A, which we denote
85‘}27 »» 18 again locally free and its global sections are holomorphic cusp forms on G,
‘of weight p and level U’ (and again the space of global sections does not depend on
A).

To the schemes X, i/, X ;Ln}}’ and X, y a one can naturally attach dagger spaces X :L,U,
X iUn’T and le ua in the sense of [GK]. These are like rigid analytic spaces except
that one Consietently works with overconvergent sections. If U is the product of a
neat open compact subgroup of G, (A*?) and a suitable open compact subgroup of
Gn(Q,), then one can define admissible open sub-dagger spaces (‘the ordinary loci’)

XSTS’T - XIL,U
and
Xt © X
and
XSTSZTA C XTTL,U,A
By an overconvergent cusp form of weight p and level U one means a section of 5(5}’1{?

over XZrSTA (Again this definition does not depend on the choice of A.)

We write GU™ for the semi- direct product of G,, with the additive group with Q-
points Hom p(F™, F?"), and P + for the pre-image of P+( ) in GY™ . We also write

LSTEZL) for the semi-direct product of L, ) with the additive group with Q-points

Jr

Hom p(F™, F™), which is naturally a quotient of PTETZ)Z) . (Again we will give these

groups integral structures.) To a neat open compact subgroup U C G (A>) with
projection U’ in G,,(A>) one can attach a (relatively smooth, projective) Kuga-Sato
variety A;mU) /X, . For a cofinal set of U it is an abelian scheme isogenous to the
m-fold self product of the universal abelian scheme over X, U/ To certain auxiliary

data 3 one can attach a smooth compactification Alm UZ of A™ U ) whose boundary is

a simple normal crossings divisor; which lies over X™¥: and Wthh for suitable X

depending on A, lies over X,, ;7 a. Thus

A(U = AUE

3 3
Xn,U/ — Xn,U’,A
| +

XnU’ — :Ln;}l/

We define A m)’ord and A mU) ;rd T to be the pre-image of XOrd ™07 0 the dagger spaces

associated to A U ) and An Us-
We will deﬁne
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to be the hyper-cohomology of the complex on AnmU)’;rdT which is the tensor product

(m),ord,T (m),ord,t
of the de Rham complex with log poles towards the boundary, A, /s "' — A, 17

and the ideal sheaf defining the boundary. We believe it is a sort of rigid cohofnology

Y

of the ordinary locus Zgle),ord in the special fibre of an integral model of A;TU); more
specifically, cohomology with compact support towards the toroidal boundary, but not
towards the non-ordinary locus, hence our notation. However we have not bothered
to verify that this group only depends on ordinary locus in the special fibre. The
theory of Shimura varieties provides us with sufficiently canonical lifts that this will
not matter to us. Our proof that for N sufficiently large II(N) occurs in the space

of overconvergent p-adic cusp forms for G, proceeds by evaluating H' (A, m) Ord, Q,)
in two ways.

Firstly we use the usual Hodge spectral sequence. The higher direct images from
Agl v t0 Xy a of the tensor product of the ideal sheaf of the boundary and the
sheaf of differentials of any degree with log poles along the boundary, is canonically

filtered with graded pieces sheaves of the form &b, . Thus H a(AflmU Ord,@p) can
be computed in terms of the groups

ord sub
HJ( n, UTA7 5UA,p>
A crucial observation for us is that for j > 0 this group vanishes (see theorem
and proposition 6.12)). This observation seems to have been made independently, at
about the same time, by Andreatta, lovita and Pilloni (see [AIP1] and [AIP2]). It
seems quite surprising to us. It is false if one replaces Ef}fg’ , with &FR . Its proof

depends on a number of apparently unrelated facts, including:

d.min.t - .
° XZTU’mm’T is affinoid.

e The stabilizer in GL,(Op) of a positive definite hermitian n x n matrix over
F' is finite.

e Certain line bundles on self products A of the universal abelian scheme over
Xy (for n' < n) are relatively ample for A/ X, 1.

This observation implies that H’_ (A(m) ord @p) can be computed by a complex whose

terms are spaces of overconvergent cusp forms. Hence it suffices for us to show that,
for N sufficiently large, II(/V) occurs in
LA g = lim HL (A

m),ord —
,Qp)
for some m and i (depending on N).

To achieve this we use a second spectral sequence which computes the cohomology

group H! ,(A m)’ord,@ ) in terms of the rigid cohomology of AnmU)’Z and its various

boundary strata. See section [6.5] This is an analogue of the spectral sequence
By = H(YW . C) = HH (Y - 9Y,C),

where Y is a proper smooth variety over C, where JY is a simple normal crossings di-
visor on Y, and where Y® 1s the dlSJOlIlt union of the i-fold intersections of irreducible
components of 3Y. (So Y® =Y.) Some of the terms in this spectral sequence seem
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—(m),ord

a priori to be hard to control, e.g. Hrllg<An,U,E ). However employing theorems about

rigid cohomology due to Berthelot and Chiarellotto, we see that the eigenvalues of
),ord

Frobenius on H!_, ( UE ,@ ) are all Weil p/-numbers for ;7 > 0. Moreover the

weight 0 part, WoH!_5(A, (m Ord,@p) equals the cohomology of a complex only in-

volving the rigid cohomology in degree 0 of ZETU)’OM and its various boundary strata.

(See proposition [6.24]) This should have a purely combinatorial description. More

precisely we define a simplicial complex & (8AflmU ;rd) whose vertices correspond to

d
boundary components of AnmU ;r and whose j-faces correspond to j-boundary com-

ponents with non-trivial intersection. For ¢ > 0 we obtain an isomorphism
i m),ordy | = \ ~_ i —(m),ord —
HI(ISOAE.Q,) = WoHF (A, Q).
Thus it suffices to show that for N sufficiently large I[I(N) occurs in

—-(m),ord

H(IS@A,"").Q,) = lim H(IS@A, D51, T,)

for some m and some i > 0 (possibly depending on N).

The boundary of ﬁfj}},’gd comes in pieces indexed by the conjugacy classes of maxi-
mal parabolic subgroups of GG,,. We shall be interested in the union of the irreducible
components which are associated to P+( ) These correspond to an open subset

|S (8An U;rd)| —nof|S (814:3 ;rd)| As |S(0A flmU ;rd)| is compact, the interior cohomol-

ogy
(m), ord) ),ord

HInt(l‘S(aA | nv@p) - hIIl HInt(‘S(aAnUE >| nv@p)

is naturally a sub-quotient of H*(|S (8An ’Ord)|,(@p). (By interior cohomology we
mean the image of the cohomology with compact support in the cohomology. The
interior cohomology of an open subset of an ambient compact Hausdorff space is
naturally a sub-quotient of the cohomology of that ambient space.) Thus it even
suffices to show that for N sufficiently large II(N) occurs in

i —-(m),ord —
Hy (|S(0A, ) =0y @y)
for some m and some i > 0 (possibly depending on N).

However the data % is a GU™ (Q)-invariant (glued) collection of polyhedral cone

(m), Ord) is obtained from X by replacing 1-cones by vertices,

(m),ord
)l

decompositions and S(9A,,

2-cones by edges etc. The cones corresponding to |S(OA, —n are a disjoint union
of polyhedral cones in the space of positive definite hermitian forms on F™. From
this one obtains an equality

S(0A"

),ord) | B H (m)
= (n)hUR=IAPTE (aoe)?
hEP ) (AP)\Gn (A7) /UP ’

where

T, = L QNI (A)/U'(RY, x (U(n)FARY,),

n,(n)
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with U(n) denoting the usual n X n compact unitary group. We deduce that

i —(m), = Gn (AP i X
Hiy (|S@A," )2, @) = nd 71 ) HL (307, T,)%

P+( )(Aoop

ord

where

Hj,y (T, Q) = lim Hfm@(mz,, Q,)

as U’ runs over neat open compact subgroups of L (AOO) (The Z)-invariants result
from a restriction on the open compact subgroups of G (A>) that we are considering.)
Thus it suffices to show that for all sufficiently large N, the representation 1 X
(m]| det ||V)>*P occurs in ant(fgg), C) for some i > 0 and some m (possibly depending
on N).

We will write simply T, for ‘}Z Vs A locally symmetric space associated to
Ly = GLy X RS(SGL,L. If pis a representation of L, ny over C, then it gives rise
to a locally constant sheaf £,y over T, . We set

ant(z(n)’ ‘CP) = hHl/ Hlint (T(n),UU 'Cp,U’)a

a smooth Ly ,,)(A>)-module. The space T U, is an (S1)"™ QU bundle over the

locally symmetric space T(O)) o and if m(m denotes the fibre map then

Rj (C £AJHomF(Fm Fr)VeqC,U’»

where L, () acts on Hom F(Fm, F™) via projection to RSQGLR. Moreover the Leray
spectral sequence

E;j = Hlint (g(n)a ‘C/\jHomF(Fm’F")vQ@QC) Hllr—;] (Ign))’ C)

degenerates at the second page. (This can be seen by considering the action of
the centre of L, ,)(A>).) Thus it suffices to show that for all sufficiently large
N, we can find non-negative integers 7 and m and an irreducible constituent p of
NHom p(F™ F™)Y ®g C such that the representation 1 x (r|| det ||V)*® occurs in
H{ (T, L,) for some i € Zg. Clozel [Cl] checked that (for n > 1) this will be
the case as long as 1 x (7||det ||V)s has the same infinitesimal character as some
irreducible constituent of A"Hom p(F™, F") ®q C, i.e. if pr ® (Np/godet)" occurs in
NHom p(F™ F™) ®g C. From Weyl’s construction of the irreducible representations
of GL,, for large enough N this will indeed be the case for some m and j.

We remark it is essential to work with NV sufficiently large. It is not an artifact of
the fact that we are working with Kuga-Sato varieties rather than local systems on
the Shimura variety. We can twist a local system on the Shimura variety by a power
of the rnultiplier character of GG,,. However the restriction of the multiplier factor of
G, to L, ) =2 GL; X RSQGL factors through the G Li-factor and does not involve
the RS GL factor.

We learnt from the series of papers [HZ1, [HZ2, HZ3| the key observation that

|S (0A7(1m(])2)| has a nice geometric interpretation involving the locally symmetric space
for L, ) and that this could be used to calculate cohomology.
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Although the central argument we have sketched above is not long, this paper has
unfortunately become very long. If we had only wanted to construct r,,(7) for all
but finitely many primes p, then the argument would have been significantly shorter
as we could have worked only with Shimura varieties X,, ;; which have good integral
models at p. The fact that we want to construct r,,(7) for all p adds considerable
technical complications and also requires appeal to the recent work [Lad]. (Otherwise
we would only need to appeal to [Lal] and [La2].)

Another reason this paper has grown in length is the desire to use a language to
describe toroidal compactifications of mixed Shimura varieties that is different from
the language used in [Lal], [La2] and [La4]. We do this because at least one of us
(R.T.) finds this language clearer. In any case it would be necessary to establish
a substantial amount of notation regarding toroidal compactifications of Shimura
varieties, which would require significant space. We hope that the length of the
paper, and the technicalities with which we have to deal, won’t obscure the main line
of the argument. On a first reading the reader might like to start with appendix A,
which summarizes the extensive notation we use, and then turn to sections (5 and)
6 and 7. These sections will provide reference back to the key results from earlier
sections. We have added appendix B to help comparison between the notation of this
paper and the notation of [Lall, [La2] and [Lad], which we hope will make life easier
for those readers that want to follow up on our many references to these papers.

After we announced these results, but while we were writing up this paper, Scholze
found another proof of theorem [A] relying on his theory of perfectoid spaces. His
arguments seem to be in many ways more robust. For instance he can handle torsion
in the cohomology of the locally symmetric varieties associated to GL,, over a CM
field. Scholze’s methods have some similarities with ours. Both methods first realize
the Hecke eigenvalues of interest in the cohomology with compact support of the
open Shimura variety by an analysis of the boundary and then show that they also
occur in some space of p-adic cusp forms. We work with the ordinary locus of the
Shimura variety, which for the minimal compactification is affinoid. Scholze works
with the whole Shimura variety, but at infinite level. He (very surprisingly) shows
that at infinite level, as a perfectoid space, (some compactification of) the Shimura
variety has a Hecke invariant affinoid cover.

We would like to thank the referee for their helpful comments. We would also
like to thank Elly Gustafsson and Anthony Pulido for help in compiling the index of
notations.

We are pleased to dedicate this paper to the memory of our friend Robert Coleman,
who was both a personal and professional inspiration. This paper owes a lot to his
ideas. The origin of this paper was the conviction that one should be able to relate
all the cohomology of a Shimura variety to overconvergent p-adic automorphic forms.
The source of this conviction was [Cal.
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Notation.

If G — H is a surjective group homomorphism and if U is a subgroup of G we will
sometimes use U to also denote the image of U in H.

If f: X =Y and f': Y — Z then we will denote by f'o f : X — Z the composite
map f followed by f'. In this paper we will use both left and right actions. Suppose
that G is a group acting on a set X and that g,h € G. If G acts on X on the left we
will write gh for go h. If G acts on X on the right we will write hg for g o h.

If f is an automorphism of Hom (X,Y) we will sometimes use (of) to denote the
map

Hom (X,Y) — Hom(X,Y)
h +—— hof.

We will sometimes use / to denote a quotient, and sometimes we will use it to
denote the fact that the object to the left lives ‘over’ the object to the right. Both
these usages are standard and we hope no confusion will arise.

If G is a group (or group scheme) then Z(G) will denote its centre.

We will write S, for the symmetric group on n letters. We will write U(n) for the
group of n X n complex matrices h with ‘h(°h) = 1,,.

If G is an abelian group we will write G[oo] for the torsion subgroup of G, G[oo?]
for the subgroup of elements of order prime to p, and GT% = G /G|oc]. We will write
TG = lim, y G|N] and TPG = limep)(N G[N]. We will also write VG = TG @z Q
and VPG = TPG ®4 Q.

If Ais a ring, if B is a locally free, finite A-algebra, and if X/Spec B is a quasi-
projective scheme; then we will let RSfX denote the restriction of scalars (or Weil
restriction) of X from B to A. (See for instance section 7.6 of [BLR].)

By a p-adic formal scheme we mean a formal scheme such that p generates an ideal
of definition.

If X is an A-module and B is an A-algebra, we will sometimes write X g for X® 4 B.
If X is reflexive over A, then we will also use X to denote the additive group scheme

over A defined by
X(B)=X®sB=Xp

for all A-algebras B.
If X is a locally free Op-module we will write GL(X/Op) for the group scheme
over Z defined by

GL(X/Or)(A) = Aut (X @z A)/(OF @z A)).
If Y is a scheme and if Gy, G5/Y are group schemes then we will let
Hom(Gy, Gs)
denote the Zariski sheaf on Y whose sections over an open W are

Hom (G1|W, G2|W)
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If in addition R is a ring then we will let Hom(G1,G2)gr denote the tensor prod-
uct of sheaves Hom(G1,Gs) ®z R and we will let Hom (G, Gs)g denote the R-
module of global sections of Hom(G1,G2)r. If Y is noetherian this is the same
as Hom (G1, G3) ®z R, but for a general base Y it may differ.

If § is a simplicial complex we will write |S| for the corresponding topological
space.

If F is a field then G will denote its absolute Galois group. If F'is a number field
and Fy C Fis a subfield and S is a finite set of primes of F{), then we will denote by
G'% the maximal continuous quotient of G in which all primes of F' not lying above
an element of S are unramified.

Suppose that F' is a number field and that v is a place of F. If v is finite we will
write w, for a uniformizer in F, and k(v) for the residue field of v. We will write | |,
for the absolute value on F' associated to v and normalized as follows:

e if v is finite then |w,|, = (#k(v))™}
e if v is real then |z|, = *x;
e if v is complex then |z, = ‘zx.

We write
I le=T]I l: AF — R,

We will write D;l for the inverse different of Op.

If w € Z and p is a prime number then by a Weil p*-number we mean an element
o € Q which is an integer away from p and such that for each infinite place v of Q
we have |af, = p*.

Suppose that v is finite and that

A GFU — GLn(@l)

is a continuous representation, which in the case v|l we assume to be de Rham.
Then we will write WD(r) for the corresponding Weil-Deligne representation of the
Weil group Wg, of F, (see for instance section 1 of [TY]). If 7 is an irreducible
smooth representation of GL,(F,) over C we will write recg, (7) for the Weil-Deligne
representation of W, corresponding to 7 by the local Langlands conjecture (see for
instance the introduction to [HT]). If 7; is an irreducible smooth representation of
GL,,(F,) over C for i = 1, 2 then there is an irreducible smooth representation m; By
of GLy, 1n,(F,) over C satisfying

recr, (m B my) = recg, (m1) @ recg, (ms).

Suppose that GG is a reductive group over F;, and that P is a parabolic subgroup of
G with unipotent radical N and Levi component L. Suppose also that 7 is a smooth
representation of L(F),) on a vector space W, over a field Q of characteristic 0. We
will define

Ind gg?:%

to be the representation of G(F,) by right translation on the set of locally constant
functions

o:G(F,) — W,



10 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

such that
p(hg) = m(h)p(g)
for all h € P(F,) and g € G(F,). In the case 2 = C we also define

G(F, G(F, 1/2
n-Ind PEFU;W = Ind PEFvg(W ® 61%)
where
dp(h)'? = | det(ad (h)[vien)]y/%.
If G is a linear algebraic group over F' then the concept of a neat open compact
subgroup of G(A%) is defined for instance in section 0.6 of [P1i].
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1. SOME ALGEBRAIC GROUPS AND AUTOMORPHIC FORMS.

For the rest of this paper fix the following notation. Let FT be a totally real field
and Fy an imaginary quadratic field, and set F' = FoF'". Write ¢ for the non-trivial
element of Gal (F/F*). Also choose a rational prime p which splits in Fy and choose
an element 6p € Opyp) with tr ppidp = 1 (which is possible as p is unramified in
F/F*).

Fix an isomorphism 1 : @p = C. Fiz a choice of \/p € @p by 1/p > 0. Ifvisa
prime of F' and 7 an irreducible admissible representation of G L, (F,) over @p define

recy, (1) = 1 'recp, (1)

a Weil-Deligne representation of Wg, over @p.

Let n be a non-negative integer. We will often attach n as a subscript to other
notation, when we need to record the particular choice of n we are working with, but,
at other times when the choice of n is clear, we may drop it from the notation.

1.1. Three algebraic groups.

Write V,, for the n x n-matrix with 1’s on the anti-diagonal and 0’s elsewhere, and
set

0o v,
Let
Ay = (D5')" @ O,

and define a perfect pairing

(, Ny XA, —Z
by

(z,y)n = tr pro("zJny).
We will write V,, for A,, ® Q. Let G,, denote the group scheme over Z defined by

Gn(R) = {(g, 1) € Aut (A, ®z R)/(Op ®z R)) x R* : 'gJ,°g = pJ,},

for any ring R, and let v : G,, — GL; denote the multiplier character which sends
(g, 1) to pr. Then Gy, is a quasi-split connected reductive group scheme over Z[1/Dp/q)
(where Dp/q denotes the discriminant of F//Q) and splits over Opne[1/Dp/g] (where
F" denotes the normal closure of F/Q). In particular Gy will denote GL; and
v : Gy — GLy is the identity map.

If n >0 set

Cp = Gy, X ker(Npps : RSOFG,, — RSSF* Gyy).
Then there is a natural map
G, — C,
(g:1) — (p,p7" detg).

If n =0 we set Cy = G,, and let Gy — Cj denote the map v. In either case this
map identifies C,, with G, /|G, G,].
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We will write A, (;) for the submodule of A,, consisting of elements whose last 2n —1
entries are 0, and V,, ;) for A, ;) ® Q. If W is a submodule of A,, we will write wt
for its orthogonal complement with respect to ( , ),. Thus At(i) is the submodule
of A,, consisting of vectors whose last ¢ entries are 0. Also write

A = Hom (O}, Z) @ A,
and set V™ =A™ ®7 Q. Throughout this paper there will be various objects indexed
by a superscript ™. In the case m = 0 we will sometimes simply drop it from the

notation. For example A,, = AY,
Define an additive group scheme Hom 5{’” over Z by

Hom "™ (R) = Hom o,.(O%, A,,) ®z R.
Then Hom ;m) has an action of GG, X RS;F GL,, given by
(9,h)f =gofoh™t
Also define a perfect pairing
(, ) Hom "™ (R) x Hom "™(R) — R
by

m

<f7 f/>£Lm) = Z<fei7 f/€i>na
i=1
where e, ..., e, denotes the standard basis of OF. We have

(g, ) f, 1) = v(g)(f. (g™ h) ).
Moreover G, (R) is identified with the set of pairs
(9, 1) € GL(Hom 0. (O, A)/OF)(R) x R
such that g commutes with the action of GL,,(Or ®z R) and such that
(f af ) = nlf, 5
for all f, f' € Hom o, (OF, A,)(R). We set
G™ = @, x Hom slm).
Then GU™ has an action of RSgF GL,, by
h(g, f) = (g,(1,h) [).
Moreover G{™ acts on A;m), by letting f € Hom ;m) act by
£ (h2) — (bt (2, o)

and g € G, act by
g: (h,x) — (h, gx).

Moreover RSSZ,)F GL,, acts on AL by
v (ha) — (hoy™ z).
We have v o0 g = 7(g) o7.
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If my; > my we embed O%* — OF' via
imgmy © (T15 ooy Ty ) > (X1, ooy Ty, 0, .., 0).

This gives rise to maps

gy - HOM Slml) — Hom 7(17712)
and
iy, GUM — G2
It also gives rise to
By, @ AT = AL,

Suppose that R is a ring and that X is an Or ®7 R-module. We will write Herm x
for the R-module of R-bilinear pairings

(, ): XxX—R

which satisfy

(1) (az,y) = (z,ay) for all a € Op and x,y € X;
(2) (z,y) = (y,x) for all z,y € X.

If 2 € Hermy we will sometimes denote the corresponding pairing ( , ),. If S is an
R-algebra we have a natural map

Hermy ®r S — Hermyg,g.
If X = OF ®z R then we will write
Herm!™(R) = Hermon ®z R — Hermomg, r.

If X — Y then there is a natural map Hermy — Hermy. In particular if m; > ma,
then there is a natural map

Herm™) — Herm(™?)

induced by the map Ol(wm) — O}ml) described in the last paragraph. The group
GL(X/Op) acts on the left on Hermx by

(@, y)ne = (W 2, W hy)..
There is a natural isomorphism
Hermxgy = Hermy @ Hom g(X ®oporce1 Y, R) @ Hermy,
under which an element (z, f,w) of the right hand side corresponds to
(1), @Y s = (@,2). + f@@Y) + f@' @ y) + (¥ ¥)w-
If X is an O ®z R-module, there is a natural pairing

(X ®(’)F®R,C®1 X) X Hermy — R
(x®y,z) L (x7y)2'
We further define

Sw (X ®(9F®R,c®1 X) — (X ®(9F®R,c®1 X)
rR®Yy — YR,
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and
S(X) = (X ®operest X)/(sw —1).
There is a natural map in the other direction

S(X) —> X ®OF®R,C®1 X
w o — w4+ sw(w),

such that the composite S(X) = X ®opare1 X — S(X) is multiplication by 2.
Note that if F//F* is ramified above 2 then S(O}) can have 2-torsion, but that
S(O%, ) is torsion free. (Either p > 2 or by assumption F'/F'" is not ramified above

2.) There is a perfect duality
S(OMT x Herm™(Z) — Z.
We will write

e = Zei ®e; € OF ®op.c OF,
i=1
where e, ..., e, denotes the standard basis of OF.
Set N\™(Z) to be the set of pairs

(f,z) € Hom o, (OF, A,) @ (%Herm(m) (7))

such that .
(may)z - §<fx7fy>n S Z

for all z,y € OF. We define a group scheme NT(Lm)/SpeCZ by setting N}Lm)(R) to be
the set of pairs

(f,2) € N'™(Z) @z R
with group law given by
(P = (F+ Tzt 2 5 f = f D),
where by (f , f" )n — (f' ,f )n we mean the hermitian form

(2,y) = (f(@), [ = (F'(2), F(Y)n-
Note that (f,2)"! = (—f, —z). Thus there is an exact sequence

(0) — Herm™ — N{™ — Hom ™ — (0).
In fact Z(N{™) = Herm™. The commutator in N\™ induces an alternating map
Hom "™ (R) x Hom "™ (R) — Herm™(R)
under which (f, f’) maps to the pairing
(@, y) — (f(@), f'(y)n = (f' (@), f(y)n-

If m; > my there is a natural map

N{m) — Nim2)
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compatible with the previously described maps
Hom (™) — Hom (™)
and
Herm ™) — Herm(™2).
Note that G,, x RS(ZQFGLm acts on N,(Lm) from the left by

(9, 0)(f,2) = (go foh™ v(g)h2).
If 2 is invertible in R we see that
Herm™(R) = {g € N{™(R) : (~1.)(9) = ¢}
and
Hom "(R) = {g € N"(R) : (~1.)(9) =g '}.

Set B

G =@, x N™,
which has an RS(Z,)F G L,,-action via

h(g,u) = (g, h(w)).
If m, > my then we get a natural map Gi™ — G\, Note that

G =~ G /Herm ™.

Let B,, denote the subgroup of GG,, consisting of elements which preserve the chain
Ay D Apn—1) D .. D A1y D Apyo) and let NV, denote the normal subgroup of
B,, consisting of elements with v = 1, which also act trivially on A,, (;)/A;, ;-1 for all
1 =1,...,n. Let T,, denote the group consisting of the diagonal elements of ,, and
let A, denote the image of G,, in G,, via the embedding that sends t onto t15,. Over
Q we see that T,, is a maximal torus in a Borel subgroup B, of GG,,, and that N, is
the unipotent radical of B,. Moreover A, is a maximal split torus in the centre of
Gp.
If  is an algebraically closed field of characteristic 0 then set

X*(T,, /o) = Hom (T}, x Spec Q, G,,, x Spec(2).

Also let ®,, € X*(T}, /o) denote the set of roots of T, on Lie G,; let &} C ®,, denote
the set of positive roots with respect to B, and let A, C ®F denote the set of
simple positive roots. We will write g, for half the sum of the elements of ®;. If
R C R is a subring then X*(Tn,/g)j{2 will denote the subset of X*(7}, /o) consisting of
elements which pair non-negatively with the coroot & € X, (7, o) corresponding to
cach a € A,,. We will write simply X*(T, /o)t for X*(T,, /0)7. If X € X*(T, o)™ we
will let p,, \ (or simply p,) denote the irreducible representation of G,, with highest
weight \. When py is used as a subscript we will sometimes replace it by just \.
There is a natural identification

G, % Spec ) = {(u,gf) € G,, x GLI;sm(F’Q) L re = pdntg VT} .
This gives rise to the further identification
Tn X SpecQ = {(to, <tT,Z)) € Gm X (G%)Hom (F9) : t7—7it7—c72n+1_z‘ =1y VT, Z} .
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We will use this to identify X*(7}, /o) with a quotient of
X*(Gm > (G%)Hom (F,Q)) ~ 7@ (ZQn)Hom (F,Q)
Under this identification X*(7,, jo)" is identified to the image of the set of
(a(b (aT,i>) c7 D (ZQn)Hom (F,Q)
with
ar1 Z Qr2 Z Z Q7 9n
for all 7.

If R is a subring of R and H an algebraic subgroup of G we will write H (R)* for
the subgroup of H(R) consisting of elements with positive multiplier. Thus G, (R)*
(resp. G (R)™, resp. G4 (R)™) is the connected component of the identity in
Go(R) (resp. GI™(R), resp. GYV(R)).

Let

Un oo = (U(n)*)1m 8 50 {1, 5}
with j2 = 1 and j(4,, B;)j = (B,, A;). Embed U, », in G,(R) by sending (A,, B;) €
(U(n)2>Hom (FTR) tq

(1 (ot R0 e L )>)

E GN(R) C RX X HTGHOm(F+,R) GL2n(F ®F+77— R)7

-1, O
(1))
(This map depends on identifications F'®p+ R = C, but the image of the map does

not, and this image is all that will concern us.) Then U, o is a maximal compact

subgroup of G,,(R) (and even of G\ (R)). If L © T,,xSpecR is a Levi component of a

parabolic subgroup P D B, xSpecR then U,, .,NL(R) is a maximal compact subgroup

of L(R). The connected component of the identity of U, « is Ugvoo = UpnooNGR(R)™T.
We will write p,, for the set of elements of Lie G, (R) of the form

(55
) \I/nB'r \IJnAT\Ijn T€Hom (F+’R) |

where “'A. = A, and “*B, = B, for all 7. Then
Lie G,,(R) = p,, @ Lie (U, 0 An(R)).

We give the real vector space p,, a complex structure by letting ¢ act by

and sending j to

io : (A7, By )retiom P+ ) ¥ (Br, — A7) reHom (F+ R)-
We decompose
pn ®@r C =py ©p,
by setting
pi — (pn ®]R C)ig@l::l:l@i.
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We also set
dn = 9, ® Lie (Upn 0 An(R)) ®r C.
It is a parabolic sub-algebra of (Lie G,,(R)) ®g C with unipotent radical p,, and Levi

component Lie (U, «A,(R)) @r C. We will write Q,, for the parabolic subgroup of
G, X C with Lie algebra q,,. Note that

9,(C) N G,(R) = U, A, (R)".

Let $ (resp. $F) denote the set of I in G,(R) with multiplier 1 such that
I? = —1,,, and such that the symmetric bilinear form (I , ), on A, ®z R is positive
definite (respectively positive or negative definite). Then G,(R) (resp. G,(R)")
acts transitively on $ (resp. $;7) by conjugation. Moreover .J,, € $ has stabilizer
Uy o An(R)? and so we get an identification of $7 (resp. $;) with G, (R) /U  An(R)°
(resp. Gn(R)" /U,  An(R)?). The natural map

573: = GH(R>/U13,ooAn(R>O — Gn(c)/QN(C)

is an open embedding and gives $F the structure of a complex manifold. The action
of G,(R) is holomorphic and the complex structure induced on the tangent space
Ty, 9HF = p, is the complex structure described in the previous paragraph.

If p is a finite dimensional algebraic representation of £,, on a C-vector space W,,,
then there is a holomorphic vector bundle &,/$ together with a holomorphic action
of G,,(R), defined as the pull-back to $H* of (G, (C) x W,)/Q,(C), where

e h € Q,(C) sends (g,w) to (gh, h'w),
e and where h € G,,(R) sends [(g,w)] to [(hg, w)].
If Ny > Ny > 0 are integers we will write U,(Ny, N2),, for the subgroup of G, (Z,)
consisting of elements whose reduction modulo p™¥? preserves
Ay @z (Z/p™Z) C Ay @7 (Z/p"™Z)
and acts trivially on A, /(A o) + p™MAy). If No > Ny > Nj > 0 then U,(Ny, Ny),, is
a normal subgroup of U,(Nj, N2),, and
Uy(N7, No)p/Uy(Ny, No)p = ker(G L, (O /p™) — GL,(Op/p™1)).
We will also set
Up(Nh N2)7(’Lm) = Up(va N2)n x Hom OFp (O}?’pa An,(n) +pN1An)
c Gz,

and set U, (N1, N2)U™ to be the pre-image of U,(Ny, No)™ in GU™(Z,). Pictorially
we can think of U,(Ny, Na), as

1, mod p™ | *
0 mod p*? ‘ 1,, mod p™

and of Up(Nl,Ng),(Tm) as

(1, mod p™ | * *
0 mod p™® ‘ 1,, mod p™ 0 mod p™
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If UP is an open compact subgroup of G,(A*?) (resp. of Gim (A>P), resp. of
é;m)(Aoo’p)) we will set UP(Ny, N2) to be UP x U, (N7, N3),, (resp. UP x U,(Ny, Ng)ﬁl"),
resp. UP X ﬁp(Nl,Ng)%m)), a compact open subgroup of G, (A>) (resp. G%m)(AOO),
resp. CNJ,(lm)(AOO)).
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1.2. Maximal parabolic subgroups.

We will write P;’(i) (resp. P ())+ resp. P ) for the subgroup of G,, (resp. Gim.

resp. é;m)) consisting of elements which (after projection to G,,) take A, (; to itself.
We will also write NJ(Z) (resp. Ni"gi))’Jr, resp. NS’ZB)’+) for the subgroups of P;(l.)

(resp P ())+, resp. P(ml)) ) consisting of elements which act trivially on A, ;) and

n’(i) /Ay and A, /AS (- Over Q the groups PJ(i) (resp. Péngi))’Jr, resp. f’é”&*) are
maximal parabolic subgroups of G,, (resp. Gim , resp. é(m)) containing the pre-image

of B,. The groups N +(Z) (resp. N, (m ())+ resp. N, (7?))+) are their unipotent radicals.

In some instances it will be useful to replace these groups by their ‘hermitian part’.
We will write P, (;y for the normal subgroup of P+( ) consisting of elements which act

trivially on A,/ AL . We will also write P for the normal subgroup

Pn7(l) X Hom OF(O?7 Ai(l))

of Pg(?) and P T?z)) for the pre-image of P ?(1@)) in P . We will let
Noyiy = N, +(z)
and
(m) (m),+ (m)
Ny = Moty N Fuy
and

S(m) _ wm)t ~ Sm)
Noty = Ny N Pogay-

Over Q these are the unipotent radicals of P, (;y (resp. Pfl’()) resp. qu (z)))

Pictorially one can think of P:(i) and P, (; as matrices of the following shapes

* | k| %
O] =*|x*
00/ =

and

v(g)li | * | *
0
0

respectively. If we picture an element of G,(lm) as a pair of matrices
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(the first 2n x 2n and the second 2n x m) then we can picture Prgngl.))’Jr and PT(LT?Z.)) as
consisting of matrices of the shape

* * *

0] =*|x* %

00/ x Tk
and

v(g)l; | % | % *

0 g | Tk

0 011, 0
respectively.

We have an isomorphism
~ (@)
To describe it let A () denote the subspace of A;, consisting of vectors with their first
2n — 1 entries 0, so that '
A, iy = Op
and
An—i = AJ—

L~ oAl
miy VAL @) — Ay /M-
We define
Gn—i — Pn,(i)
by letting g € G,,—; act as v(g) on A, (;), as g on A,_; = Ai(i) N (A;w,))L and as 1 on

A;%(i), ie.

v(g)l; 0 0
gr— 0 g 0 S Pn,(i)-
0 0 1;
We define A
Nn,(i) — Hom 7(:)71

by sending A to the map
i A / h—1oy, 1
OF - A"v(i) —3 An,(i) — An—i'

We also define |

Z(Nm(i)) — HefmA;Z 0 >~ Herm®
by sending z to the pairing

(x,y)z = <(Z - 12n)xay>n

on A;%(i). In the other direction (f,z) € fle is mapped to

L U9 f Ty Witz — 5 f Jusi©f)
0 Lo(n—s) f € Nu (i)
0 0 1;

where we think of f € My, (F) with first n —i rows in (Dz')" and second (n — 1)
rows in O%, and we think of z € M;,;(F)"=¢.
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We also have isomorphisms

and

(%)

We Wlll describe the second of these 1som0rphlsrns Suppose f € Hom,’, and g €

Hom . Also suppose that z € 1Herm and w € 1Herm( and

1 .
u € §H0m (OF ®0p.c OF,Z),
so that '
((f,9). (2, u,w)) € N,
Let h(f,z) denote the element of P, ; corresponding to (f,z) € N, ;). Think of g
as a map
Define j(f,g,u) € Hom (O, A, ;)) by

(W, J(f, 9, u)(@))n = 1/2(f (), 9(2))n—i — u(y @ x)
for all x € OF and y € A/, 0 = O%. Then

((f7 9)7 (Z7U7 U))) — h(f7 Z)(g +.](faga u)7 w) € Nn,(z) X NT(Lm)
Note that .
Z(N(m,)) =~ Herm (™
and that '
Z(NTETZ.))) >~ Herm ™™ /Herm™.

Write L, ;)5n for the subgroup of P;(i) consisting of elements with v = 1 which
preserve A} C A, and act trivially on Ai(i) [An ). We set N (L( (2) i) to be the
additive group scheme over Z associated to

Hom Or (0?7 A%,(z‘))?

and write L for

) lin

and L("ZZ iy, for
L ;(3),lin X N(L( )) hn) C P(77(7'Z))+

Note that

P;(Z.) —L ,(i),lin X P (i)
and (m) ) (m)

m),+ . m m

Py = Ly gy % Lo
and (m) (m) (m)

)t (m _

Pn,(i) = Ln,(i),lin X Pn,(i)'
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Also note that
Ly (i) 1in & RSS"GL;

via its action on A;l( & Z , and that

Zm

) i — LD 1 = (RS7GLy) x Homo, (OF, Of).

n,(2),lin

Pictorially we can think of L, ;) n as consisting of matrices of the form

U, “th~1 o, 0 0
0 12(n—i) 0
0 0 h
and L . as consisting of matrices of the form
U, “th=1 g, 0 0 0
0 L=y | 0 || O
0 0 h *

We let Ly, (5) herm denote the subgroup of P, (;) consisting of elements which preserve
A;L 0 Thus
Ly (i) herm = G-
In particular
|28 Ln,(n),herm L) Gm
Pictorially we can think of L, () herm as consisting of matrices of the form

v(g)l; | 0] 0
0 gl 0
0 01,

Over Q it is a Levi component for P, ;) and p (i and P mz)) so in particular

Pn,(z) = Ln,(z‘),herm X Nn,(z)

and
Py = Loy % N,

and

ﬁn% = Ly (i) herm X ]VT(:(?).
We also set

Ly iy = Ln i) herm X L () lin
and

Ly7th = Lniyhern X Lir(h i
and

Tm) _ 7 (m)
L,() L ()hermXL ,(3),lin”

Over Q we see that L, (;) is a Levi component for each of P+( and P (i) T and P

Moreover

P+

(i) = LnG) X N



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 25

and

and

We will occasionally write PnTZ) (resp. L;(i)’herm) for the kernel of the map
Prg’? — Ch—i (resp. Ly (i) herm — Cn—i).

We will write R, ) ;) for the subgroup of L, ) mapping A, to itself. We
will write NV (Rn,(n%(i)) for the subgroup of R, (»);) which acts trivially on A,, ;) and

Ai(i)/ An ) and A,/ Ai(@)
We will also write Rf:z;) for the semi-direct product
Lm(n) X Hom O (OZ}, An’(n)).

If m’ < m we will fix Z™ — Z™ ™ t0 be projection onto the last m—m’ coordinates
and define @, () for the subgroup of G'L,, consisting of elements preserving the
kernel of this map. We also define Q' (m) tO be the subgroup of @, /) consisting

of elements which induce 1, on Z™ ™. Thus there is an exact sequence
(0) — Hom (Z™™ 2™ ) — Q' (mry — GLny — {1}.

Moreover

L n,(7),lin — =L n,(i),lin — RS Qm—l—l (1)

We will also write Ay, ) 1in (1€Sp. Ay (i)nerm) for the image of the map from G, to
Ly, (iy1in (resp. Ly, ()herm) sendmg t to tl (resp. (£2, 10— Z))) Moreover write Ay
for Ap (i)1in X An (i),herm- Over Q the group A, (resp Ap (i)1in, Tesp. Ay herm) is
the maxnnal split torus in the centre of L,, ;) (resp. Ly )Jm, resp Ly )7herm)

Again suppose that €2 is an algebraically closed field of characteristic 0. Let ®,) C
®,, denote the set of roots of T;, on Lie L, (,,), and set CID( ) = = o NP, and A, =
A, N D,y We will write o, () for half the sum of the elements of (I>+). fRCR
then X*(T,,, /Q) ).z Will denote the subset of X*(T}, /o) consisting of elements which
pair non- negatlvely with the coroot & € X, (T}, o) corresponding to each av € Ay,
We write X*(Tn’/g)a) for X*(T,,, /Q) e XF (Tn,/g)?;l) we will let pg,) » denote
the irreducible representation of L, n) Wlth highest weight X\. When p(, » is used as
a subscript we will sometimes replace it by just (n), \.

Note that Lie P, ,)(C) and g, are conjugate under G, (C) and hence we obtain an
identification (‘Cayley transform’) of (Lie Uy oA, (R))®grC and Lie L, () (C), which is
well defined up to conjugation by L, (,,)(C). Similarly Q, and P, (,)(C) are conjugate
in G, xqg C. Thus L, (,)(C) can be identified with Q,, modulo its unipotent radical,
canonically up to L, ,)(C)-conjugation. Thus if p is a finite dimensional algebraic
representation of L, ) over C, we can associate to it a representation of 9, and of
(n, and hence a holomorphic vector bundle €,/9HE with G,,(R)-action.

The isomorphism L, (,) = GL; X RS%F G L, gives rise to a natural identification

Ln,(n) X SpecQ) =2 GL; X GLE"I“ (F,Q)’
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and hence to identifications
T, x SpecQ = GL; x (GLy)Tem ()

and
X*(T, ) 2 Z0 (B0,
Under this identification X*(7},, /Q)+) is identified to the set of

(n
(bo, (b)) € Z @ (7)o ()
with
brg >brp > > ey

for all 7.
To compare this parametrization of X*(7}, o) with the one introduced in section
[I.T] note that the map

GL, x GLEm (D) oy {(u, 9) € Gy x GLEmED g b=l VT}

coming from L, ) — G, sends

Ut 0, 0
(M? (gT)TEHom(F,Q)) = <,u7 <( a ch )) ) .
9r T€Hom (F,Q2)

Thus the map
7 ® (Z2n>Hom (F,Q) — X*(Tnv/(ﬁ ~7 @ (Zn>Hom (F,Q)

sends

(ao, (aT,i)TEHom (F,Q); i=1,..., Qn) — (a'() + Z Z Qrj, (aﬂn-‘ri - a7'07n+1—i)q—,i) :

T j=1
A section is provided by the map
(bo, (bT,Z)) — (bo, (O, ceny 0, bT,17 ceny b»r’n)q—).

In particular we see that X*(7,, jo)* C X*(Tm/g)a) is identified with the set of

(bo, (brs)) € Z @ (Z)Hom (F9)

with
brp > br2 > .. 2 by
and
br1+bre1 <0
for all 7.
Note that

Q(Qn - Qn,(n)) - (7’L2[F+ : Q]? (_n)Tui)‘

We write Std for the representation of Ly, () on A, /A, (ny over Z, and if 7 : F' — Q
we write Std, for the representation of Ly (n) on (An/An ) ®op - Og. If Q is an
algebraically closed field of characteristic 0 and if 7 : F' — ) we will sometimes write
Std, for the representation of L, ) on (A,/ A n)) @0, 2. We hope that context
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will make clear the distinction between these two slightly different meaning of Std,.
We also let KS denote the representation

S(Std”) @ v

of Ly ) over Z. (See section ) Note that over Q the representation Std is
irreducible and in our normalizations has highest weight (0, b,/) where

b, = (0,...,0,—1)

but b, = 0 for 7/ # 7. Similarly the representation A"F:UStd" is irreducible with
highest weight
0, (—1,...,—1),).

Finally KS is the direct sum of the [F* : Q] irreducible representations indexed by
7 € Hom (F*,Q) with highest weights (1, b,), where
b = (0,...,0,—1)

if 7/ extends 7, and b, = 0 otherwise.

We will let ¢, € Ly, (n)herm(Qp) = Q) denote the unique element with multiplier
-1

p
Set

Up(N )iy = ker(Ln, (i in(Zp) = L i in(Z/p"Z))
and

Up(N)( ()) = ker(L( ()) tin (Zp) = L( )11H<Z/pNZ))
Also set

Up(N1, No)T0) = Uy (N1, Noos x Uy (N © L0 (2,)
and
Up(N1, Na)i = U (N1 < Up(N1, No) " € P (2,)

and

Up(Ns, N = DM, N2>S?ZZ;+/Hermom C P (Zy).
Let UP be an open compact subgroup of Ly, (iy(A>P) (resp. L )hn(A"O P), resp.

LU (A%), vesp. (PYOY /Z(NID)) (%), vesp. PO (4%9), resp. PU)™ (A7),
Then set
Up(Nl,NQ) =UP x Up(Nl,Ng)n,(i) C Lm(l)(Aoo)

(resp.
UP(N) = UP X Up(N)n, ),
resp.
UP(Ny, Ny) = U? x U (Nl,NQ) () c L ()(AOO)
resp.

UP(Ny, Ny) = UP x (Up(Ny, No)s™ JZ(NYON(Z,)) € P/ Z(NT)) (A%),

resp.

UP(Ny, Ny) = UP x Up(Nl,Ng)( m)+
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resp.
UP(Ny, Ny) = UP x Uy(Ny, Ny) T8t € PUO (4%)).

In the case i = n these groups do not depend on Ny, so we will write simply UP(Ny).
For the study of the ordinary locus we will need a variant of G,,(A*) and G (A>)

and G™ (A>). More specifically define a semigroup
é%m) (Aoo)ord _ éslm) (Aoo,p) % (gEZOﬁ(m)H-(Zp)).

n,(n)

[ts maximal sub-semigroup that is also a group is

égm) (Aoo)ord,x _ é;m) (Aoo,p) « ﬁéTr,)l’)—i_(Zp)

If H is an algebraic subgroup of G (over Spec Q) we set
H(A®)™ = H(A®) N GY™ (A®),
[ts maximal sub-semigroup that is also a group is
H(A®) = H(A®) N G™ (A)erdx,
Thus
G A% = G, (A7) x P (Z,)
and

G (A%) % = G (AP) x PO (L),

n,(n)

If UP is an open compact subgroup of H (A7), we set

UP(N) = H(A™)" 0 (UP x Ty(N, N0

n,(n)

for any N’ > N. The group does not depend on the choice of N’.
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1.3. Base change.

We will write Bgy,, for the subgroup of upper triangular elements of GL,, and T,
for the subgroup of diagonal elements of Bgy, .
We will also let G} denote the group scheme over Op+ defined by

G, (R) ={g € Aut (An ®o,., R)/(OF @o,, R)): "gJu°g = Ju}.
Thus
ker v = RS;F+ G).

We will write B! for the subgroup of G! consisting of upper triangular matrices
and T} for the subgroup of B! consisting of diagonal matrices. There is a natural
projection B! —» T! obtained by setting the off diagonal entries of an element of B}
to 0.

Suppose that ¢ is a rational prime. Let uy, ..., u, denote the primes of F* above ¢

which split u; = w;“w; in F and let vy, ..., vy denote the primes of F'* above ¢ which
do not split in F'. Then

Gn(@q) = HGLQn(Fwi) x H
i=1

where

H = {(M,gi) €Q; x HGL%(FW) 2 tgidn g = pdy ‘v’z} D HG,{L(FJ)

i=1 =1

If IT is an irreducible smooth representation of G, (Q,) then

Il = <®Hw> ® .

We define BC (II),, = IL,, and BC(II).,, = II;;°. Note that this does not de-

pend on the choice of primes w;|u;. We will say that II is unramified at w; if

BC (H)gL (O # (0). We will say that II is unramified at v; if v; is unramified in

F and
& Or+ ;) £ (0).

We will say that Il is unramified at ¢ if 11 is unramified at all primes above ¢ and
either ¢ splits in Fj or ¢ is unramified in F'.
Suppose that Il is unramified at v;. Then there is a character x of the quotient

GL(F)
T, (F;) /Ty (OFp+,) such that TI|g, sr) and n-Ind B EL)

quotient with a G}, (Op+ ,,)-fixed vector. Moreover this character x is unique modulo
the action of the normalizer Ngu (T, (F))/T, (Ff). (If m and 7' are two irre-

X share an irreducible sub-

ducible subquotients of Ilx|g1 (pt) then we must have 7' = 7% where

i

w'l, 0
%i:( " 1n)eGL2n(Fvi).
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However

Let

N: TGLQn(FUi> — T7~10<F1j;)

diag(th ey t2n> — diag(tl/ctgn, ey tgn/ctl).
Then we define BC (II),, to be the unique subquotient of

GLan(Fy;)

n-Ind g, 5, (X O N)

with a G L, (Op, )-fixed vector. The next lemma is easy to prove.

Lemma 1.1. Suppose that 1) @ w is an irreducible smooth representation of

Ln,(n) (Qq) = Ln,(n)7herm(@q) X Ln,(n),lin(@q) = @; X GLn(Fq)

(1) If v is unramified over F'* and m, is unramified then n-Ind g"g%"()(@q)w@w) has

a subquotient I which is unramified at v. Moreover BC (II), is the unramified

, , : GLan(Fy
irreducible subquotient of n-Ind ng,(,s)(F)v) (m)° @ my).

(2) If v is split over F* and 11 is an irreducible sub-quotient of the normalized

induction n-Ind g"EQ;q()Qq)(w @), then BC (1), is an irreducible subquotient of

GLan(Fy) §
n-Ind ng,(n)(Fv) ((Trep) V¢ @ 1,).

Note that in both cases BC (I1,) does not depend on 1.

In this paragraph let K be a number field, m € Z+,, and write Uk o, for a maximal
compact subgroup of GL,,(K+). We shall (slightly abusively) refer to an admissible

Gn(A%®) x ((Lie Gp(R))c, Up.so)

(resp.
L1y (A%) x ((Lie L, (i) (R))c, Un,co N L 1y (R)),
resp.
GLpn(AR) x ((Lie GLm(Kox))c: Uk,0))

module as an admissible G, (A)-module (resp. L, ;(A)-module, resp. GL,(Ag)-
module). By asquare-integrable automorphic representation of G, (A) (resp. Ly, ()(A),
resp. GL,,(Ak)) we shall mean the twist by a character of an irreducible ad-
missible G, (A)-module (resp. Ly ;)(A)-module, resp. GL,,(Ag)-module) that oc-
curs discretely in the space of square integrable automorphic forms on the dou-
ble coset space G,,(Q)\Gn(A)/A,(R)° (respectively L, ;)(Q)\ Ly i) (A) /A, o) (R)? or
GL,,(K)\GL,(Ak)/RZ,). By a cuspidal automorphic representation of G, (A) (resp.
Ly iy(A), resp. GLy(Ag)) we shall mean an irreducible admissible G, (A)-sub-
module (resp. L, ;(A)-sub-module, resp. GL,,(Ag)-sub-module) of the space of
cuspidal automorphic forms on G,,(A) (resp. Ly ;y(A), resp. GLy,(Ak)).
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Proposition 1.2. Suppose that 11 is a square integrable automorphic representation
of G,(A) and that Il is cohomological. Then there is an expression

2n = ming + ... + myn,

with m;,n; € Z~o and cuspidal automorphic representations 11; of G Ly, (Ar) such
that
o IIY 2 II¢;
o II;|| det ||(mtm=D/2 s cohomological;
e if v is a prime of F' above a rational prime q such that
— either q splits in Fy,
— or F and Il are unramified above q,
then _
BC (1), = B, B}, 11| det |1/,

Proof: This follows from the main theorem of [Sh2] and the classification of square
integrable automorphic representations of GL,,(Ar) in [MW]. (Here we are using
our assumption that F' contains an imaginary quadratic field.) O

Corollary 1.3. Keep the assumptions of the proposition. Then there is a continuous,
semi-simple, algebraic (i.e. unramified almost everywhere and de Rham above p)
representation o
Tpa(ll) : Gp — GL2,(Q,)

with the following property: If v is a prime of F above a rational prime q # p such
that

e cither q splits in Fy,

e or F and II are unramified above q,
then

"WD(ry, (D), )™ 2 recr, (BC (I1,), | det [ -2/2).

Proof: Combine the proposition with for instance theorem 1.2 of [BLGHT] and
theorem A of [BLGGT2]. (These results are due to many people and we simply
choose these particular references for convenience.) O
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1.4. Spaces of hermitian forms.

If R C R then we will denote by Herm3 (resp. Hermz’) the set of pairings ( , ) in
Hermy such that
(r,z) >0
(resp. > 0) for all x € X — {0}. We will denote by S(F™)>° (resp. S(F"™)=°) the set
of elements a € S(F™) such that for each 7: F' < C the image of a under the map
S(F™) — M, (F)=¢
TRy — %%y +ysly

is positive definite (resp. positive semi-definite), i.e. all the roots of its characteristic

polynomial are strictly positive (resp. non-negative) real numbers. Then S(F™)>? is

the set of elements of S(F™) whose pairing with every non-zero element of Herm%?n

is strictly positive; and Hermz% is the set of elements of Hermpm whose pairing with
every non-zero element of S(F™)2? is strictly positive. We will also write

We will next turn to the study of certain spaces which play a key role in the
definition of the auxiliary data controlling toroidal compactifications.
Suppose that W C V,, is an isotropic F-direct summand. We set

¢ (W) = (Hermy, e @ Hom p(F™, W)) ®g R.

If m = 0 we will drop it from the notation. Note that we have a natural identification
e (Vi) = Z(N)(R).
There is also a natural map
cM(W) — ¢(W).
Note that if f € Hom p(F™, W) we can define f’ € Hom (F™ ®@p,. (V,,/W+),Q) by
fe®y) = (f(),y)n.

This establishes an isomorphism

Hom »(F™, W) = Hom (F™ @, (V,/W+),Q)
and hence an isomorphism

(W) — (Hermy,, i1 gpm/Hermpn) ®@g R.

Thus
(V) = Z(NVE)(R).
If g € G,(Q) we define

where
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We extend this to an action of Gy, ' (Q) as follows: If g € Hom g(F™,V,,) then we set

g(Z7f):(Z,f—¢9ZOg)

where 6, : V,, — W satisfies
(z mod W,y mod W), = (0.(z),y),
for all z,y € V,,. If W/ C W there is a natural embedding
cmM(W') — ™ (W),
We will write €>0(W) = Herm;j/W%QR and €=°(W) = Hermy,’ wiggm: We will
also write €™>0(1¥) (resp. €™):=0(WW)) for the pre-image of €>°(W) (resp. €=°(W))
in ¢ (W). Moreover we will set

Q:(m),>O<W>: U Q:(m)’>0(W/
w'cw

¢©--9(1). Thus
em>0 W) c ™0 c @

Note that the natural map €™ (W) — &(W) gives rise to a surjection
C(m),>0(w> — Q:>O(W)

and that the pre-image of a point in €°(W"’) is Hom z(F™, W’) (and in particular the
(0)). Also note that if W’ C W then there is a closed embedding

Q:(WL),%O(W).

and € O(W) =
(m) ZO(W).

pre-image of (0) is
=Wy —
Finally note that the action of G{™(Q) takes €m0(WW
cm:20(W)) to €m0(gW) (resp. €™>0(gIW), resp. €m:20(gI)).
Note that LEZEE) (R) acts on
o (L, i) herm (R)) x €™ (V. 5))

) (vesp. €™)>0(W) resp.

and preserves
70(La i) herm (R)) X €20V, ).

Moreover Lff(bg) (Q) preserves

71-(](Ln,(i),herm(IR>> X Q:(m)7>_0(vna(i))‘
(m)’>0(Vn,(i))' For this para-

™ (R) acts transitively on mo(Ly,(5)herm(R)) x €

In fact Lf1 0
graph let (, )o € €%V, ;) denote the pairing on (V,,/ an(i) ®g R)* induced by
in L) (R) is

(Jo , )n- Then the stabilizer of 1 x (( , )o,0)
h.m (R)) A (R)°.

L (3),herm (R)VZI(Un,oo N Liz,(i),lin

Thus we get an Lg'zz) (R)-equivariant identification
7TO(‘L ()herm(R)) X Q:( >0(V J(7) )/R

LI (R) / L iy ern (R)* (Unoo (1 L) 1 (R))° A 5 (R).
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We define €™ to be the topological space

(U ¢<m>7>°<w>> /

where ~ is the equivalence relation generated by the identification of €(™)=0(11/")
with its image in €™)=9(W) whenever W’ C W. (This is sometimes referred to as
the ‘conical complex’.) Thus as a set

¢lm) — H ¢(m),>0
w

We will let Qﬁ(:nz) denote
H C(m),>0(w)

Note that €7 is a dense open subset of €™ If m = 0 we drop it from the notation.
The space €™ has a natural, continuous, left action of G%m)((@) x RZ,. (The
second factor acts on each €™)=0(T1¥) by scalar multiplication.)
We have homeomorphisms

G QNG (A®) /U x mo(Ga(R)) x € /RX )

= IO (674U X mo(GulR) x (2 0(10)/R%)

(m
Hh€P<W(L))+(A°°)\G(m (AOO)/U L ( )\L ( )/
(hUh N Pn (AOO))L (4), herm(R) (L(WE)) lin (R> N U7(l),OO>An7(7’) (R)O

12

(Use the fact, strong approximation for unipotent groups, that

NI (A*) =V + N Q)

for any open compact subgroup V of N m) +(A"o) ) Ifg e Gim (A>) and if g~'Ug C
U’ then the right translation map

g: G QNG (A%)/U x mo(G(R)) x €7 /R%g) —

G QNG (A%)/U” x mo(G(R)) x €L /R%,)

corresponds to the coproduct of the right translation maps

g L (QV\LY) (A)/

(hUh N P m) +(AOO))L (4), herm(R)+<L£:2),1in(R) N UT?,OO>AT7‘7(Z) (]R)O
—)

L%(@)\L ) (A)/

(WU (W) P< 3)*<A°°>>Ln (i berm(R) (LU 1 (R) N U ) A i) (R)°

where hg = ¢'h/u’ with ¢’ € P (AOO) and v € U’.
When considering compactlﬁcatlons of just the ordinary locus we will need a variant
of the above discussion.
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We set
(G (A%) X mo(Ga(R)) x €lm))ord

to be the subset of G (A®) x mo(Gy(R)) x €™ consisting of elements (g, 8, z) such
that for some W we have
z e MO (w)
and
W ®q Qp = gp(Va,(n) ®a Qp)-

It has a left action of G (Q) and a right action of G\ (A%)rd x R%,. We define
(G (A™) x mo(Gn(R)) x €27)r¢

similarly. We also set

G QNG (A®) JUP(Ny, Ny) x (G (R)) x €))erd

(resp.

Q@N(GI(A®)/UP(Ny, Na) x (G (R)) x €)r)
to be the image of (GE™(A®) x 7o (Gn(R)) x Em))erd i

G QNG (AX) /UP(Ny, No) x mo(G(R)) x €™)

(resp.
GU(Q)\(GI™(A®)/UP(Ny, N) x mo(Ga(R)) x €2)).

n

Then as a set
G QNG (A®) JUP(Ny, Na) x mo(Go(R)) x €myord =
[T, GS (Q)\(GY™ (M%) JUP (N1, Ny) x 10(Gin(R)) x €)ord,

In the case ¢ = n we have a simpler description of

GO (Q)\(GL™(A%) /UP(Ny, Na) x mo(Gr(R)) x €yord,

Lemma 1.4.
G QNG (A®) x 1(Ga(R)) x €U)rd /UP(Ny)
G (Q)\(GE™(A®) /UP(Ny, Na) x mo(Gr(R)) x €L)yord,

Proof: There is a natural surjection. We must check that it is also injective. The
right hand side equals

PIH @\ (G <A°°p>/pr< (@) Up(N1, Na)S™) JU (N1, No) 7™

(G (R)) x €=V, () =2
Péf?z;+<@>\<@%’"> (A IIN,) X 7o GB) % €1, 1),
which is clearly isomorphic to the left hand side. [J
There does not seem to be such a simple description of
GE(Q\ (G (A%) [UP (N1, Na) x (G (R)) x €17

for i # n. However the interested reader can see the end of this section for a partial
result, with a very unpleasant proof.
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We set
Timyerd = GU(Q)\(GUY (A™)/UP(Ny, Na) x mo(G(R)) x € /R

If U is a neat open compact subgroup of L (2) (A>), set

T, = LI (@NLY (A) /U Ly iy e (R) (L) 1 (R) N UL ) Ay ) (R)°.

Corollary 1.5.

(m),ord ~ (m)
() =n = H (n),(RUPR=1 0P (Ao )) 25 Uy (N1) )
hEP(m) +(Aoo)ord,X\G7(1m) (Aoo)ord,X/Up(Nl)

n,(n)

If Y is a locally compact, Hausdorff topological space then we write H{ (Y, C) for
the image of 4 ‘
H.(Y,C) — H'(Y,C).
We define . o . (
Hiy (3507 Q,) = lim Hi (S0, Q)

a smooth G/ (A>)°rd_module, and

Hlint (‘ng) _p) = li}(r} ant(g(m U» Q )

n)’
a smooth L(m (A"O) module. Note that

(m) & \Zs — 1 i (g(m)

as N runs over positive integers and UP runs over neat open compact subgroups of
L;m) (A>P). With these definitions we have the following corollary.

Corollary 1.6. There is a G (A>)°rd_equivariant isomorphism

G( ) (p00:P m ~ m .
In dpiﬂ(z)i-&-(Aoo)p)HInt(g( 7@;})2 Hlnt( )Odan)

Interior cohomology has the following property which will be key for us.

Lemma 1.7. Suppose that G is a locally compact, totally disconnected topological
group. Suppose that for any sufficiently small open compact subgroup U C G we are
given a compact Hausdorff space Zy and an open subset Yy C Zy. Suppose moreover
that whenever U, U’ are sufficiently small open compact subgroups of G and g € G
with g~ tUqg C U’, then there is a proper continuous map

g:ZU—>ZU’

with gYy C Yy, Also suppose that g o h = hg whenever these maps are all defined
and that if g € U then the map g : Zy — Zy is the identity.
If Q) is a field, set
HY(Z,Q) = 1_1)nUl HY(Zy,Q)
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and ‘ A
HIZnt(Y7 Q) = hm lent(YU7 Q)
—U

These are both smooth G-modules. Moreover Hi (Y,Q) is a sub-quotient of H'(Z, )
as G-modules.

Proof: Note that the diagram
Hé(YU,Q) — Hi(YU, Q)
T
HAZy.Q) = H'(Zy.9)
is commutative. Set

A=limIm (H.(Yy,Q) — H(Zy,Q) = H (Zy,Q))

—U

and
B =limIm (ker (H.(Yy,Q) — H'(Yy,Q)) — H'(Zy,9Q)) .

—U

Then A
BCACH(Z,Q)

are G-invariant subspaces with
A/B = Hi, (Y, Q).
O

We finish this section with our promised generalization of lemma [I.4 This gener-
alization is not needed for the proofs of the main results of this paper, but we include
it for completeness sake. The reader may wish to skip the proof.

Lemma 1.8. There is a natural homeomorphism
G QG (A®) JUP(Ny, Ny) x mo(Gr(R)) x €l yerd
= TLyeptm: (aoyoracyal) ey ooy Lo QNI Gy (A)/
(BT (N )R P (%)) L o (Zp) L i) e (R)° (L)

n,(7) n,(4),lin

(R)NU; o))
where UP(Ny) C G (A%)erd:x

In particular
G (Q)\(GL™ (A®) JUP(Ny, Na) X mo(Gn(R)) x €7 yord

and

G QNG (A%)/UP(Ny, Np) x mo(G(R)) x €

are independent of Ny > Nj.
Proof: Firstly we have that
G%m><@>\<GSJ"> (A)/U"(N:, No) x mo(Gu(R)) glr))ord
=PI Q)G (A%P) /UP

<P£’}% (QP* (@) o (N1, N2)™) [U (N, Na) ™
mo(Gn(R)) x € ' (Vo@))-
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We can replace the second Pé%))’JF(Q) by P (Qp) and then, using in particular
the Iwasawa decomposition for L, (») (Qp), replace P (Qp) by P m))+(Zp). Next
we can replace P(m (Qp) by P (Zp) as long as we also replace P (Q) by

(z
Péz) (Z(yy). This gives

" (@\ (G (A%)/UP(No, No) x mo( G () x €27
=~ P I (L)) (G (%) /UP
<P,§’” (Z >P<’?>)+<Z YUp(Ny, No)i™) /U (N1, Np) ™
To(Gn(R)) x €™=0(V, ))).
Note that
P i (i) (Z,) = Chi(Zy).
[This follows from the fact that primes above p of F'* are unramified in F', which
implies that
ker(Np)p+ : O;‘i,p — OEW)) = {C:m:_l cx € O;yp}.]

Thus
L'r:,(i),herm(z )P+ i,(n—i) (Zp) - Lm(i),herm(zp)
and
P,Ei}?)’+<zp>P,ET,1;+<zp> = P ()P (Zy).
Moreover, by strong approximation, P )) (Zp)) (resp. Ly, i) heam(Zp))) is dense in

PT(Lm (AP X Zp) (vesp. Ly, i) perm (AP X Zp)). Thus

G (@GS (A®) /UP (N1, Ny) x mo(Go(R)) x €2 yerd
n (z)) (Z(P))\(Gglm) (Aoo,p)/UpX
(P("(L)) (ZP)P(m)ﬂL (ZP>UP(N17 N2)£Lm))/Up(N17 N2)7(1m) X

IR
“l
3

n, (i n,(n)
7TO(Gn(R)) x glm).> (Vn,(i)))
= LU (L (P (PG (A7) JUP) x
(P (2, >\<P,E"?> (Z) P (Z,)Up (N1, No)T™) JU, (N1, No)™)

To(Gn(R)) x €(m):>0 (Vo))
Next we claim that the natural map

(P~ VPN (Z)\ P () /(U (V1) (L>Z;N£(z><z )
— PO (Z N\ (2, >P£“;>)+<Z> (N1 No) ™) U, (N, Ng) ™

is an isomorphism. It suffices to check this modulo p™?, where the map becomes

<Pn(21 mPW”)(Z/p%Z)\P("‘ <Z/pNZZ>/<U (N, N,Sf’z’)<zp>>—>

P <Z/pN2Z>\<P (Z/p% S L) [ (U,(N) 2N (Z,)),
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which is clearly an isomorphism. Thus we have

GY(Q >\<Gm<A°°>/Up<N1,N2>wa< a(R)) x €)yerd

= L (Zi)\(PV) <A°op>\am><w>/w>x
<<,§> nP;zm I\PYOSE(Z,) [ (U (N0 ZEN (Z,)) %
ro(C(R)) x Em-> (Vo))

where v € Lfﬂz)(Z(p)) acts on (P( PT(Lm) )(Zp)\PT(Lm)’J’(Zp) via an element of

(1) (n) »(n)
Pl iniy(Zp) X L (i) 1in(Zy) with the same image in Cp—i(Zy) X L, i) 1in(Zy)-

Note that
PO (AP N\GI (a%7) /U

n,(% HhePﬁz)’*(Awm)\Gﬁlm) (Ao=p)/UP

L8 e (AP LE (M%) [ (RUPR (0 PO (M%),

Also note that, if we set U, = (Up(Nl)f:EL)Z; Né( )(Zy)), then

m) m) (m),+ —

(
(LI <Z ) % I (P iy (Zy) = Coue z< >>>/<hUph 1mPnt1?ﬁ<Zp>>.

However as the primes above p split in F'* split in F' we see that

Im (Pn—i,(n—i) (Zp> — On—i<Zp)) - Ln,(i),herm( )/L_ )herm(Zp)’

m)vf (m 9+ (m)9+ —
(P, N NP )(Zp)\Pn,(n) (Z )/ - Hhe(pét?gﬁmpé”’a’)ﬂ(Zp)\p(ﬂzn) (Zp)/Up

LY (Z,) /Ly, ) e (Z) (RU B 0 PO ().

Thus we see that

G (Q)\ (G (A®)/UP(Ny, Na) x m( W (R)) x g)yord
= HhEP(m) +(A°°)°’d X\G(m)(Aoo)ord,x/Up(Nl )(Z () )\

(8
(L%(AWPxZ)/L— e (A7 X Zy)(hUP(N)R™ 0 P

xmo(GU (R)) x €™ >°<vn,a>>).

O (8))

As Ly, i herm(Z(p)) acts trivially on

(LSD(Z) Ly 1 e (Z)) % To(GU™ (R)) x €20V, )
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and is dense in L, ;) ;o (A7), we further see that

,herm

GR (Q\(GE(A®) JUP(Ny, Ny) x (G (R)) x €l yord

et s umeyomas 6l (aoeyorex jumiany L )\

(LU0 A% X 24) /L ) e ) (BUP (N1 0 P (4)077)

eGP () € (Vi)

Ll ptm (a6 mertot smiavy Loty B \Lh (A7 % Zy)

(<hUp<N1>h LB AP )L ) () Do (R)°

(Lo 1

Hhep(mH( Ao )ord.x\ G (oo yord. X /UP(NY) Lim3>(@)\L£ (2)(A)/
(RUP(NDRT AP (A L0 o (Z) Ly e (R)(LET) 1, (RINUS L)),

as desired. OJ

Abusing notation slightly, we will write

G (Q)\(GI™(A®)JUP(Ny) x mo(G(R)) x €y

n

®)NULL)).

for
GUI QNG (A®)JUP(Ny, Na) X mo(Gn(R)) x €7)yord,
and
GI QN (G (A®)/UP(N1) x mo(Ga(R)) x €™y
for

G QNG (A%)/UP (N1, Np) x mo(Ga(R)) x €™,

n
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1.5. Locally symmetric spaces.

In this section we will calculate ant(‘lgnm)),@p) in terms of automorphic forms on
Ly, (ny(A). Our main result will be the following, which will be an immediate conse-

quence of corollary and lemma below.

Corollary 1.9. Suppose that n > 1 and that p is an irreducible algebraic represen-
tation of Ly (n)in on a finite dimensional C-vector space. Suppose also that 7 is a
cuspidal automorphic representation of an(n)jlin(A) such that mo has the same infin-
itesimal character as p¥ and that ¢ is a continuous character of Q*\A*/RZ,. Then
for all sufficiently large integers N there are integers m(N) € Zso and i(N) € Zxyo,
and an Ly, (ny(A>)-equivariant embedding

(7] det ||V) x > < HLD (T ).

nt (n)

If m = 0 we will write T, for ‘ZE?}). Let € denote an algebraically closed field of
characteristic 0. If p is a finite dimensional algebraic representation of L, (,) on a
Q-vector space W, then we define a locally constant sheaf £, /%) v as

Ln,(ﬂ)(@)\ (Wp X Ln,(n) (A)/U\I/(Ln,(n) (R) N Ur?,oo)An,(n) (R)O)
Lin, ) (Q)\ L () (A) /U (Lin, ) (R) N Uy, o) Ane () (R)®.

The system of sheaves £, has a right action of L, ,)(A>). We define
HIint({Z(n)’ L,) = 15(51 ant(‘z(n),Ua Loy),
smooth L, (,)(A*)-module. Note that if p has a central character y, then,

a € Z(Lm(n))((@)—i_ C Lny(n)(Aoo)
acts on H{  (T(n), L,) via x,(a)~". (Use the fact that Z(L, ) (Q)" C (Ly,m)(R) N
Uroz,oo)An,(n) (R)O‘)
The natural map L

;WEZL) — Ln,(n) gives rise to continuous maps

m) . (m)
7T( ) : I(n),U — T(n),U

compatible with the action of L?(:(”L) (A>).

Lemma 1.10. (1) The maps 7™ are real-torus bundles (i.e. (S*)"-bundles for
some r), and in particular are proper maps.

(2) There are LS’EZL) (A*)-equivariant identifications

i (m) () o
R ﬂ-* Q o EAZ‘(@T:F‘%Q Std?‘am)v

In particular the action of LEZ&) (A>) on the relative cohomology sheaf Rir™Q
factors through Ly, (ny(A>).
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Proof: Recall that
(m) (m)
N(L ,(n), hn) - ker(L ,(n) - L (n))
Suppose that U is a neat open compact subgroup of L (AOO) with image U’ in
Ly (n)(A%). Then L, ,y(Q) x U" acts freely on
Ln,(n) (A>/(Ln,(n) (R) N U'r?,oo)Am(n) (R)O-
Thus it suffices to prove that the map 7™

NLI Y QNLED (8)/(U AN (L ) (A) (L) (R) N U ) Ay ) (R)°
I

Lo, ) (A) /(L () (R) N U ) Ay (R)O

is a real torus bundle and that there are L, (,,)(Q) x L (AOO) equivariant isomor-
phisms
i~(m)() o
R'7,™ ) = EN‘(@TStd@m)v'
Using the identification of spaces (but not of groups) that comes from the group
product

Lf:sz) (A) =N (L(n&) i) (A) X Ly ) (A),

we see that 7™ can be identified with the map

(N0 i) @AN(LED, 1) (8)/(U N N (LY, hn><A\°°>>)
X (L) (A) / (L, >(If) NUR 00) An,m) (R)°)

L () (A) /(L (n) (R) N U ) A (n) (R),

o(n
or, using the equality N (LU . )(A®) = N(LV) ) (Q)UNN(LY) | )(A%)), even
with

(VL i) @OUNNLED 1) E)X(Li ) (8)/ (L oy RN UR ) An oy (R))

L) (A) /(L) (R) N U ) A ) (R)Y,

The right Ln (n )(AOO) -action is by right translation on the second factor. The left

action of L, ,)(Q) is via conjugation on the first factor and left translation on the
second.
The first part of the lemma follows, and we see that

RFM™Q
is Lin,m)(Q) x L(m) ) (A%)-equivariantly identified with the locally constant sheaf

(NN (L 1m)(9)v> X (L, () / (L) (R) MU o0) Ay (R)°)

J
Ln,(n) (A>/(Ln,(n) (R) N Ur?,oo>An7(n) (R)O'

The lemma follows. O
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Lemma 1.11. There is an L (AOO) equivariant isomorphism

7

HInt ‘Z(m () = @ HInt m(@ Std®m)v v).
i+j=k

Proof: There is an LX'ZL) (A>°)-equivariant spectral sequence
ESJ = Hi(g(n)’ ﬁ/\a‘(@T Sta@myv) = H”J'(CYEZ?, Q).

If a € Q%) C Z(Lnnyin)(A®), then o acts on Ey’ via af. We deduce that all the
differentials (on the second and any later page) vanish, and so the spectral sequence
degenerates on the second page. Moreover the o — o/ eigenspace in H**J (‘SE )), Q) is
naturally identified with H*(T(n), £.(g_stazm)v)- (This standard argument is some-

times referred to as ‘Lieberman’s trick’.)
(m

n,(n

As the maps 7™ are proper, there is also an L\
quence

(n) (Aoo) -equivariant spectral se-

P S £, ) = B
and a € Q%) C Z(Ly (nyun) (A%) acts on B} via o/, Again we see that the spec-

tral sequence degenerates on the second page, and that the a — o’ eigenspace in

Hit (‘IEWS ,Q) is naturally identified with HZ(%,), Lri(@. stazmyv)-

The lemma follows. [

Corollary 1.12. Suppose that p is an irreducible representation of Ly ()1 over €,
which we extend to a representation of Ly ) by letting it be trivial On L n,(n),herm -
Let d = Npjg odet : Ly nyiin — G Then for all N sufficiently large there are
J(N), m(N) € Z>o such that, for all i,

Hpy (T Loga—n)
is an Ly, (n)(A>)-direct summand of

Hi+j(N) (:Egnm)(N))’ Q)

Int

Proof: 1t follows from Weyl’s construction of the irreducible representations of GL,,
that, for N sufficiently large, p @ d~% is a direct summand of

Q) (stdy)@m-)

T

for certain non-negative integers m., (V). Hence for N sufficiently large and m(N) =
max{m,(N)} the representation p ® d~* is also a direct summand of

/\ZT mT(N)(@ Std@m(N))V‘
O

Lemma 1.13. Suppose that p is an irreducible algebraic representation of Ly, () on
a finite dimensional C-vector space.
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(1) Then
@ 1> @ H'(Lie Ly ), (L) (R) N Ur?,oo>An,(n) (R)", Moo @ p) = Hiy (Tm)s £p),
II

where I1 runs over cuspidal automorphic representations of Ly, (n)(A).
(2) If n > 1 and if 11 is a cuspidal automorphic representation of Ly (ny(A) such
that 1, has the same infinitesimal character as p¥, then

H'(Lie Ly ), (L) (R) N Uy o) Any)(R)", Tl @ p) # (0)
for some i > 0.
Proof: The first part results from [Bo|, more precisely from combining theorem 5.2,
the discussion in section 5.4 and corollary 5.5 of that paper. The second part results

from [CI|, see the proof of theorem 3.13, and in particular lemma 3.14, of that paper.
O

We are now in a position to deduce corollary [1.9] which we stated at the start of
this section.
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2. TORI, TORSORS AND TORUS EMBEDDINGS.

The main aim of this section is to recall some basic facts about relative torus em-
beddings of tori torsors, which will provide local models for the boundary of toroidal
compactifications of Shimura and Kuga-Sato varieties. Much of this material is in
some sense standard, but we need to work with infinite cone decompositions, which
are not treated in much of the literature. It will also be convenient to use a notation
which emphasizes the boundary of the torus embedding and the completion of the
torus embedding along the boundary. These seem to be more naturally parameterised
by certain partial fans rather than fans. In section we compute certain cohomol-
ogy groups. For finite fans (or partial fans) such results are fairly standard, but we
found it quite tricky to formulate and prove the results we need in the presence of
infinitely many cones. Maybe this is just our incompetence.

Throughout this section let Ry denote an irreducible noetherian ring (i.e. a noe-
therian ring with a unique minimal prime ideal). In the applications of this section
elsewhere in this paper it will be either Q or Zgy or Z/p"Z for some r. We will
consider Ry endowed with the discrete topology so that Spf Ry = Spec Ry.

2.1. Tori and torsors.

If S/Y is a torus (i.e. a group scheme etale locally on Y isomorphic to G for some
N) then we can define its sheaf of characters X*(S) = Hom (S,G,,) and its sheaf
of cocharacters X, (S) = Hom (G,,, S). These are locally constant sheaves of free Z-
modules in the etale topology on Y. They are naturally Z-dual to each other. More
generally if S;/Y and Sp/Y are two tori then Hom (51, S2) is a locally constant sheaf
of free Z-modules in the etale topology on Y. In fact

Hom (S, Ss) = Hom (X.(S1), X.(S2)) = Hom (X*(Ss), X*(S1)).

By a quasi-isogeny (resp. isogeny) from Sy to Sy we shall mean a global section of
the sheaf Hom (51, S3)q (resp. Hom (51, S2)) with an inverse in Hom (.Ss, S1)g. We
will write [Slisog for the category whose objects are tori over Y quasi-isogenous to S
and whose morphisms are isogenies. The sheaves X, (5)g and X*(S)g only depend
on the quasi-isogeny class of S so we will write X, ([S]isog)o and X*([Sisog)o-

If 7 is a geometric point of Y then we define

TSy = lim S[N](k(7))

and
T*5y = lim S[N](k(y))
p/rN
with the transition map from MN to N being multiplication by M. (The Tate
modules of S.) Also define
VS; =TS; ®zQ
and
VPSy = TP Sy @7 Q.
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If Y is a scheme over Spec Q then
TSy 2 X,(S)y ®z Z(1).
If Y is a scheme over Spec Z, then
TPSy = X, (S)y ©z ZP(1).

Now suppose that S is split, i.e. isomorphic to G\ for some N. By an S-torsorT/Y
we mean a scheme 7/Y with an action of S, which locally in the Zariski topology
on Y is isomorphic to S. By a rigidification of T along e : Y/ — Y we mean an
isomorphism of S-torsors e*T" = S over Y'. If U is a connected open subset of Y then

Tly=Spec P Lr(x),
XEX*(S)(U)

where Lr(x) is a line bundle on U. If Z is any open subset of Y and if x € X*(5)(2)
then there is a unique line bundle L£7(x) on Z whose restriction to any connected
open subset U C Z is Lr(x|y). Multiplication gives isomorphisms

Lr(x1) ® Lr(x2) — Lr(x1 + x2)-
The map
T+ Ly,
gives a bijection between isomorphism classes of G,,-torsors and isomorphism classes
of line bundles on Y. The inverse map sends L to

Spec @ LVEN
Nez

If : S — S is a morphism of split tori and if 7/Y is an S-torsor we can form a
pushout a, T, an S’ torsor on Y defined as the quotient

(S/ Xy T)/S
where S acts by
s:(s,t) — (8's,87t).
There is a natural map T — «,T compatible with o : S — §’. If « is an isogeny

then
a, T = (ker )\T.

If T} and T5 are S-torsors over Y we define

(Th ®@sT)/Y
to be the S-torsor

(Ty xy T3)/S
where S acts by

s (t1,ta) — (sty, s 'ty).

If T is an S-torsor on Y we define an S-torsor TV /Y by taking TV = T as schemes
but defining an S action . on T by

st = s_lt,
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ie. TV = [—1]g.T. Then
TV ®@¢T =S
via the map that sends (¢1,%5) to the unique section s of S with st; = ts.

47
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2.2. Log structures.

We will call a formal scheme

suitable if it has a cover by affine opens 4l; = Spf (4;)} , where A; is a finitely generated
Rp-algebra and I; is an ideal of A; whose inverse image in Ry is (0).

By a log structure on a scheme X (resp. formal scheme X) we mean a sheaf of
monoids M on X (resp. X) together with a morphism

O[IM—>(O)(,X)

(resp.
a: M — (Og, %))
such that the induced map
alO0¥ — O%
(resp.
a'OF — OF)
is an isomorphism. We will refer to a scheme (resp. formal scheme) endowed with

a log structure as a log scheme (resp. log formal scheme). By a morphism of log
schemes (resp. morphism of log formal schemes)

(¢.¢): (X, M,a) — (Y, N, B)

(resp.
(0,9) - (X, M, 0) — (D, N, )

we shall mean a morphism ¢ : X — Y (resp. ¢ : X — Q) and a map
VTN — M

such that ¢* o ¢71(8) = ao. We will consider Ry endowed with the trivial
log structure (O ..p,,1) (resp. (Oger,,1)). We will call a log formal scheme
(X, M, a)/Spf Ry suitable if X/Spf Ry is suitable and if, locally in the Zariski topol-
ogy, M/a~'Of is finitely generated. (In the case of schemes these definitions are well
known: See for example [Kato]. We have not attempted to optimize the definition
in the case of formal schemes. We are simply making a definition which works for
the limited purposes of this article. The reader might like to compare our definitions
with those in [Berk].)

If D is a closed subscheme of X we define a log structure M(D) on X by setting

M(D)(U) = Ox(U) N Ox (U — D).

If X/Spec Ry is a scheme of finite type and if Z C X is a closed sub-scheme which
is flat over Spec Ry, then the formal completion X7 is a suitable formal scheme. Let
i"* denote the map of ringed spaces X2 — X. If (M, «) is a log structure on X, then
we get a map

(i) (@) : (") "M — Oxs.
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It induces a log structure (M”", o) on X2, where M”" denotes the push out
(")) 105, = ()™M
3 \
Oy, — M~
If
(@,¢): (X, M,a) — (Y, N, 5)

is a morphism of schemes with log structures over Spec Ry then there is a right exact
sequence

¢*Oy-(log ) — Q% (log M) — Qﬁ(/y(log/\/l/./\/) — (0)

of sheaves of log differentials. If the map (¢, ) is log smooth then this sequence
is also left exact and the sheaf Q_lx/y(log M/N) is locally free. (See for example
[Kato].) As usual, we write Q% (log M) = A'Q%(log M) and QY )y (log M/N) =
Ny (log M/N).

By a coherent sheaf of differentials on a formal scheme X/Spf Ry we will mean a
coherent sheaf Q2/X together with a differential d : Ox — 2 which vanishes on Rj.
By a coherent sheaf of log differentials on a log formal scheme (X, M, «)/Spf Ry we
shall mean a coherent sheaf Q2/X together with a differential, which vanishes on Ry,

d: O — Q,

and a homomorphism
dlog : M — Q
such that
a(m)dlogm = d(a(m)).

By a wuniversal coherent sheaf of differentials (resp. universal coherent sheaf of log
differentials) we shall mean a coherent sheaf of differentials (€2, d) (resp. a coherent
sheaf of log differentials (2, d, dlog)) such that for any other coherent sheaf of dif-
ferentials (€2, d’) (resp. a coherent sheaf of log differentials (€', d’,dlog”)) there is a
unique map f : Q — ' such that fod =d (resp. fod=d and fodlog = dlog’).

Note that if a universal coherent sheaf of differentials (resp. universal coherent
sheaf of log differentials) exists, it is unique up to unique isomorphism.

Lemma 2.1. Suppose that Ry is a discrete, noetherian topological ring.

(1) A universal sheaf of coherent differentials Q;e/spro exists for any suitable
formal scheme X/Spf Ry.
(2) If X/Spec Ry is a scheme of finite type and if Z C X is flat over Ry then

1 ~ 1 A
ng/spro = (QX/SpecRo) .

(3) A wuniversal sheaf of coherent log differentials Qé/spro (log M) ezists for any
suitable log formal scheme (X, M, «)/Spf Ry.
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(4) Suppose that X/Spec Ry is a scheme of finite type, that Z C X is flat over Ry
and that (M, ) is a log structure on X such that Zariski locally M/a=*O%
1s finitely generated. Then

s st 1o (log M) = (D g0 5, (log M)

Proof: Consider the first part. Suppose that {l = Spf A} is an affine open in X,
where A is a finitely generated Ryp-algebra and I is an ideal of A with inverse image
(0) in Ry. Then there exists a universal finite module of differentials Qf for 4l, namely
the coherent sheaf of Oy-modules associated to (QA/RO)?. (See sections 11.5 and 12.6

of [Kul.) We must show that if 4’ C £l is open then Q2 |i is a universal finite module
of differentials for 4. For then uniqueness will allow us to glue the coherent sheaves
Q to form Q.

So suppose that (£2,d') is a finite module of differentials for {'. We must show
that there is a unique map of Oy -modules

Qe —
such that d' = f od. We may cover ' by affine opens of the form Spf (4,); and it
will suffice to find, for each g, a unique

fo: Q111|Spf(z4g)? — Q'|Spf (Ag)ff\

with d’ = f,od. Thus we may assume that &' = Spf (A4,)7. But in this case we know
Qy, exists, and is the coherent sheaf associated to

On the other hand |y is the coherent sheaf associated to

(Qil/R())? ®A? (Ag)?'
Thus
Qill/ ;> Qi{hjj
and the first part follows. The second part also follows from the proof of the first
part.
For the third part, because of uniqueness, it suffices to work locally. Thus we may

assume that there are finitely many sections my, ..., m, € M(X), which together with
a~'O5 generate M. Then we define Qfy \, ) to be the cokernel of the map

0r s QLaoY
(fi)i = (=22 fida(m), (fic(m;)):).

It is elementary to check that this has the desired universal property. The fourth
part is also elementary to check. [J

It
(0,9): (X, M,a) — (D, N, §)

is a map of suitable log formal schemes over Spf Ry then we set

Q;;/@(log MJN) = Q%e/spro (log M)/¢*le/spf30 (log NV).
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We also set
Q% sspt re = N /st R
and
QiX/Spf ro(log M) = /\inx/Spf R, (log M)
and

Q% gy (log M/N) = N 9 (log M/N).

Corollary 2.2. Suppose that Ry is a discrete, noetherian topological ring; that
(X, M, a) = (YN, 5)

1s a map of log schemes over Spec Ry; and that Z C X and W C Y are closed sub-
schemes flat over Spec Ry which map to each other under X — Y. Suppose moreover
that X and Y have finite type over Spec Ry and that M/a~'O% and ./\/'/B_IOS are

locally (in the Zariski topology) finitely generated. Then
Q%XQ,MA,a/\)/(YV"\/,NAﬂ/\) = (Qﬁf/y(log M/N))7.
Proof: This follows from the lemma and from the exactness of completion. [J
If Y is a scheme we will let
Afty = Spec Oy [Ty, ..., T},]
denote affine n-space over Y and
Coordy = Spec Oy (11, ..., T,]/(T1...T,,) C Afty.

denote the union of the coordinate hyperplanes in Affy.. Now suppose that X — Y
is a smooth map of schemes of relative dimension n. By a simple normal crossings
divisor in X relative to Y we shall mean a closed subscheme D C X such that X has
an affine Zariski-open cover {U;} such that each U; admits an etale map f; : U; — Affy
so that D|y, is the (scheme-theoretic) preimage of Coordy.. In the case that Y is just
the spectrum of a field we will refer simply to a simple normal crossings divisor in
X.

Suppose that Y is locally noetherian and separated, and that the connected com-
ponents of Y are irreducible. If S is a finite set of irreducible components of D we

will set
Dg = ﬂ E.

EcS
It is smooth over Y. We will also set

D) = ]_[ Ds.

#S=s

If E is an irreducible component of D) then the set S(E) of irreducible components
of D containing F has cardinality s. If > is a total order on the set of irreducible
components of D, we can define a delta set S(D, >), or simply S(D), as follows. (For
the definition of ‘delta set’, see for instance [Fr]. We can, if we prefer to be more
abstract, replace S(D,>) by the associated simplicial set.) The n cells consist of
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all irreducible components of D™tV If E is such an irreducible component and if
i € {0,...,n} then the image of F under the face map d; is the unique irreducible

component of
ﬂ F

FeS(E

which contains E. Here S(E); equals S(E) Wlth its (i+1)™ smallest element removed.
The topological realization |S(D,>)| does not depend on the total order >, so we
will often write |S(D)].

We record a general observation about log de Rham complexes and divisors with
simple normal crossings, which is probably well known. We include a proof because
it is of crucial importance for our argument.

Lemma 2.3. Suppose thatY is a smooth scheme of finite type over a field k and that
Z C'Y s a divisor with simple normal crossings. Let Zy, ..., Z,, denote the distinct
irreducible components of Z and set

Zs=(Z;CY
jeS
(in particular Zy =Y ), and
Z% = 1] 2.
#S5=s

Let ig (resp. i) denote the natural maps Zg — Y (resp. Z®) — Y ). Also let Iy
denote the ideal of definition of Z.
There is a double complex

)Qz( )
with maps
d i, — i)
and
S)QZ(S — Z(S+l) Z(e+1)

being the sum of the maps
Z.S,>(<QTZS — Z.S/,*Q%S,a
which are
e 0if S¢S,
o and (—1)#€% <3} times the natural pull-back if SU {j} = 5.
The natural inclusions
Qv (logM(2) @ L, — Q
give rise to a map of complezes
O3 (log M(2)) @ L, — Q% =ilVQ%).
For fized r the simple complexes
(0) — Q5 -(log M(2)) ® T, — iVQ% ) — iMQ 0 — ...

are exact.
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Proof: Only the last assertion is not immediate. So consider the last assertion. We
can work Zariski locally, so we may assume that the complex is pulled back from
the corresponding complex for the case Y = Speck[Xj, ..., Xy4] and Z is given by
X1X5...X,, = 0. In this case we take Z; to be the scheme X; =0, for j =1,....m
In this case

O (log M(Z)) @ Tz = @ kX1, ..., X ( ﬁ Xj> N\ 4X;

J=1, j¢T JeT
where T" runs over r element subsets of {1, ...,d}. On the other hand
i5.482 @le,.. )/ (X))jes [\ dX;
jeT
where T' runs over r element subsets of {1,...,d} —S. Thus it suffices to show that,
for each subset T' C {1, ..., d} the sequence

(0) —s (HT:L].QTXJ) KX, s Xa] — K[X0, oy Xa] — ..
T @#S:s, SNT=0 k[XIJ "'7Xd]/(Xj)j€S —_— ...

is exact, where S C {1,...,m}. The sequence for T" C {1,...,d} is obtained from the
sequence for () C {1, .. m} T by tensoring over k with k[X ljerugm+1,...ap, and so
we only need treat the case m = d and T’ = 0.

If p is a monomial in the variables Xj, ..., X,,, let R(u) denote the subset of
{1,...,m} consisting of the indices j for which X; does not occur in p. Then our
complex is the direct sum over p of the complexes

0)—A4, —k— .. — @ k— ...
SCR(), #5=s

where A, = k if R(u) = ) and = (0) otherwise. So it suffices to prove this latter
complex exact for all p. If R(p) = ) then it becomes

0) —k—k—(0) — (0) — ...,
which is clearly exact. If R(u) # (), our complex becomes
0) — k — @ k— ... — @ k—s ...
SCR(u), #5=1 SCR(u), #5=s

If we suppress the first k, this is the complex that computes the simplicial cohomology
with k-coefficients of the simplex with #R(u) vertices. Thus it is exact everywhere
except Pgc g, gs-1 k and the kernel of

@k%@k

SCR(u), #S=1 SCR(u), #5=2

is just k. The desired exactness follows. []
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2.3. Torus embeddings.

We will now discuss relative torus embeddings, crucially in the context of infinite
fans.
If W is a real vector space with dual WV and if A C W is a subspace we set

AV ={x e W": x(4) CRx}
and
A ={x e W : x(A—{0}) C Rso}
and
At ={xewW": x(4) ={0}}.

We will suppose that Y/Spec Ry is flat and locally of finite type. To simplify the
notation, for now we will restrict to the case of a split torus S/Y with ¥ connected.
We will record the (trivial) generalization to the case of a disconnected base below.
Thus we can think of X*(5) and X,(S) as abelian groups, rather than as locally
constant sheaves on Y, i.e. we replace the sheaf by its global sections over Y. We
will let T/Y denote an S-torsor.

By a rational polyhedral cone o C X,(S)r we mean a non-empty subset consisting
of all R>¢-linear combinations of a finite set of elements of X, (S), but which contains
no complete line through 0. (We include the case o = {0}. The notion we define here
is sometimes called a ‘non-degenerate rational polyhedral cone’.) By the interior ¢°
of o we shall mean the complement in o of all its proper faces. (We consider o as
a face of o, but not a proper face.) We call o smooth if it consists of all Rsg-linear
combinations of a subset of a Z-basis of X,(5). Note that any face of a smooth cone
is smooth. Moreover we set

T, = Spec EB Lr(x).

XEX*(S)NoV

Then T, is a scheme over Y with an action of S and there is a natural S-equivariant
dense open embedding T" < T,. If ¢’ C o there is a natural map T, — T, compatible
with the embeddings of T. If f : Y" — Y then T, /Y pulls back under f to (f*T),/Y’
compatibly with the maps T, < T, for ¢’ C o.
Suppose that X is a set of faces of o such that
[ ] {0} € 20,

e and, if 7/ D 7 € Xy, then 7’ € 3.

15| =0 — U T.

TEZ0

In this case define

Thus
1S|*Y0 oY =0 — U Tt
TEYD



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 55

Then we define 0s,, T, C T, to be the closed sub-scheme defined by the sheaf of ideals

. Lr(y) C Lr(x)-

XEX*(S)N|Zo|%V-0NaV XEX*(S)NoV

If ¥y contains all the faces of o other than {0} we will write 07, for 0x,T,. Note
that OyT, = (). If ¢’ is a face of o then under the open embedding

TU/ — TU

05, T, pulls back to Oresy: rcoy Lo
By a fan in X,(S)g we shall mean a non-empty collection X of rational polyhedral

cones 0 C X, (S)g which satisfy

e if 0 € 3, so is each face of o,

e if 0,0’ € ¥ then o0 N’ is a face of o and of ¢'.
Note that unless otherwise stated we will not assume that X is finite. We call X
smooth if each o € ¥ is smooth. We will call X full if every element of ¥ is contained
in an element of 3 with the same dimension as X, (S)g. Define

l=Je

oeY

We call ¥/ a refinement of X if each ¢/ € ¥/ is a subset of some element of ¥ and
each element o € X is a finite union of elements of 3.

Lemma 2.4. (1) If ¥ is a fan and X' C ¥ is a finite cardinality sub-fan then
there is a refinement D of X with the following properties:
e any element of ¥ which is smooth also lies in i;
e any element ofEN] contained in an element of X' is smooth;
e and if o’ € ¥ — S then o' has a non-smooth face lying in Y.
(2) Any fan ¥ has a smooth refinement ¥ such that every smooth cone o € %
also lies in 3.

Proof: The first part is proved just as for finite fans by making a finite series of
elementary subdivisions by 1 cones that lie in some element ¢’ € ¥’ but not in any
of its smooth faces. See for instance section 2.6 of [Ful.

For the second part, consider the set S of pairs (i, A) where 3 is a refinement of

> and A is a sub-fan of ¥ such that

e every smooth element of 3 lies in i;

e and if o € ¥ is contained in an element of A then o is smooth.
It suffices to show that S contains an element (3, A) with A = .

If (X,A) € S and 0 € ¥ we define X(0) to be the set of elements of ¥ contained
in 0. We define a partial order on S by decreeing that (3, A) > (X', A’) if and only
if the following conditions are satisfied:

e 3 refines 3 ;
e ADA;
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e Y'(0) = (o) unless o has a face that is contained in an element of A but in
no element of A’.

Suppose that S’ C S is totally ordered. Set

A= ) A,

(3/,ANeS

and let 3 denote the set of cones o’ which lie in 3 for all sufficiently large elements
of (X,A') € 8. If ¢ € ¥ then we can choose (¥, A’) € & so that the number of
faces of ¢ in A’ is maximal. If (E’ A') < (X", A”) € 8 then ¥'(0) = (o). Thus
S(0) = ¥'(0). We conclude that ¥ is a refinement of ¥. Thus (3, A) € S and it is
an upper bound for §’.

By Zorn’s lemma S has a maximal element (3, A). We will show that A = %,
which will complete the proof of the lemma. Suppose not. Choose o € > — A. Set
A’ to be the union of A and the faces of o. Let 3’ be a refinement of & such that

e any element of 3> which is smooth also lies in > ;
e any element of 5 contained in o is smooth;
e and if 0/ € © — Y then o’ has a non-smooth face contained in o.

Then (3, A') € S and (¥, A') > (£, A), a contradiction. [

To a fan X one can attach a connected scheme T that is separated, locally (on
Ty,) of finite type and flat over Y of relative dimension dimg X, (S)gr, together with
an action of S and an S-equivariant dense open embedding 1" — T% over Y. The
scheme T, has an open cover by the T, for ¢ € ¥ such that T,, C T, if and only
if o' C 0. We write Or, for the structure sheaf of T%. If ¥ is smooth then Ty/Y
is smooth. If ¥ is finite and |X| = X, (S)g, then Ty /Y is proper. If ¥’ C 3 then
Tsy can be identified with an open sub-scheme of T%. If ¥’ refines ¥ then there is an
S-equivariant proper map

Ty — Tk
which restricts to the identity on 7': its restriction to 7, equals the map
T, — T, —1Tx

where 0/ C 0 € ¥.

By boundary data for ¥ we shall mean a proper subset ¥y C ¥ such that ¥ — ¥ is
a fan. (Note that ¥o may not be closed under taking faces.) If ¥y is boundary data
we define Oy, Ty, to be the closed subscheme of 7%, with

(aEOTE) N1, = 8{7620: TCO'}TO"

Note that
820Tg C U T,.

e SI)
Thus Oy, has an open cover by the sets

(820T2>0 — TU ﬂ 8ZOTE
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as o runs over Yo. We write Zy, r, for the ideal sheaf in Op. defining Oy, T%. If
Yo C X C X then
@EOTE’ ;> 820T2.
Note that Iaong |7, corresponds to the ideal

XE€EXs5),0,1
of
@ Lr(x),
XEX*(S)NaV
where

%Eo,a,l = X*<S) No’ — U TJ_
TEYX,TCO
and 71 denotes the annihilator of 7 in X*(S)g. If we let X5, ., denote the set of
sums of m elements of X5, ,1, then Iglonz |7, corresponds to the ideal

D oo

Xexﬂo,a,m

If o & 3 then
%gma,m = X*(S) N UV
for all m. If on the other hand o € ¥, then

() Xs0.0m = 0.

(For if x € 0N X, (S) then x > m on Xx, s.m-)

In the special case ¥y = X —{{0}} we will write 9T, for 9x, T, and Zory, for Zoy, 1,
Then

T=Ts — JTx.

We will write My — Onp, for the log structure corresponding to the closed embed-
ding 0Ty, — Tx,. We will write QlTE /Spec Ro(log o0) for the log differentials previously
denoted Qg e g, (log Ms).

If 3 is smooth then 0Ty is a simple normal crossings divisor on T% relative to Y.

If 3¢ is boundary data for 3 we will set

ol = {0}u (o
gEY

and
S =1%ol - | @
[ ASDIEDI)
We will call ¥
e open if |$y|° is open in X, (S)g;
e finite if it has finite cardinality;
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e locally finite if for every rational polyhedral cone 7 C |3y| (not necessarily in
¥o) the intersection 7 M |Sy|° meets only finitely many elements of . (We
remark that although this condition may be intuitive in the case [2o|° = |,
in other cases it may be less so.)

Let ¥ continue to denote a fan and >y boundary data for . If o € ¥ we write
Y(o)={reX: 7Do}
If o # {0}, then this is an example of boundary data for ¥. If o € 3, then
Y(o)={re€Xy: 1D}
and we will sometimes denote it (o). If ¥ is locally finite then ¥¢(o) is finite for
all 0 € Xg. If {0} # 0 € ¥ we write
0o Ty = Og () Tx
and
82Tg - &,Tg - U GU/TZ
o' Do
Sometimes we also write
Oy Ts =T.
If ¢ is locally finite then the 0,7y for o € ¥y form a locally finite closed cover of
O, Tx.. Set theoretically we have

0,Tx = [ 007

o’'eX(o)
and
(Os,T)o = ] 09.T%
o' €%
o Co
and
T, =[] 9%.7%
o/'Co
and

Os,Ts = [ 90T
o’'eXp
If dimo = 1 then 0°Tx = 97T,.

Keep the notation of the previous paragraph. We define S(¢) to be the split torus
with co-character group X, (.S) divided by the subgroup generated by o N X,(S), and
T(c) to be the push-out of T to S(c). We also define ¥(o) to be the set of images
in X,(S(0))r of elements of 3(). It is a fan for X,(S)g/(o)r. [The main point to
check is that if 7,7" € ¥(o) then (1N 7') + (0)r = (7 + (o)r) N (7' + (0)r). To verify
this suppose that x € 7 and y € 7/ with z — y € (o)g. Then z —y = z — w with
zoweo. Thusz+w=y+zerN7 and 2+ (o)gr = (z +w) + (o)r.] If 0 € Xy we
will sometimes write Xo(c) for ¥(o), as it depends only on ¥y and not on ¥. Then

95 = T(0) C T(0)s5y = 05T
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Thus 0,7 is separated, locally (on the source) of finite type and flat over Y. The
closed subscheme 0,7y has codimension in T equal to the dimension of o. If ¥(0)
is smooth then 0,7y is smooth over Y.

If ¥(o) is open then 0,T% satisfies the valuative criterion of properness over Y.
If in addition (o) is finite then 0,7y is proper over Y. If ¥, is open, then Os, 75
satisfies the valuative criterion of properness over Y. If in addition X, is finite then
Os, Ty, is proper over Y.

The schemes 0,,T¥, ..., 0,,Tx, intersect if and only if oy, ..., 05 are all contained in
some o € Y. In this case the intersection equals 0,T% for the smallest such o. We set

&Tg: H 80T2.

dim o=1i

If Y is irreducible then Tx, and each 0,T%; is irreducible. Moreover the irreducible
components of 0Ty, are the 0,T% as o runs over one dimensional elements of 3. If
Y is smooth then we see that S(07%) is the delta set with cells in bijection with the
elements of ¥ — {{0}} and with the same ‘face relations’. In particular it is in fact a
simplicial complex and

[S(0Ts)| = (1%] = {0})/RZ,.

We say that (X', Xf) refines (X, ) if ¥/ refines ¥ and ¥/ — 3 is the set of elements
of ¥’ contained in some element of ¥ — ¥,. In this case 026T sy maps to Oy, 7%, and
in fact set theoretically 026T sy is the pre-image of Oy, T, in Tv.

If ¥ is a fan, then by line bundle data for ¥ we mean a continuous function 1 :
|X| — R, such that for each cone o € 3, the restriction 9|, equals some 1, € X*(S5).
To 1 we can attach a line bundle £, on Tx: On T, (with o € X) it corresponds to

the B, c,vnx-(s) Lr(x)-module
@ Lr(x).
)

XEX*(S
x—%>0 on o

Note that there are natural isomorphisms
Ly @ Ly = Ly,
and that
Ly =Ly,
We have the following examples of line bundle data.

(1) Or, is the line bundle associated to ¢ = 0.
(2) If ¥ is smooth then Zyp, is the line bundle associated to the unique such
function 1y, which for every one dimensional cone o € Y satisfies

U (X.(S)No) = Zso.

Suppose that « : S — S’ is a surjective map of split tori over Y. Then X*(a) :
X*(S8") = X*(S) and X.(a) : X.(S) = X.(9'), the latter with finite cokernel. We
call fans ¥ for X, (S) and ¥’ for X,.(S’) compatible if for all o € ¥ the image X.(a)o
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is contained in some element of ¥’. In this case the map o : T — «, T extends to an
S-equivariant map
a: Ty — (T ).
We will write
Oy /(aur)y (108 00) = Qi 0,1y, (l0g M/ M),

If for all o' € ¥’ the pre-image X,(a)~!(0’) is a finite union of elements of ¥, then
a: Ty — (a.T)s is proper.

If « is an isogeny, if ¥ and X' are compatible, and if every element of 3’ is a finite
union of elements of ¥, then we call ¥ a quasi-refinement of ¥'. In that case the map
a: Ty — (aT)s is proper.

Lemma 2.5. If « is surjective and #coker X, («) is invertible on 'Y then
a: (Ts, Ms) = ((a.T)sr, Msy)
1s log smooth, and there is a natural isomorphism

(X*(9) /X" (@) X"(S") @2 O, — Qy (a,1),, (l0g 20).

Z/

Proof: We can work Zariski locally on Ty. Thus we may replace T by T, and
(aT)sy by (T, for cones o and o’ with X, (a)o C o’. We may also replace Y by
an affine open subset U such that T'|y is trivial, i.e. each Lr(x) = Oy compatibly
with Lr(x) ® Lr(x') = L7(x + X'). Then the log structure on T, has a chart
Z[oY N X*(S)] = Or, sending x to

1e Oy(Y) = ‘CT(X)
Similarly the log structure on (.. T"),s has a chart Z[(¢')"NX*(S")] = O(a.1),, sending
x to

1e Oy(Y) = Ea*T(X)-
The lemma follows because

X*(a) : X*(S") — X*(9)

is injective and the torsion subgroup of the cokernel is finite with order invertible on
Y. O

We will call pairs (X,3) and (¥,%]) of fans and boundary data for S and 5,
respectively, compatible if ¥ and ¥’ are compatible and if no cone of ¥y maps into
any cone of ¥’ — ¥{. In this case

820Tg — 826 (a*T)Z/.

We will call them strictly compatible if they are compatible and > — ¥ is the set of
cones in ¥ mapping into some element of >’ — ¥.

Lemma 2.6. Suppose that o : S — S’ is a surjective map of split tori, that T/Y is
an S-torsor, and that (X,%g) and (X', %() are strictly compatible fans with boundary
data for S and S’ respectively. Then locally on Ty there is a strictly positive integer
m such that

* m
a Iazé(a*T)zf =) IaonE
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and
*
IaEOTE Do} Ia%(a*T)E,.

Proof: We may work locally on Y and so we may suppose that Y = Spec A is affine
and that each Lr(x) is trivial. It also suffices to check the lemma locally on 7.
Thus we may suppose that ¥ consists of a cone o and all its faces. Let o’ denote the
smallest element of ¥’ containing the image of o. Then we may further suppose that
¥’ consists of ¢’ and all its faces. We may further suppose that o € ¥y and ¢’ € X,
else there is nothing to prove.

Then

Ty, = Spec @ Lr(x)

XEX*(S)NeV

@ Lr(x)-

XEX*(S)N[%0 |00

and Oy, T is defined by

Moreover Tx X (4, 7),, (926(04*T)2/ is defined by
@ Lp(X™(a)x1 + x2)-

X1EX*(S")N|Ep[0V -0
x2€X*(S)NaV

Thus it suffices to show that for some positive integer m we have
XH(9) N80 D X (a)(X*(S") N [S|%0) + (X*(S) N o)
D m(X*(S) N [Se|*V0).
This is equivalent to
|20’0,v,0 — X*(Oé)|26’0’v’0 + U\/.

Suppose that x; € XY and x2 € 0¥. Then

X () (x1)(o =[5 = Xo|) = xa(Xu(a) (o — |Z = Zol)) € xal0” = [E" = Xg]) € Rag
and so

(X*(a)(x1) + x2) (0 = |2 = %) C Rso.
Thus
|Zol™0 D X*(a) 55"V + 0.

Conversely suppose that y € [3g|%V?. Let 7 denote the face of o, where y = 0.
Then 7 € ¥ — ¥,. Let 7" denote the smallest face of ¢’ containing X,(a)7. Then
€ ¥ — 3. We can find x; € |X5|%VY with x;(7/) = {0}. Note that if a € o and
x(a) = 0 then (X*(a)(x1))(a) = 0. Thus we can find € > 0 such that

X — X*(a)(exa) € 0.
It follows that
|20‘0,\/,0 C X*<a>|26|0,\/,0 + UV.
The lemma follows. [

Suppose that (3, ¥g) and (X', %)) are strictly compatible. We will say that

e 3 is open over Y if [20|% is open in X, (o)~ 135|%



62 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

e and that X is finite over X if only finitely many elements of ¥y map into
any element of Xj.

If o is an isogeny, if 3 is a quasi-refinement of ', and if (¥,3) and (X', %)) are
strictly compatible, then we call (X, %) a quasi-refinement of (X',%;). In this case
Yo is open and finite over Xj.

Lemma 2.7. Suppose that « : S — S’ is a surjective map of split tori, that T/Y is
an S-torsor, and that (X,%g) and (X', %() are strictly compatible fans with boundary
data for S and S’ respectively. If X is locally finite and Xq is open over X, then

GEOTE — 826 (Oé*T)E/
satisfies the valuative criterion of properness. If in addition ¥y is finite over ¥, then

this morphism is proper.

Proof: It suffices to show that if o € ¥, and if ¢’ is the smallest element of X
containing X, («)o, then
a,Tg — 8(,/ (Oé*T)g/
satisfies the valuative criterion of properness. However this is the map of toric varieties

T(0)sy0) — (CV*T)(UI)%(J/)'

As ¥y(0) is finite, it suffices to check that
U Xe@ ()’ + (o)) = | (7° + (0)=).
7'Do’ 720
T'exy TE€X0
Choose a point P € ¢° such that
X.(a)P € (X.(a)o)? C (o)°.
Then
(0" g = o' + RX,(a)(P).

[To see this choose non-zero vectors v; in each one dimensional face of ¢’. Then we
can write X, (a)(P) = >, pv; with each p; > 0. If \; € R, then for A sufficiently
large \; + Ap; € Ry for all 4, and so

Z Avi =Y (Ai + Mti)v — AXo()(P) € o’ + RX,(a)(P)]

Thus
(o"Yg =0 + X.(a){o)r.
Hence for all 7/ € ¥f with 7/ D ¢’, we have
()" + (o)r = ()" + Xi(a)(o)r
and so
Xu(@)7H(7)" + (0)r) = (0)r + Xu(a)7H()".
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We deduce that it suffices to check that

@+ |J X)) = (o) + | J ™

‘rl’ 30’/’ TEDEU
T'edy TELQ

The left hand side certainly contains the right hand side, so it suffices to prove that
for all 7/ € X with 7" D X,(a)o we have

(o)g + X, ()17 C (o) + U s

TOO
TEY)

Let 7 denote the map
T X*(S)R —» X*(S)R/<O'>R
Because X, (a)~!'7" and |J Y 7% are invariant under the action of RZ it suffices to
TEXQ

find an open set U C X, (S)r containing P such that
(rU) N7 X, ()7 C7 U 70,

TOO0
TEY

or equivalently such that

UN({o)r+ X.(a) ') C (o) + |

Thus it suffices to find an open set U C X, (S5)g containing P such that
(1) Un X, () H2]° C Urjzo 790
TE2Q
(2) UNX.(a)7'7" C Xoa) M55
(3) and for all open U’ C U containing P we have U' N ((o)r + Xi(a)"!7') =
U'NXi(a) 7.
Moreover in order to find such a U 5> P it suffices to find one satisfying each property

independently and take their intersection.
One can find an open set U > P satisfying the first property because

U 7 IZol” € X7 (a) =g
TOO
TEYD

are both open inclusions.

To find U > P satisfying the second condition we just need to avoid the faces of
X, (a)717" which do not contain P.

It remains to check that we can find an open U > P satisfying the last condition.
Suppose that X, (a) 7’ is defined by inequalities x; > 0 for ¢« = 1,...,7 with y; €
X*(S)g. Suppose that x; = 0 on o for ¢ = 1,...,s, but that x;(P) > 0 for i =
s+ 1,...,r. It suffices to choose U so that x; > 0 on U for i = s+ 1,...,r. For then if
r € X.(a)™7" and y € (0)g with x +y € U we see that

Xi(z +y) = xi(r) >0
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fori=1,...;s, while xy;(x +y) >0 for : = s+ 1,...,r. Thus for U’ C U we have
U'n{o)g+ X.(a) ') =U"N X, (a) 7,
as desired. [J

By a partial fan we will mean a collection ¥y of rational polyhedral cones satisfying
[ J (0) g 20;
e if 01,09 € Y, then o1 N oy is a face of o1 and of oy;
e if 01,09 € X, and if ¢ D oy is a face of o1, then o € X.
(Again note that ¥y may not be closed under taking faces.) In this case we will let
Yo denote the set of faces of elements of ¥y together with {0}. Then ¥4 and ¥ — X
are fans, and ¥y is boundary data for ¥,. [To see this suppose that 7; is a face of
0; € ¥ for i = 1,2. Then o1 N oy is a face of o7 and so 71 Noy =1 N (07 Noy) is a
face of 1 N oy and hence of go. Thus 7 N7 = 75 N (11 Noy) is a face of 7. If ¥ is a
fan and ¥, is boundary data for X, then ¥ is a partial fan, and ¥ D 3. Thus
820Tg = 8EOT§0.
If ¥y and X, are partial fans we will say that 3¢ refines X if every element of ¥ is
contained in an element of ¥ and if every element of X is a finite union of elements

of 3. In this case 3 also refines i’o
If 3¢ is a partial fan we will set

1Sl = {0} u | o =1%l.

o€
and
Sol” =15l = |J o
ceSo—0
We will call ¥
e smooth if each o € ¥ is smooth;
e full if every element of ¥y which is not a face of any other element of ¥, has
the same dimension as S
e open if |3y|° is open in X, (9)g;
e finite if it has finite cardinality;
e locally finite if for every rational polyhedral cone 7 C || (not necessarily in
¥o) the intersection 7N |[Xg|° meets only finitely many elements of ¥.

If ¥ is smooth, so is f]o. N
Suppose that ¥ is a partial fan. If ¥ D ¥ is a fan then the natural maps
820T§;0 — 8EOTZ
and
(TEO)SEOT — (TE)SEOT
are isomorphisms, and we will denote these schemes/formal schemes Js,T" and T3,

respectively. Moreover the log structures induced on TQO by Mio and by My are
the same and we will denote them Mg, . If Xf C X, is also a partial fan, then Té\g
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can be identified with the completion of T¥, along 0y T', and Mg, induces /\/lAé. If
o € Xy then we will let

(7%,)
denote the restriction of T3, to the topological space (0x,T%, ),. Thus the (7% ), for
o € ¥y form an affine open cover of T3, . We have

(T )10y =0
and
(TX/:\())O'I N (Té\o)UQ = (Ti/)\o)mﬁoz'
If 33}, refines ¥, then there is an induced map
Ty — Ty,

Continue to suppose that ¥, is a partial fan. We will call ¥, C ¥y boundary data
if, whenever o € X, contains ¢’ € ¥, then ¢ € X;. In this case ¥; is a partial fan
and TY, is canonically identified with the completion of T, along s, T .

We will also use the following notation.

° OTEAO will denote the structure sheaf of T3, .
° IT£0 will denote the completion of IanTio’ an ideal of definition for TQO.
® 7y, will denote the completion of Zyr . Thus IT£0 DIy,
bl O bl
o Q1T£0 Jspf R, (108 00) Will denote QlTZAO Jspf o (108 M), which is isomorphic to the

completion of QlTio JSpec Ry (108 00).

For o € 3 recall that Ig;OTi |7, corresponds to the ideal
0

of

@ Lr(x).

XETVNX*(S)

Also recall that if o ¢ ¥y then
%go,o,m = Uv N X*<S)
for all m, while if o € ¥, then

m %Eo,a,m = (D

By line bundle data for ¥y we mean a continuous function ¢ : [¥] — R, such that
for each cone o € io, the restriction 1|, equals some ¢, € X*(S). This is the same
as line bundle data for the fan Y, and we will write Ly for the line bundle on T3, ,
which is the completion of £, /T, . Note that

A N _ PN
Ew ® £,¢,/ — £w+w/,
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and that
£y = 22,
We have the following examples of line bundle data.
(1) OTZAO is the line bundle associated to 1) = 0.
(2) If X is smooth then Ijy, is the line bundle associated to the unique such

function g which for every one dimensional cone o € f]o satisfies

Suppose that a : S — S’ is a surjective map of tori, and that Xy (resp. ) is a
partial fan for S (resp. S’). We call ¥y and >, compatible if for every o € ¥ the

image X, (a)o is contained in some element of ¥ but in no element of 3 — % In
this case (3o, Xo) and (3, Xf) are compatible, and there is a natural morphism

We will write
1 _ 0l A A
The following lemma follows immediately from lemma [2.5]

Lemma 2.8. If « is surjective and #coker X, («) is invertible on Y then there is a
natural isomorphism

We will call ¥ and X, strictly compatible if they are compatible and if an element
of 3 lies in Y if and only if it maps to no element of ig — 3. In this case (i‘o, o)
and (), %)) are strictly compatible. We will say that

e 3 is open over X if [30|% is open in X, (o) 71334|%
e and that X is finite over X if only finitely many elements of ¥y map into
any element of Xj.

If o is an isogeny, if ¥y and 3 are strictly compatible, and if every element of X is a

finite union of elements of ¥, then we call ¥y a quasi-refinement of 3. In this case

Yo is open and finite over ¥j. The next lemma follows immediately from lemmas
and

Lemma 2.9. Suppose that ¥ and ¥y are strictly compatible.
(1) Ty, is the formal completion of T, along Os; (a.T), and T, is locally (on the
source) topologically of finite type over (O‘*T)/z\g)-
(2) If Xg is locally finite and if it is open and finite over X then T%, is proper
over (Oz*T)/Z\{).

Corollary 2.10. If « is an isogeny, if Yo is locally finite, and if Yo is a quasi-
refinement of X, then T3, is proper over (oz*T)§6.
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If ¥ and X, are compatible partial fans and if ¥} C Xf is boundary data then
Y0(X)) will denote the set of elements o € ¥, such that X,(a)o is contained in no
element of 3{ — X). It is boundary data for ¥,. Moreover the formal completion of
1Y, along the reduced sub-scheme of (OJ*T)/E\/l is canonically identified with Té\o(Z’l )-

If ¥} = {0’} is a singleton we will write ¥q(c”) for Xo({o'}).
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2.4. Cohomology of line bundles.

In this section we will compute the cohomology of line bundles on formal comple-
tions of torus embeddings. We will work throughout over a base scheme Y which is
connected, separated, and flat and locally of finite type over Spec Ry.

We start with some definitions. We continue to assume that S/Y is a split torus,
that T/Y is an S-torsor, that ¥ is a partial fan and that v is line bundle data for

Yo. If o € io then we set
Xsypoo={x €X*(S)Nc": x> onoc}.
For m > 0 we define X5, 4 ,m to be the set of sums of an element of Xy, 4,0 and an
element of Xy, 5. If 0 &€ 3y then
Xy p.0m = Xg0,0,0

for all m, while if o € ¥

ﬂ }:Eo,lp,a,m = @
m

Further suppose that y € X*(.9).
o Set Yy(1) = {r € X*(S): (1~ )(x) > 0},
e If U C Y is open let Hé0,¢,m<X)(U) denote the j* cohomology of the Cech
complex with 7*" term

M oo

XEX5),9,000...00;,0
ngzo,ﬂl,doﬁ..,ﬁdi,m,

Note the examples:
(1) Yo(x) N |Z0|° = 0 if and only if x € |XZo]".
(2) Yos, (x) N [36|® = 0 if and only if x € |X|¥°.

Also note that if ¥ is finite then, for m large enough, H é(w’m (x)(U) does not depend

on m. We will denote it simply H%07¢(X)(U ). It equals the cohomology of the Cech

complex
T zoow).

(0045 O'i)EE(i)+1
ooN...No; EXp

Lemma 2.11. If U is connected then

Hy,  0O(U) = Higypo_y, (0 (1%l L2 ()(0)).

Proof: Write M for Ly(x)(U). We follow the argument of section 3.5 of [Fu]. As
ooN...No;N|Z|" and o9 N ... N oy N [X0]° N Yy (x) are convex, we see that

H(Jcroﬂ..ﬂcfiﬂ\ﬂolo)—yw(x)<UO N...N a; N |EO|O, M)
B { M if j=0and (coN...No; N|Z|") NYy(x) =0

(0) otherwise.
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(See the first paragraph of section 3.5 of [Fu].) Thus the i term of our Cech complex
becomes

H H(anﬂ...ﬂaiﬁ\EOP)—Yw(x)<UO N...No N %)%, M).

(O’(),..,,Ui)ezé+1

Thus it suffices to show that the Cech complex with i"* term
0 0
H H(Uoﬂ...ﬁaiﬁ|20|0)—Yw(x) (00N ... Moy N [Z]”, M)

(0’0,...,0’1')626+1

computes
j 0
Hisjo-y,, (0 ([%0]", M).
To this end choose an injective resolution

M—TI° — T — .

as sheaves of abelian groups on |%|°, and consider the double complex

H H(()Uoﬁ‘..ﬂa'iﬂ|20‘0)fyd,(x) (0-0 n..N 0 N |EO|O’I])

(O’Q,.A.,a'i)ezgl—l

We compute the cohomology of the corresponding total complex in two ways. Firstly
the 7' cohomology of the complex

H(anﬁ...ﬁomlzo\o)—me)(00 N...No; N |%e]% 7Y

HO

(oom...mmmzo\o)—Yw(X)(00 N...MNo; N |20|0711)

equals
Hj

0
(Uoﬂ...ﬂo’iﬁ|20|0)—y1/,(x) (O—O n...N 0 N ‘EO| 7M)

(See theorem 4.1, proposition 5.3 and theorem 5.5 of chapter II of [Br].) This vanishes
for 7 > 0, and so the cohomology of our total complex is the same as the cohomology
of the Cech complex with " term

H H?O’oﬁ...ﬂ(fiﬂ‘zow)fyw(x) (O-O n..N 0; N |20|07 M)
(o‘o,...,oi)EEé"'l
Thus it suffices to identify the cohomology of our double complex with
Hisypo v, 0 (IZol", M).
For this it suffices to show that
(O> — HO (‘20|07I]) — HO’()GEO H20ﬁ|20‘ofyw(x)(0-0 m |EO|O7I]>

IEo\Owa(éc) gl
— H(ao,al)ezg H(aomam\zdoyyw(x)(ao No1N[Z[%Z77) — ...
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is exact for all j. Let Z7 denote the sheaf of discontinuous sections of Z7, i.e. Z/ (V)
denotes the set of functions which assign to each point of x € V' an element of the
stalk ZJ of Z7 at x. Then Z7 is a direct summand of Z7 so it suffices to show that

(O) — H&O‘O_YVJ(X)(‘EOP’IJ) — HUOEEO Hz(r]oﬂmo‘o,:Yw(X) (UO N |20|Oan)

— [igon)es2 H(anﬂall"‘l\EOP)—Yw(X)(O_O No1N[%%77) — ...

is exact for all j. However 77 is the direct product over z in [34|" of the sky-scraper
7’ sheaf at x with stalk ZJ. Thus it suffices to show that

= =
(0) = Higgov, 00 (1Z0l" Za) — Toges, Hogoismop-vy00 (00 N 1%l Z2)
-J
—) H(O‘()70'1)€E% HEJ0'000'10|20|0)_Y¢(X) (UO ﬂ 01 ﬂ |EO|O7I$) —_— ...

is exact for all z € |5o|° and for all j. If z € Yy(x) N|3o|° all the terms in this
sequence are 0, so the sequence is certainly exact. If z € |$o|° — Yy (x), this sequence
equals
0) — T/ — H T — H T — ..
00€Xp (00,01)€X2
r€a z€(opNo1)
A standard argument shows that this is indeed exact: Choose o € ¥y with = € o.

Suppose

(a(oyg, ...,0;)) € ker H T — H T

(00,--,04) €5 (00,-0i41)€ZGH
x€opN...No; r€opN...Noj41
Define
/ J
(d'(09,...,0i-1)) € | | 7
(0‘0,...,0‘1‘,1)626
rEopN...No; -1
by

a(og,...,0i-1) = alog,...,0i_1,0).

II =z

(o‘o,...,oi)626+1
x€opN...No;

If Oa’ denotes the image of @’ in

then
(0d’) (o0, ..., 04) = i(—l)ka(ag, oy Ohy ooy 03, 0) = (=1)a(0y, ..., 0;),
k=0
ie. a=(—1)dd. O
y Zieclili:(li\:i zv}il Ilfrte _1;[ }E} ngyw ) (1326]%, L1 (x)) denote the sheaf of Oy-modules on

U— Hsoo v, 00(%0l% L20)(U)).
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Lemma 2.12. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring Ry, let S/Y be a split torus, let T]Y
be an S-torsor, let Xy be a partial fan for S, let i be line bundle data for ¥, and let
g, denote the map TZA0 — Y. Suppose that ¥ is finite, non-empty and open. Then

Riﬂgo,*ﬁA = H Hfzo\ofyw(x)(mop, Lr(x))-
XEX*(S)
(Note that R'msy, L)) may not be quasi-coherent on'Y . Infinite products of quasi-
coherent sheaves may not be quasi-coherent.)
Proof: The left hand side is the sheaf associated to the pre-sheaf
Uv— H' (T4, |v. L)
and the right hand side is the sheaf associated to the pre sheaf
U JI Hisoovyon (1Bl L200)(0)).
XEX*(S)(U)
Thus it suffices to establish isomorphisms
H (TSl L)) = ] H|z:0|0 v, 00 (1Z0]”, L200)(0)),
XEX*(S)(U

compatibly with restriction, for U = Spec A, with A noetherian and Spec A con-
nected.
Write ago,mTio for the closed subscheme of Tio defined by IénEoTi . It has the same
0

underlying topological space as 05,15, . We will first compute
H (OsymTs, v, Lo/ Tog 1, Lo,

using the affine cover of dy, ,, T5 by the open sets T;, for o € 3. This gives rise to
a Cech complex with terms

11 . Lr(X)(U).

(ag,...,ai)ezé“ XEX*(S)
XEXxg,9,00M...004,0
ngzo,w,aoﬁmﬁai,m
As Yy is finite, we see that
7 m 7
H (OsomTs,lvs Lo/ Tog 1 Lo = D Heum)WO).
X€EX*(S)

Because A is noetherian, because O, ,,Ts, is proper over Spec A and because
Ly /Ig; Ty, Ly is a coherent sheaf on Os, T , we see that the cohomology group

H (OsymTs,|vs Ly /I82 Ew) is a finitely generated A-module, and hence, for fixed

m and 7, we see that the groups HE, y.m(X)(U) = (0) for all but finitely many x. In
particular

H' (s, Ts,|vs Lo/ Ty, Ts, Ly) = H H.m()(U).

XEX*(S)
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Moreover, combining this observation with the fact that {Hg, ,,,(x)(U)} satisfies
the Mittag-Leffler condition, we see that the system

{H" (9symTs v, Lo/ Togyrg Lo}

satisfies the Mittag-Leffler condition. Hence from proposition 0.13.3.1 of [EGA3| we
see that A ‘
HZ<T£0 ‘U? L@) = llm%m Hz(aﬂo,mTf)O |U7 Ew/IgLEOTgoﬁw)
HXeX*(S) hm(*m HZEo,w,m<X)(U>7
and the present lemma follows from lemma [2.11] [J

1%

Lemma 2.13. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring Ry, S/Y be a split torus, let T/Y be
an S-torsor, let Yo, be a partial fan for S, let

Y, C ¥ C ..

be a nested sequence of partial fans with Yo = |J; Xi and let 1 be line bundle data
for X. Fori=1,2,3,...,00 let 3, denote the map TZAZ_ —Y.

Suppose that for i € Z~q the partial fan 3; is finite, non-empty and open. Suppose
also that for all i € Z>¢ and all connected, noetherian, affine open sets U C Y, the
mverse system

{H}s 10y, 00(1%51°, Oy (U) }
satisfies the Mittag-Leffler condition. Then
Rt L) TT tm bl (550 200
XEX*(S)
Proof: The left hand side is the sheaf associated to the pre-sheaf
U— H(T% |u, L))
and the right hand side is the sheaf associated to the pre-sheaf
Ur— H 1LTHfzj|0—Yw(X)(|Zj‘07OY(U)) ® Lr(x)(U).
XE€X*(5)
Thus it suffices to establish isomorphisms
H (T v, L) = H 1}_%1 His 10y, 00 (1%5]% Oy (U)) ® Lr(x)(U),
XEX*(S)(Y)

compatibly with restriction, for U = Spec A, with A noetherian and Spec A con-
nected. .

We can compute H'(T,_|v, L)) as the cohomology of the Cech complex with i*"
term

H E@((Té\o@)(ﬂoﬁ--ﬂﬂi)

U)>
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and we can compute H Z'(TZAJ, |, £7)) as the cohomology of the Cech complex with ith
term

H Eg((TgAj)(aom...maiﬂU)-
(ao,.‘.,oi)EE;Jrl

Note that as soon as the faces of o in X; equals the faces of o in X then (1% ), =
(T%,)o. Thus

lim H EQ((TQ)(UOH---HW)'U) = H Eq@((Té\m)(Uoﬂ--ﬂUi)lU)?

< » »
(0'0,...,0’2‘)62;+ (0’0,...,0»;)62@

and

II 20T eonnonw)
(ao,...,oi)EE§+1

satisfies the Mittag-Leffler condition (with j varying but i fixed).
From theorem 3.5.8 of [W] we see that there is a short exact sequence

(0) — lg?lHi_l(TQj|U,£@) — H(TL |u, L) — hg? Hi(T§j|U,£@) — (0).

Applying lemma and the fact that lim, and lim. ' in the category of abelian
groups commute with arbitrary products, the present lemma follows. (It follows easily
from definition 3.5.1 of [W] and the exactness of infinite products in the category of
abelian groups that lim,_ and lim, ' commute with arbitrary products in the category
of abelian groups.) O

We now turn to two specific line bundles: Oz, and, in the case that ¥ is smooth,
0
Il .
3440

Lemma 2.14. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring Ry, let S/Y be a split torus, let T]Y
be an S-torsor, let ¥y be a partial fan for S, and let w3, denote the map Ty — Y.
Suppose that g is non-empty, finite and open and that |3o|° is convez.

(1) Then
i A L [Tiemov £0x) ifi=0
R Wzo,*OTgo { (0) i otherwise.
(2) If in addition ¥y is smooth then

i A N er‘z(ﬂv,o »C(X) ifi=0
o toz, { (0) otherwise.

Proof: The first part follows from lemma because Yy(x) N [20|° is empty if
X € |Xo|Y and otherwise, being the intersection of two convex sets, it is convex.
For the second part we have that Yy (x) N |Z6]® = 0 if and only if x € |Zo|¥°.

Thus it suffices to show that each Yy (x) N [%o|° is empty or contractible.
0
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To this end, consider the sets

and

Y'(x) = U o.
gEY
x#0 on o—{0}

If x >0 on o — {0} then x > ¢5 on o so that o N Yy, (x) = (. Thus
Y"(x) D Yyg (X) N [Z0]” 2 Y (x) N [S0]"
and
Y'(x) D {z € [So]”  x(x) <0} D Y'(x) N [%ol".
We will describe a deformation retraction
H Y (x) x [0,1] — Y"(x)

from Y"(x) to Y'(x), which restricts to deformation retractions

(Y¢§O (x) N [%0]%) x [0,1] — Yye O 120/°(x)
from Yy (x) N 130[° to Y7 (x) N [20|°, and

{z€[%": x(x) <0} x[0,1] — {z € [Z": x(x) <0}

from {z € [Eo|° : x(z) <0} to Y'(x) N|Zo|°. (Recall that in particular H |y (y)x[o.1]
is just projection to the first factor.) As {z € |%y|° : x(z) < 0} is empty or convex,
it would follow that Ywio (x) N|3o|° is empty or contractible and the second part of
the corollary would follow. N

To define H it suffices to define, for each o € ¥y with o C Y”(x), a deformation
retraction

Hy:0x[0,1] — 0o
from o to o NY’(x) with the following properties:
o If 0/ C o then Hy|orxpo1) = Ho-
° HU|(myin (x)N[S0[9)x[0,1] 18 a deformation retraction from o N Y%O (x) N [Zo]° to
anNY'(x)N |3
® Hy|(onize|solo: x(z)<0h)x[0,1] 1S & deformation retraction from o N {z € [Zo]° :
x(z) <0} to o NY'(x) N |[Zo]°
To define H,, let vy, ..., v, wq, ..., ws denote the shortest non-zero vectors in X,(5)
on each of the one dimensional faces of o (so that r + s = dim o), with the notation

chosen such that y(v;) <0 for all ¢ and x(w;) > 0 for all j. Note that 1 — x(v;) > 0
for all 4 and 1 — x(w;) <0 for all j. We set

HO(Z a;V; + Zbiwj,t) = Zaivi + (1 — t) szwj
i i A i



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 75

Because
oMYy, (X)N %0” = {>2; @ivi + 37, bjw; ¢ ai, by € Rypand
2 ai(l = x(vi)) + 32, b;(1 — x(wy)) > 0} N S|
and
on{z €||": x(z) <0} =
{57, av; + Zj bjw; . a;,b; € Rsg and )" a;x(v;) + Zj bix(w;) <0} N[

are convex sets, and because
ocNY'(x) = {Z a;v;: a; € Rso},
i

it is easy to check that it has the desired properties and the proof of the lemma is
complete. []

Lemma 2.15. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring Ry, let o : S — S" be an isogeny of
split tori over'Y', and let 3 (resp. ¥g) be a locally finite partial fan for S’ (resp. S).
Suppose that X is full. Also suppose that Xy is a quasi-refinement of X, and let 7"
denote the map TS, — (a*T)§6.
Then for i > 0 we have
RZ’/T:(\OTQO = (0),
while

~

O(Q*T)/\ — (WQOTX/;\O )kera.

26
If moreover ¥y and 3, are smooth then, for i > 0 we have
i ATA
R'm.Tyy, = (0).
while
A ~ AT ker v
Lysy — (M Ty )"

Proof: We may reduce to the case that Y = Spec A is affine. The map 7" is proper
and hence

Riﬂ' i\ OT/\
0
and '
lei\lﬁzo
and
coker (O, 1y, — (WQOTEAO Jhera
0
and

coker (Ig’% — (ﬂfIgzo)kem)
are coherent sheaves. Thus they have closed support. Their support is also S-
invariant. Thus it suffices to show that for each maximal element ¢’ € 3 the space
80/(a*T)§6 does not lie in the support of these sheaves. Let ¥y(0’) denote the subset
of elements o € ¥, which lie in ¢’, but in no face of o’. Then ¥y(¢’) is a partial
fan and T. é\o(a,) equals the formal completion of 7% along (90/T§6. Thus the formal
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completion of the above four sheaves along 8J/T§6 equal the corresponding sheaf for

the pair ¥y(0’) and {0’}, so that we are reduced to the case that ¥{ = {o'} is a
singleton.

In the case that 3 = {0’} then (a.T)s; and Y have the same underlying topo-
logical space. Let (" denote the map of ringed spaces Ty;, — Y. Then it suffices to
show that for ¢ > 0 we have

Riﬂﬁ*OTEAO = (0)
and

Ri”f,*zg,zo = (O)§
and that we have

O(Q*T)g() AN <7T{\’*OT2AO)kera
and
Iz/a\,zg] — (ﬂﬁ*Z(QEO)kem.

This follows from lemma [2.14] (Note that

[T o= & I cw.

XEIT0lYNX*(S) gelker a)” xe[So|VNX*(S)
Xlkera:§

where ker a acts on the £ term via &; and that
{x € [Z]"NX*(9) : Xlkera = 1} = [Eo[" N X"(S") = {0} N X*(S).

Vv,0

These assertions remain true with |3o|V'? replacing |[Zo|¥ and |[{o’}|V® replacing

{o’}[") O

Lemma 2.16. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring Ry, let S/Y be a split torus, let T]Y
be an S-torsor, let ¥y be a partial fan for S, and let 73, denote the map of ringed
spaces Ty, — Y. Suppose that g is non-empty, full, locally finite and open, and that
120[° is convex.

(1) Then

P A o [Lgsyv £x) ifi=0
f'ms, O, { (0) i otherwise.

(2) If in addition ¥o is smooth then

i A TN Hez vo £(x) ifi=0
imo Loz, = { (03< > otherwise.

Proof: Let 01,09, ... be an enumeration of the 1 cones in io. Let A® C || denote
the convex hull of oy, ...,0;. It is a rational polyhedral cone contained in |¥g|, and
there exists iy such that for i > iy the cone A® will have the same dimension as
X, (S)r. Let OA® denote the union of the proper faces of A®; and let A denote
the closure of [Xo| — A® in |Zy].
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Define recursively fans ¥ and boundary data Z(()i) as follows. We set X001 = io
and 280_1) =3Y,. For i > iy set
n@ = {o N AYD o 8A(i), cNADC: 5¢e »-by,

Then £ refines 01 and we choose E to be the unique subset of ¥ such that
(2@, Egi ) refines (301, E(Z V). Then Z( = Y®. We also check by induction on i
that

e 2O UXED (30 N nED) s finite;

e and 2V is locally finite.
(The point being that the local finiteness of E(()i_l) implies that only finitely many
elements of X", and hence of £(~1_ meet both A® — A and X,(S)g — AD.)

Now define $(>) (resp. Z(()OO)) to be the set of cones that occur in X (resp. Z(()i))
for infinitely many 7. Alternatively

20 = | Jloex®: o c A},

Also let ¥(>)s™ denote a smooth refinement of X(*) and let X (20)sm - Jenote the
elements of o € X()s™ for Wthh there exists 7 € ¥ such that ¢ C 7 and o N7° #£ 0.

(See lemma 2 . Then ()™ ig a fan, E(Oo)s provides locally finite boundary

data for 2™ we have Zé o0)sm _ yr(oc)smand (x(00)sm E(Oo)’sm) refines (3o, Xo).
Moreover $5°*™ is open. We also define "™ to be the set of o € L™
that ¢ C A® but o ¢ IA®. Note that:

such

. |E£O° 0 = A — aA(i) is convex;
and Z((]oo),sm _ Ui>0 EEOO),Sm‘
(For the last of these properties use the fact that 5™ is open.)

By lemma it suffices to prove this lemma after replacing the pair X, by Zéoo)’sm
This lemma then follows from lemmas 2.13] and 2.14 OJ
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2.5. The case of a disconnected base.

Throughout this section we will continue to assume that Y s a separated scheme,
flat and locally of finite type over Spec Ry. We prove nothing new in this section,
we simply explain how to re-express the last two sections in a way that makes sense
over a disconnected base, so that the results we have already established immediately
extend.

Let S be a split torus over Y and let 7/Y be an S-torsor. By a rational polyhedral
cone o in X,(5)r we shall mean a locally constant sheaf of subsets o C X, (S)g, such
that

e for each connected open U C Y the set o(U) C X,(S)r(U) is either empty or
a rational polyhedral cone,

e and the locus where o # () is non-empty and connected. We call this locus
the support of o.

We call ¢’ a face of o if for each open connected U either o(U) = o’(U) = 0 or the
cone o' (U) is a face of o(U). We call o smooth if each o(U) is smooth. By a fan ¥
in X,(S)r we mean a set of rational polyhedral cones in X,(S)g, such that

e if o € ¥ then so is any face o’ of o;
e if 0,0’ € ¥ then o N o’ is either empty or a face of o and o’,
e any connected component of Y arises as the support of some element of 3.

Thus to give a fan in X,(S)g is the same as giving a fan in X,(S)r(Z) for each
connected component Z of Y. If U is a non-empty connected open in Y then we set
Y(U)=A{cU): o€} —{0}.

It is a fan for X, (S)r(U).
We call ¥ smooth (resp. full, resp. finite) if each X(U) is. We define a locally
constant sheaf || of subsets of X, (S)g by setting

2|(U) = | o)

(resp.

=) = J (o)~ {0})

ceX

for U any connected open subset of Y. We will call |X| (resp. |X|*) convex if |X|(U)
(resp. |X[*(U)) is for each connected open U C Y. We also define locally constant
sheaves of subsets ||V and |X]V0 of X*(S)g by setting

S[(U) = {x € X*(5)=(U) : X(IZ|(V)) C Rxo} =[] o(U)"

and
SOV = {x € X (S)(U) : X(IZF(U)) C Rog) = () o(0)"".

oeX
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We call ¥ a refinement of 3 if each ¥'(U) is a refinement of X(U) for each open,
connected U. Any fan ¥ has a smooth refinement ¥’ such that every smooth cone
o € X also lies in X',

To a fan ¥ one can attach a scheme Ty flat and separated over Y and locally
(on Tyx) of finite type over Y, together with an action of S and an S-equivariant
embedding T' < Tx. It has an open cover {T,},cx, with each T, relatively affine
over Y. Over a connected open U C Y this restricts to the corresponding picture
for ¥(U). We write Or, for the structure sheaf of 7%. If ¥ is smooth then 7%/Y is
smooth. If ¥ is finite and |X| = X,(9)g, then T% is proper over Y. If ¥ refines ¥
then there is an S-equivariant proper map

Ty — Tk

which restricts to the identity on 7.
By boundary data we shall mean a proper subset g C X such that ¥ — ¥ is a fan.
If U C Y is a connected open we set

Yo(U)={cU): o€ Xy} — {0}

If ¥ is boundary data, then we can associate to it a closed subscheme 0y, Ty, C Ty,
which over a connected open U C Y restricts to ds,w)(T'|v)sw) C (Tv)sw)-

In the case that X is the set of elements of > of dimension bigger than 0 we shall
simply write 0Ty, for Oy, Tx. Thus T' = Ty, — 01x,. We will write Zyp, for the ideal
of definition of 0Ty, in Op,. We will also write My — Orp, for the associated log
structure and Qp_ .. 5 (log 0o) for the log differentials Q. g . g, (log Mx).

If ¥ is smooth then 0Ty is a simple normal crossings divisor on 7% relative to Y.

If 0 € ¥ has positive dimension and if >y denotes the set of elements of 3 which
have o for a face, then we will write 0,1y, for Os,Tx. It is connected and flat over
Y, and, locally on Y, it has codimension in Ty, equal to the dimension of . If ¥ is
smooth then each 0,7y is smooth over Y. The schemes 9,,T%, ...,0,, Ty intersect if
and only if o1, ..., 04 are all contained in some ¢ € Y. In this case the intersection
equals 0,T% for the smallest such 0. We set

@Tg: H agTz.

dim o=1i

If the connected components of Y are irreducible then each 0,T% is irreducible.
Moreover the irreducible components of 0T% are the 0,7y as o runs over one dimen-
sional elements of ¥. If ¥ is smooth then we see that S(97Ty) is the delta set with
cells in bijection with the elements of > with dimension bigger than 0 and with the
same ‘face relations’. In particular it is in fact a simplicial complex and

s@T)= I Er2)/R:,

Zemo(Y)

We will call ¥y open (resp. finite, resp. locally finite) if 3o(U) is for each open
connected U C Y. If ¥ is finite and open, then Oy, 7% is proper over Y.

By a partial fan in X,(S) we mean a collection ¥y of rational polyhedral cones in
X, (S) such that
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e X does not contain (0) C X,(S5)(U)g for any open connected U;
e if 01,09 € ¥ then o1 N oy is either empty or a face of o7 and of oy;
e if 01,09 € ¥ and if 0 D 05 is a face of o1, then o € .

In this case we will let £y denote the set of faces of elements of % together with {0}
supported on any connected component of Y. It is a fan, and X is boundary data
for ¥y. By boundary data ¥, for ¥y we shall mean a subset ¥; C ¥, such that if
o € Yy contains o1 € Y1, then o € ¥;. In this case ¥; is again a partial fan and
boundary data for ¥,. We say that a partial fan Xg for X, (S) refines a partial fan
¥, for X, (S) if every element of ¥y lies in an element of 3 and if every element of
¥{ is a finite union of elements of 3.

If X is a partial fan we define locally constant sheaves of subsets [3g], [Zo]*, [Zo|”

and |30|V0 of X,(S)r or X*(S)r to be [Sol, |Zol*, |Zo]¥ and |So|¥0 respectively. We
also define a sheaf of subsets || by
S =) = |J o
o€ (U)—0(U)

for any connected open set U C Y. We will call |Zg| (resp. [20|%) conver if |30|(U)
(resp. |20|°(U)) is convex for all open connected subsets U C Y.

We will call ¥y smooth (resp. full, resp. open, resp. finite, resp. locally finite) if
¥o(U) is for each U C Y open and connected. We will call ¥y non-degenerate if for

each non-empty connected open subset U C Y the set ¥o(U) is non-empty.
If X is a partial fan we will write

Oy, T
for Oy, 15, ;
Ty,
for the completion of Tg along ds, 7% ; and
s, — O,

for the log structure induced by Mg . We make the following definitions.
° ITZAO will denote the completion of IaEOTiO’ the sheaf of ideals defining O, T: S,

It is an ideal of definition for T, .
7}y, will denote the completion of Zyr_ , the sheaf of ideals defining Js, 7%, .
? 0

Thus Zpy,, C Lry -
° QszAO/Spf R, log 00) will denote Q%ZAO/SprO(log M)

We will write

(resp.
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for the sheaf (of abelian groups) on Y such that for any connected open subset U C Y

we have
Il 0| = I1 Lr(x)

XE[Zo[Y U XER[V(U)NX*(S)(U)
(resp.

II 0] = 11 Lr(x))-

X€E[Zo]V-0 U XE[Z[VOU)NX*(S)(U)

Suppose that o : § — S5’ is a surjective map of split tori over Y. Then X*(«) :
X*(9") — X*(9) and X, () : Xi(S)r = X.(S)r. We call fans ¥ for X,(S) and ¥’
for X,(S") compatible if for all ¢ € ¥ the image X, (a)o is contained in some element
of X’. In this case the map o : T — «,T extends to an S-equivariant map

a:Ts — (aT)y.
We will write
Q;E/(Q*T)E/ (10g OO) = Q%Z/(Q*T)g/ (log ME/ME/).
The following lemma is an immediate consequence of lemma [2.5]

Lemma 2.17. If « is surjective and #coker X, («) is invertible on Y then « :
(Ts, Mx) = ((a.T)sr, Msy) is log smooth, and there is a natural isomorphism

(X*(8)/X™(a)X(5") @z O, — QU (a1, (l0g 00).

s
If o is an isogeny, if ¥ and ¥’ are compatible, and if every element of 3’ is a finite
union of elements of 3, then we call ¥ a quasi-refinement of ¥'. In that case the map
a: Ty — (o, T)s is proper.
Suppose that a : S — S’ is a surjective map of tori, and that Xy (resp. X)) is a
partial fan for S (resp. S’). We call ¥y and >, compatible if for every o € ¥ the

image X, (a)o is contained in some element of 3 but in no element of 3} — ¥4, In
this case there is a natural morphism

a: (Té\o’ /2\0) — ((Q*T>§6a /2\6)'
We will write
Q%FEAO/(a*T)g(S (log o0) = QITZAO/(O‘*T)QB (log MgO/M§6),
The following lemma follows immediately from lemma [2.8]

Lemma 2.18. If v is surjective and #coker X, («) is invertible on' Y then there is a
natural isomorphism

(X*(S9)/X*(a)X*(S") @z Oy = Q%FEAO/(OC*T)QI (log 00).

We will call ¥y and X strictly compatible if they are compatible and if an element
of 3 lies in 3 if and only if it maps to no element of 3} — 3. We will say that
e 3 is open over X if [2]°(U) is open in X, (a)7134|°(U) for all connected
opens U C Y;



82 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

e and that X is finite over X if only finitely many elements of ¥y map into
any element of Xj.

If « is an isogeny, if ¥y and X, are strictly compatible, and if every element of 3 is a
finite union of elements of ¥, then we call ¥y a quasi-refinement of 3. In this case
Yo is open and finite over 2{. The next lemma follows immediately from lemma [2.9]

Lemma 2.19. Suppose that 3 and ¥ are strictly compatible.
(1) Ty, is the formal completion of T, along Os; (a.T), and T, is locally (on the
source) topologically of finite type over (a*T)/Z\,O.
(2) If Xg is locally finite and if it is open and finite over ¥ then T%, is proper
over (a*T)/Z\é.

Corollary 2.20. If « is an isogeny, if Yo is locally finite, and if Xo is a quasi-
refinement of Xy then TY, is proper over (a*T)gé).

If ¥y and ¥, are compatible partial fans and if ¥} C Xf is boundary data then
Y0(X)) will denote the set of elements o € ¥y such that X,(«)o is contained in no
element of 3{ — 3. It is boundary data for 3,. Moreover the formal completion of

T, along the reduced sub-scheme of (oz*T)g,1 is canonically identified with TzAO(E'l )-

If ¥} = {0’} is a singleton we will write ¥y(c”) for Xo({o'}).
The next two lemmas follow immediately from lemmas and respectively.

Lemma 2.21. Let Y be a separated scheme which is flat and locally of finite type
over an irreducible noetherian ring Ry, let o : S — S’ be an isogeny of split tori over
Y, let 3 (resp. ¥o) be a locally finite partial fan for S (resp. S). Suppose that Y
is separated and locally noetherian, that X is full and that ¥ is locally finite. Also
suppose that X is a quasi-refinement of ¥. Let 7" denote the map T/, — (a*T)ﬁé.
Then for i > 0 we have ’
Rlﬂ-i\OTQO = (0),
while
O(Q*T)gé) — (W’COTZAO)kera-

If moreover ¥y and 3, are smooth then, for i > 0 we have

while
A ~ ATA ker a

Lemma 2.22. LetY be a separated scheme which is flat and locally of finite type over
an irreducible noetherian ring Ry, let S/Y be a split torus, let T/Y is an S-torsor,
let Xo be a partial fan for S, and let w§  denote the map TS, — Y. Suppose that Y
1s separated and locally noetherian, that g is non-degenerate, full, locally finite and
open, and that |3o|° is conver.

(1) Then

‘i A = er\zow ['(X) ifi1=0
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(2) If in addition ¥o is smooth then

Riﬂ'go,* A { er‘xol\/,o E(X) lf Z = 0

Toxo = 0) otherwise.

83
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3. SHIMURA VARIETIES.

In this section we will describe the Shimura varieties associated to G, and the
mixed Shimura varieties associated to Gslm) and G%m). We assume that all schemes
discussed in this section are locally noetherian.

3.1. Some Shimura varieties.

3.1.1. Moduli Problems: By a G,-abelian scheme over a scheme Y /Q we shall mean
an abelian scheme A/Y of relative dimension n[F : Q| together with an embedding

i:F—End(A/Y)g

such that Lie A is a locally free right Oy ®¢g F-module of rank n. By a morphism (resp.
quasi-isogeny) of G,-abelian schemes we mean a morphism (resp. quasi-isogeny)
of abelian schemes which commutes with the F-action. If (A,7) is a G,-abelian
scheme then we give A the structure (AY,i") of a G,-abelian scheme by setting
i¥(a) = i(°a)’. By a quasi-polarization of a Gy-abelian scheme (A,1)/Y we shall
mean a quasi-isogeny \ : A — A of G,-abelian schemes, some Q*-multiple of which
is a polarization. (Note that according to this convention, if A is a polarization, then
—\ is a quasi-polarization.) If Y = Speck with k a field, we will let ( , ), denote
the Weil pairing induced on the adelic Tate module V' A (see section 23 of [M]).

Lemma 3.1. If k is a field of characteristic 0 and if (A,i,\)/k is a quasi-polarized
Gp-abelian scheme, then V,(A X k) is a free F,-module of rank 2n.

Proof: We may suppose that k is a finitely generated field extension of QQ, which
we may embed into C. Then

(Vo(A x k) ®q,, C) = (Lie Ay ®;, C) & (Lie Ay @4 C),

so that V,(A x k) ®g,,C is a free F ®gC-module. As F ®C = F,®gq,,C we deduce
that V,(A x k) is a free F,-module, as desired. (]

By an ordinary G-abelian scheme over a Z,)- scheme Y we shall mean an abelian
scheme A/Y of relative dimension n[F' : Q], such that for each geometric point 7 of
Y we have #A[p](k(7)) > p"F"¥, together with an embedding

1 OF,(p) — End (A/Y)

such that Lie A is a locally free right Oy ®z,, OF,p-module of rank n. By a mor-
phism of ordinary G, -abelian schemes we mean a morphism of abelian schemes which
commutes with the Op,,)-action. If (4,7) is an ordinary G,-abelian scheme then we
give AY the structure, (AY,7"), of a G,-abelian scheme by setting i¥(a) = i(‘a)¥. By
a prime-to-p quasi-polarization of an ordinary G,-abelian scheme (A,i)/Y we shall
mean a prime-to-p quasi-isogeny A : A — AV of ordinary G,-abelian schemes, some
Z(Xp )—multiple of which is a prime-to-p polarization.

If U is an open compact subgroup of G, (A>) then by a U-level structure on a
quasi-polarized G,-abelian scheme (A, i, \) over a connected scheme Y/Spec Q with

Z(p)
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a geometric point 7, we mean a (Y, 7)-invariant U-orbit [n] of pairs (ng,n;) of A>-
linear isomorphisms
o : A —= A®(1)y = VGpy
and
m Ve Qg A® = VAy
such that
m(az) = i(a)m(z)
for all a € F' and z € V,, ®g A>, and such that

(mz, my)x = mo(x, y)n
forall z,y € V,,®pA*. This definition is independent of the choice of geometric point
y of Y. By a U-level structure on a quasi-polarized G,-abelian scheme (A, i, ) over
a general (locally noetherian) scheme Y/Spec Q, we mean the collection of a U-level
structure over each connected component of Y. If [(ng,n:1)] is a level structure we

define ||no|| € QZ, by o
|70l ImoZ = Z(1).

Now suppose that U? is an open compact subgroup of G,,(A*?) and that N; < N
are non-negative integers. By a UP(Nj, Ny)-level structure on an ordinary, prime-to-
p quasi-polarized, G,-abelian scheme (A, 7, \) over a connected scheme Y/Spec Z,
with a geometric point 7, we mean a m(Y,7)-invariant UP-orbit [n] of four-tuples
(ny, 7, C,n,) consisting of

e an A*P-linear isomorphism 75 : AZ" —= A®P(1)y = VPG, 5;
e an A7’P-linear isomorphism
Vi ®@g A®P — VP A,
such that
(MY, my)x = no(z, Y)n
for all z,y € V,, ®g A>P;

e a locally free sub-Op ,)-module scheme C' C A[p™?], such that for every
geometric point y of Y there is an Op ,)-invariant sub-Barsotti-Tate group

Ng]

6§ C Aj[p*™] with the following properties
— Gy = Gyl i
— for all N the sub-group scheme C;[p"] is isotropic in A[p"]; for the \-Weil
pairing,
— A;[p™]/ 5§ is ind-etale,
— the Tate module T'(Az[p>]/ 57;) is free over Op,, of rank n;

e and an isomorphism
M o0 A/ (07 Ay + An) — A[p™]/(A[p™] N O)
such that

np(az) = i(a)n,(x)
for all @ € Oy and = € p*NlAn/(p*NlAm(n) + Ay).
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This definition is independent of the choice of the geometric point 7 € Y. By a
UP(Ny, Ny)-level structure on an ordinary, prime-to-p quasi-polarized, G,-abelian
scheme (A,7,\) over a general (locally noetherian) scheme Y/SpecZ,, we mean
the collection of a UP(Ny, Na)-level structure over each connected component of Y.

It [(nf, m1s C,mp)] is & level structure we define [|ng|| € Z(,, ., by

|6l |meZ” = Z#(1).
By a quasi-isogeny (resp. prime-to-p quasi-isogeny) between quasi-polarized, G-

abelian schemes with U-level structures (resp. ordinary, prime-to-p quasi-polarized,
Gp-abelian schemes with UP(Ny, Ny)-level structures)

(8,0) : (A, i, A, [n]) — (A" X In])

we mean a quasi-isogeny (resp. prime-to-p quasi-isogeny) of abelian schemes § €
Hom (A, A')g (resp. B € Hom (A, A')z, ) and § € Q™ (resp. 6 € Z(Xp)) such that

o foi(a) =1(a)of forall a € F (resp. Opp);

e 0A=/YoNop;

o [(0n0, (V) om)] =[] (vesp. [(6ng, (V*B) o ni, BC, B omp)] = [1])-
Lemma 3.2. Suppose that T' is an Opp-module, which is free over O, of rank 2n,
with a perfect alternating pairing

(, ):TxT—2Z,
such that
(az,y) = (z,“ay)
forallz,y € T and a € Op,. Also suppose that TcCTisa sub-Opp-module which

is isotropic for ( , ) and such that T/f is free of rank n over Op,. Finally suppose
that

M0 N A/ (0N Ay + M) 2 MT/(p T 4 T)
is an Opp-module isomorphism.
Consider the set [n] of isomorphisms
n:N,®Z,—T
such that
o 1(ax) = an(x) for all a € Op,y);
e there exists & € Z,; such that
(nz,ny) = 0{z, y)n
forall z,y € \,, ® Zy;
° n((p_NQAm(n)) ®Zp+ N, @ Zy) = p~NeT + T
e the map
PN/ 7N Ny + M) 5 pT T (p7 T 4 T)
induced by n equals n,.
Then [n] is non-empty and a single U,(Ny, No)-orbit.
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Proof: Let ey, ..., e, denote a Op,-basis of T/Tv . Note that ( , ) induces a perfect

pairing between T and T'/T. We recursively lift the e; to elements ¢; € T with ¢;
orthogonal to the O, span of the €; for j < 7. Suppose that e;, ..., €;_; have already

been chosen. Choose some lift €] of e;. Then choose t € T such that

o (t,xy = (e, x) forall x € @;;11 OFrp€;,

e and (t,ae]) = (€}/2, ae}) for all v € OF "
(If p = 2 some explanation is required as to why we can do this. The map

Orp — Zy
a — (el ael)
is of the form
a — tr pio(fa)

for some § € (Dp,)"'. Because p = 2 is unramified in F/F*, we can write

B =~ — ¢y for some vy € D;;,. Thus the second condition can be replaced by the
condition

(t, a€;) = tr pyg(ya)
for all a € (’)}iﬂ,:p’l. Now it is clear that the required element ¢ exists.) Then take
e; = e, —t. Then ¢; is orthogonal to @;;11 Oppe;. Moreover for o € Op,, we have
(€, aei) = (e, a€) = (t,(a —“a)e;)
= (eh,aef) — (€/2, (a — “a)e;)
(€}, ael) + (e}, cae))) /2
= 0.
Thus we can write L
T=ToT
with 7" an isotropic Op,-subspace of T', which is free over Op, of rank n. We see
that _ B
T" = Homy, (T, Z,).
The lemma now follows without difficulty. [

Corollary 3.3. If Y is a Q-scheme with geometric point gy, if (A,i,\)/Y is an
ordinary Gy,-abelian scheme, and if [(nf,n7,C,n,)] is a UP(Ny, N2)-level structure on
(A,i, ), then there is a unique Uy(Ny, No)-orbit of pairs of isomorphisms

Mo Zpg — Lp(l)y
and
My : N ®Z, — T,Ay
such that
o nip(ax) = amp(x) for all a € Op ),
® (M, T pY)x = Nop(T,Y)n for all x,y € Ay, @ Zy,

o 7fll,z)pijvzjxn,(n)/An,(n) - C;
® 1)1, induces 1.
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Proof: This follows on combining the lemmas [3.1] and 3.2] O

Corollary 3.4. Suppose that'Y is a scheme over Spec Q. There is a natural bijection
between prime-to-p quasi-isogeny classes of ordinary, prime-to-p quasi-polarized G,,-
abelian schemes with UP(Ny, No)-level structure and quasi-isogeny classes of quasi-
polarized G,-abelian schemes with UP(Ny, Ny)-level structure.

Proof: We may assume that Y is connected with geometric point . We will show
both sets are in natural bijection with the set of prime-to-p quasi-isogeny classes of
four-tuples (A, 1, A, [n]), where (A, 1) is a G,-abelian scheme, A is a prime-to-p quasi-
polarization of (A, i), and [n] is a w1 (Y, y)-invariant UP(Ny, Ny)-orbit of pairs (19, 71),
where

o 1y : AP X 7, = A®P(1) x Z,(1),
e and 7y : A, @ (A™P x Z,) = VP Ay x T, Ay satisfies

00T, Y)n = (MT, NY) -

There is a natural map from this set to the set of quasi-isogeny classes of quasi-
polarized G,-abelian schemes with UP (N7, Na)-level structure, which is easily checked
to be a bijection. The bijection between this set and the set of prime-to-p quasi-
isogeny classes of ordinary, prime-to-p quasi-polarized G,-abelian schemes with a
UP(Ny, Ny)-level structure, follows by the usual arguments (see for instance section
I11.1 of [HT]) from corollary [3.3] O

3.1.2. Hecke actions: If (A,i,\,[n])/Y is a quasi-polarized, G,,-abelian scheme with
U-level structure and if g € G,,(A>) with U’ D ¢g~'Ug, then we can define a quasi-
polarized, G,-abelian scheme with U’-level structure (A, 1, A, [n])g/Y by

(A> i A [(7707 771)])9 = (Av i A, [(V(g)ﬁo, o g])

This action takes one quasi-isogeny class to another.
If (A,i,A,[n])/Y is an ordinary, prime-to-p quasi-polarized, G,-abelian scheme
with UP(Ny, No)-level structure and if g € G,,(A%)°"4> with

(U")(N1, Ny) D g~ 'UP(Ni, Na)g
(so that in particular N; > N/ for i = 1,2), then we can define an ordinary, prime-to-p

quasi-polarized, G,-abelian scheme with (U")? (N7, Nj)-level structure (A, i, A, [n])g/Y
by

(A, i\ (6, 1. Comp)])g = (Ai, A [(v(g”)n, 0 0 ¢, Clp™],mp 0 gy)])-

Recall the definition of ¢, towards the end of section [1.2} If (U')?(N{,Nj) D
gp_lUi”(Nl, N3)s, (so that in particular Ny > Nj and Ny > Nj), then we can define
an ordinary, prime-to-p quasi-polarized, G-abelian scheme with (U’)?(N], N})-level
structure (A, 7, A, [7])s,/Y by

(A, 4, A [(ng, 17, Cmp)])sp = ,
(A/Clpl, 1, EN), [(png, F (), Clp 2]/ Clpl, F(np)]):
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where
A ~
F) 2 A/Clp] 25 4Y/Clp) = AYJClpl* > (A/Clp)"
with the last isomorphism being induced by the dual of the map A/C[p] — A induced
by multiplication by p on A; where F(n]) is the composition of n} with the natural

map VPA = VP(A/C[p)); and where F(n,) is the composition of 7, with the natural
identification

AlpM]/(C N APp™MY) = (A/Clp) ™)/ (Cp™ ] /Ol 0 (A/Cle)) ™).

If Y is an [F,-scheme then ¢, is the composite of pull-back by absolute Frobenius
followed by forgetting some of the structure.

Together these two definitions give an action of G,,(A>)°rd. This action takes one
prime-to-p quasi-isogeny class to another.

With these definitions the correspondence of corollary[3.4)is G, (A>)°-equivariant.

3.1.3. Representability: If U is a neat open compact subgroup of G, (A>) then the
functor that sends a (locally noetherian) scheme S/Q to the set of quasi-isogeny
classes of polarized G,-abelian schemes with U-level structures is represented by a
quasi-projective scheme X,y which is smooth of relative dimension n?[F* : Q] over
Q. Let

[(Aunw’ /I:quV7 Aunlv’ [nunlv])]/Xn’U

denote the universal equivalence class of polarized G,-abelian schemes with U-level
structure. If U" D ¢ 'Ug then there is a map g : X,y — X, arising from
(Aumiv guniv \univ [punivlyg /X0 - and the universal property of X, r7. This makes
{X, v} an inverse system of schemes with right G, (A>)-action. The maps g are
finite etale. If Uy C Us is a normal subgroup then X, 1, /X, v, is Galois with group
Uy /Us.

There are identifications of topological spaces:

Xnu(C) = Go(Q\(Ga(A®) /U x H7) 2= Ga(Q\(Ga(A%)/U x ;)

compatible with the right action of G, (A>). (See sections 7 and 8 of [Ko|. Note that
ker'(Q, G,) = (0), as is explained in section 7 of [Ko].) More precisely we associate
to (g,1) € Go(A>®)/U x £} the torus (A, ®zR)/A, with complex structure coming
from I; with polarization corresponding to the Riemann form given by ( ; ); and
with level structure coming from

m: A, @A L A, @ A% = V((A, @z R)/A,)

and
r — —v(g)xC,

where ¢ = limy e2/N € Z(1). We deduce that

mo(Xpu X SpecQ) Gn(Q\Gn(A)/(UGH(R)T)
Gn(QN(Gn(A®)/U x mo(Gn(R)))
Cn(Q\Cn(A)/UCK(R)".

21111
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If UP is neat then the functor that sends a scheme Y/Z,) to the set of prime-to-p
quasi-isogeny classes of ordinary, prime-to-p quasi-polarized, G -abelian schemes with
UP(Ny, Ny)-level structure is represented by a scheme X' Up(Nl No) quasi-projective
over Z). (See theorems 3.4.1.9 and 3.4.2.5 in [Lad]. Note that, by theorem 3.4.1.9
in [La4] the naive moduli problem there is already smooth, and hence the submoduli

problem with the right Lie algebra condition agrees with the normalization in theorem
3.4.2.5 in [Lad].) Let

(AR08 AN [ )] LSS (v v

denote the universal equivalence class. If g € G,(A*) and (UP)'(N{,Nj}) D
g 'UP(Ny, Ny)g, then there is a quasi-finite map

. ord ord
9+ XU (N, Na) T Xuey (v

arising from (AR, {univ, \univ “mv])g/Xsrgp (N1,Np) and the universal property of
X;r(dUp),(N{ NG If g € Gn(A‘X’)Ord * then the map ¢ is etale, and, if further Ny, =
N}, then it is finite etale. If UP(Ny, N2) is a normal subgroup of (UP)'(Nj, Na)
then Xﬁrgp(Nl N2)/Xsf(%p),(N{7N2) is Galois with group (U?)'(Ny)/UP(Ny). There are
G, (A>)° " equivariant identifications
Xsr((]iP(Nl Na) X Spec@ X, JUP(N1,Na)-
The scheme X e (N1, Na)
the Serre-Tate theorem (see [Katz2]) the formal completion of Xﬁrgp (N1.N) @b a point
x in the special fibre is isomorphic to

is smooth over Z, of relative dimension n*[F* : Q. (By

Hom 7, (S(T,A™™), G,,).
This is formally smooth as long as S(T,A™") = S(O% p) is torsion free. This module
is torsion free because in the case p = 2 we are assuming that p = 2 is unramified in
F/F*.) Suppose that g € G,,(A®)*d and (UP)(N;, N5) D g~ 1UP(Ny, No)g, then the
quasi-finite map
9+ Xw(vi,ne) — Xuey (g,
is in fact flat, because it is a quasi-finite map between locally noetherian regular
schemes which are equi-dimensional of the same dimension. (See pages 507 and 508
of [KM].)
On F,-fibres the map

Xorgp (N1,Na+1) X SpeC]F — nUP(Nl Na) X SpeC]F

n

is the absolute Frobenius map composed with the forgetful map 1 : X:L’rgp (N1, Nat1)
Xﬁrf}p(Nl N2) (for any No > Ny > 0). Thus if Ny > 0, then the quasi-finite, flat map

ord ord
Xn Up(Nl N2+1 Xn Up(Nl N2)

has all its fibres of degree p™ *IF*:Q and hence is finite flat of this degree. (A flat, quasi-

finite morphism f : X — Y between noetherian schemes with constant fibre degree
is proper and hence, by theorem 8.11.1 of [EGA4], finite. We give the argument for
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properness. By the valuative criterion we may reduce to the case Y = Spec B for
a DVR B with fraction field L. By theorem 8.12.6 of [EGA4] X is a dense open
subscheme of Spec A, for A a finite B algebra. Let I denote the ideal of A consisting
of all mp-torsion elements. If f € A and Spec Ay C X, then by flatness the map
A — Ay factors through A/I. Thus X C Spec A/I and in fact I = (0), so that A/B
is finite flat. Because an open subscheme is determined by its points, we conclude
that we must have X = Spec A’ for some A C A C A®p L. By the constancy
of the fibre degree we conclude that A’ is finite over B.) We deduce that for any
g € Gp(A®)° if N} > 0 and p™2~N2v(g,) € Z), then the map
9 X nNz) — Xy
is finite.

Lemma 3.5. Write X;,rg;’/le,Nz) for the completion of X[C]’;%NhNQ) along its F,-fibre.
If N}, > Ny > Ny then the map

1- ord,A

ord,A
anp(N17N/) X

n Up(Nl Ng)
s an isomorphism.

Proof: The map has an inverse which sends a tuple [(A™Y, UiV \univ [puniv)] gyer

rd, A
X; UP(Ni1,N2) to
[(AUHIV unlv /\unl\/, [(nélnlv,pj nilnlv,p Aunlv[ ] T];_)IHIV)])]
over XsrgpA( A

Thus we will denote Xsrgf( Ny.N) SImply

%fl)lrgvp(Nl
Then {X75 o)t is a system of p-adic formal schemes with right G,,(A>)°"-action.

We will write X, " Up y for the reduced sub-scheme of xord Ur(N)-

Throughout the paper we will use usual Roman letters, such as X, for ‘Shimura-
like” varieties of finite type over Q, cursive letters, such as X', for models of them of
finite type over Z,, over-lined usual Roman letters, such as X, for their [F,-fibre,
and Gothic letters, such as X, for their formal completion along this special fibre.
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3.2. Some Kuga-Sato varieties.

Recall that a semi-abelian scheme is a smooth separated commutative group scheme
such that each geometric fibre is the extension of an abelian scheme by a torus. To
a semi-abelian scheme G/Y one can associate an etale constructible sheaf of abelian
groups X*(G), the ‘character group of the toric part of G’. See theorem 1.2.10 of
[CE]. If X*(G) is locally constant then G is an extension

(0) — S¢g — G — Ag — (0)
of a uniquely determined abelian scheme Ag by a uniquely determined split torus
Sg with character group X*(G). By an isogeny (resp. prime-to-p isogeny) of semi-
abelian schemes we mean a morphism which is quasi-finite and surjective (resp. quasi-
finite and surjective and whose geometric fibres have orders relatively prime to p).
If Y is locally noetherian, then by a quasi-isogeny (resp. prime-to-p quasi-isogeny)
o : G — G' we mean an element of Hom (G,G")q (resp. Hom (G,G")z ) with an
inverse in Hom (G, G)q (resp. Hom (G', G)z, ).
Suppose that Y/SpecQ is a locally noetherian scheme. By a G™ _semi-abelian
scheme G over Y we mean a triple (G, 1, j) where
e (G/Y is a semi-abelian scheme,
o i: F'— End(G)o,
e and j: '™ = X*(G)g is an F-linear isomorphism;
e such that Lie A is a free Oy ®¢g F' module of rank n[F' : Q).

Then Ag is a G,-abelian scheme. By a quasi-isogeny of G _semi-abelian schemes
we mean a quasi-isogeny of semi-abelian schemes

B:G— G
such that
i'(a)o = poila)
for all a € F', and
j=X"(B)oj"
Note that, if 7 is a geometric point of Y, then j induces a map
j* . VSG@ ;) HOHIQ(Fm, VGm@).

By a quasi-polarization of (G,1i,7) we mean a quasi-polarization of Ag.

If Y is connected and 7 is a geometric point of Y and if U C Gim (A>) is a
neat open compact subgroup then by a U level structure on a quasi-polarized G
semi-abelian scheme (G, 1,7, A) we mean a (Y, y)-invariant U-orbit of pairs (19, )
where

no: A% == VGpy
is an A*°-linear map, and where

m: A§;“> ®z A* — VG
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is an A%-linear map such that

11| Hom 5 (07 45) = (5*)~" o Hom (1m,n)
and
(70, m mod V'S¢ 5)]
is a U-level structure on Ag. This is canonically independent of 7. We define a U level

structure on a G{™-semi-abelian scheme over a general locally noetherian scheme Y
to be such a level structure over each connected component of Y. By a quasi-isogeny

between two quasi-polarized, G'"™ _semi-abelian schemes with U-level structure
(8,6) : (G, j, A [(no, m)]) — (G",4", 5", N, [(mo, m)])

we mean a quasi-isogeny
B:(Gi,j) — (G, ])
and an element 6 € Q* such that
A=p"oXNop
and
(6, 11)] = [(910, V'(B) 0 )]

If (G,i,7,\ [(no,m)]) is a quasi-polarized, G _semi-abelian scheme with U-level
structure, if g € Gslm)(Aoo) and if U’ D ¢ 'Ug then we define a quasi-polarized,
G;m)—semi—abelian scheme with U’-level structure

(Gv i7j> /\7 [(7707 771)])9 = (G7Z‘7jv >‘a [(V(g)noﬂh o g)])

The quasi-isogeny class of (G, 4, j, A, [(n0,m1)])g only depends on the quasi-isogeny

class of (G,i,4, A, [(no,m)]). If (G,i,75, A, [(no,m)]) is a quasi-polarized, G _semi-
abelian scheme with U-level structure, if v € GL,,,(F) and U’ D yU then we define a

quasi-polarized, G%m)—semi—abelian scheme with U’'-level structure

7<G7 475 A [(770a 771)]) =(G,i,jo 771, A, [(7707 mo 771)])'
The quasi-isogeny class of (G, 1,7, A, [(no,71)]) only depends on the quasi-isogeny
class of (G,1,7,\, [(0,m1)]). We have yog = ~v(g) ov. If (G 4,7, A [(no,m)]) is
a quasi-polarized, G _semi-abelian scheme with U-level structure, if m’ < m and
if U" D i, U, then we define a quasi-polarized, G%m,)—semi—abelian scheme with
U'-level structure

T (G 1, 5, A (00, m)]) = (G /8,4, 5 © i my A, [(m0, 1)),
where S C Sg is the subtorus with
X*(8) = X*(S¢)/(X*(Se) N j © by F™)
and where
1) 0ty py = 11 mod VS.

The quasi-isogeny class of 7, .,/ (G, 7, 7, A, [(10, m1)]) only depends on the quasi-isogeny
class of (G,4,7, A\, [(no,m)]). If v € Qs (F) then mp,m 0y = 7 0 Ty, Where 7
denotes the image of v in GL,,(F). If g € el (A%°) then T 09 = iny 1. (9) 0 T -
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If U is a neat open compact subgroup of G (A>) then the functor which sends a
locally noetherian scheme Y/Q to the set of quasi-isogeny classes of quasi-polarized

G'™ _semi-abelian schemes with U-level structure is represented by a quasi-projective
scheme AT(;’”U), which is smooth of dimension n(n + 2m)[F* : Q]. (See proposition
1.3.2.14 of [Lad].) We remark that according to our notational conventions we have

AV =X, .

)

Let
un1v umv -univ \ univ univ (m)
[(G ) J ’ A ) [77 ])]/An,U

denote the universal quasi-isogeny class of quasi-polarized G,(lm)—semi—abelian schemes
with U-level structure. If g € Gim (A*>) and Uy, U, are neat open compact subgroups
of G%m)(AOO) with U, D g71U; ¢ then there is a map

g: AT — Afzmul

arlslng from (Guiv juniv juniv juniv fpuniv])g /A« U and from the universal property
of An 0,- Similarly if v € GL,,(F) and Uy, U, are neat open compact subgroups of
G (A*°) with Uy D ~U; then there is a map

v AU — AT

suniv. - ;univ )\umv [ unlv])

ar1smg from (G, 4 /A( v, and from the universal property

2]
of An 0, Moreover if m’ <m, if U C Gy (A‘X’) and if U’ denotes the image of U in

Gom )(AOO), then there is a smooth projective map
T A A - A(m) — An U

~univ

arising from mr,,, ,, (G0, §U0iv, junivyuniv fpunivi) /A v and the universal property of

AETUE. (We will sometimes write T A0 )y, for 7TA5Lm)/A£lO).) We see that these actions
have the following properties.
® g1 09y = gogp (i.e. this is a right action) and v; 0 95 = 7172 (i.e. this is a left
action) and yo g = vy(g) o 7.
o If v € Quum(F) then T ) 4 © Y = 7o T AGm) 4" where 7 denotes the
image of v in G L, (F).
® A agmh 09 = q OT 4(m) /4" where ¢’ denotes the image of ¢ in Gom )(A‘X’).
Moreover we have the following properties.
e The maps g and «y are finite etale. The maps m,, ,,,» are smooth and projective.
° If U1 C U2 is an open normal subgroup of a neat open compact subgroup then
nUl /An U, 1s Galois with group Us/U,.
o If U =U'x M with U’ C G,(A®) and M C Hom (™ (A%) then AU) /X,

n
is an abelian scheme of relative dimension mn[F : QJ.
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(m)

(m) over
n,U'x(UNHom,, ' (A>))

e In general AflmU) is a principal homogenous space for A
Xn.ur, where U’ denotes the image of U in G, (A™).

e There are G (A®)- and GL,,(F)-equivariant homeomorphisms
ATD(C) = GV @\GE™ (A)/(U X Uy An(R)").

Moreover in the case U = U’ x M, if G™Y /AflmU) and A™V /X, 1 are chosen so that

* univ ~v . . .
WA;’")/X,LA >~ Aguniv, then there is a QQ-linear map

if:ulr),iv : ' — Hom /X0 (Aglm[}, (Auniv)v)(@

with the following properties.
e If ¢ € F then
i (az) = "V () 0 i) ()
Aunlv AUIHV .
e If (3,0) is a quasi-isogeny
(Guniv’ Z-uniV,juniv7 )\univ, [nuniVD N (Guniv,/7 iuniv,/hjuniv,l7 Auniv,l7 [nuniv,/])7
then
BY 0ty (2) = i ().

In particular 'igﬁ])ﬁv depends only on A"V and not on G"™V,

o If g € GV (A®) and v € GL,y(F) then

i (2) 0. = i) (1)
and
0 (2) 07 = i) (7 12).
e If ¢, ..., ¢, denotes the standard basis of F then

iAuniv _ HngnivH—l(()\uniV)—l o ZEZZLV (61)7 o ()\uniV>—l o ZE:Z:)nv<em)) . ASTL(; N (Auniv)m

is a quasi-isogeny. If (3, 4) is a quasi-isogeny

univ univ univ \ univ univ univ,/ suniv,/ -univ,/ \univ,/ univ,/
(GMY, ™, G AT [ t]) s (G LA [,

then
BE™ 0 i guniv = i gumivy-
e The map
" : Hom p(F™, V) @g A™ 5 V(Avmnivym 5 VAT
f = (Y (f(en)), - miY (f (em))
x = V(i guniv)

is an isomorphism, which does not depend on the choice of G™". It satisfies

MM = TA.
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(See lemmas 1.3.2.7 and 1.3.2.50, propositions 1.3.2.14, 1.3.2.24 and 1.3.2.55, theorem
1.3.3.15, and remark 1.3.3.33 of [Lad]; and section 3.5 of [La3].)

Note that

T guniv O § = T gw guniv
and
1 guniv O 7Y = t7_1 O Lyx guniv .
Define
i P @pe F™ — Hom jx, , (AU, AU )g
by
@ @y) = llm™ | i (2) 0 N o il ().

This does not depend on the choice of A", We have

z’&m) (r@y) = z&m)(y R ).

Moreover
(Z'Zleiv)\/ o Zg\m) (13 ® y> o i;plmiv — ()\unlv)@m o Funiv (C’t.lfy).
If a € (F™ ®@p, F™)*=! has image in S(F™) lying in S(F™)>° then
(Z;iniv)v o ig\m)(a) o Z;llmiv — (/\univ)eam o Z-univ(a/)

for some matrix a’ € M, (F)'=¢ all whose eigenvalues are positive real numbers.
(See section n for the definition of sw.) Thus ig\m)(a) is a quasi-polarization. (See
the end of section 21 of [M].)
Now suppose that Y/SpecZ is a locally noetherian scheme. By an ordinary
G'™ _semi-abelian scheme G over Y we mean a triple (G, 1, j) where
e G/Y is a semi-abelian scheme such that X*(G) is locally constant over Y,
and such that #G[p](k()) > p" ™A for each geometric point 7 of Y,
o i:0Opp — End (G)ZM such that Lie Ag is a free Oy ®2,,, OF ) module of
rank n[F : Q,
e and j: Op ) = X*(G)z,, is a Opp)-linear isomorphism.
Then Ag is an ordinary G,-abelian scheme. By a prime-to-p quasi-isogeny of ordi-

G _semi-abelian sch i i-i f semi-abeli
nary n ~-Semi-aoveltan scnemes we mean a prlme—to—p quasi-1sogeny oI semi-abelian
schemes

B:G— G
such that
i(a)o B =poi(a)
for all a € OF,;), and
j=X"(B)oj"
Note that, if 77 is a geometric point of Y, then 7 induces a map
VPG 3)-

By a prime-to-p quasi-polarization of (G,7,7) we shall mean a prime-to-p quasi-
polarization of Ag.

j* . VpSG’g ;> Hom Z(p) (O;;vrt(p),
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If Y is connected and ¥ is a geometric point of Y, if UP C G (A°P) is a neat
open compact subgroup, and if No > Ny > 0 then by a UP(Ny, Ns) level structure on

a prime-to-p quasi-polarized ordinary G _semi-abelian scheme (G,i,7,\) we mean
a m (Y, y)-invariant UP-orbit [n] of five-tuples (13, 7, C, D,n,) consisting of

e an A>®?-linear isomorphism 7 : AP — A>P(1); = VPG, 3;

e an A} P-linear isomorphism

n Agm) Rz A™P = VPG

such that 77 |Hom (0 a~») = (5%) " o Hom (1og, 7);
e a locally free sub-Op )-module scheme C C G[p™?], such that for every
geometric point y of Y there is an Op ,)-invariant sub-Barsotti-Tate group

Cy C Gy[p™] with the following properties

- Gy = Gylp™],

— C3 D Sazlp™], N

— for all N the sub-group scheme Cy[p"]/Sqz[p"] is isotropic in Ag[p"];
for the A\-Weil pairing,

— G3[p™]/Cy is ind-etale,

— the Tate module T'(Gy[p™]/Cy) is free over O, of rank n;

e a locally free sub-Op ,-module scheme D C C[p™'] such that

D = Cp™)/Salp™];
e and an isomorphism
P A/ (07 Ay + An) — Gp™]/Cp™]
such that
np(ax) = i(a)(x)
for all a € Op ) and x € p™M A, /(p7™ A, () + Ay);
such that

(75, n} mod V?S¢, C/Sap™], )]

is a UP(Ny, Ny)-level structure for (Ag,i,A). This definition is independent of the
choice of geometric point 7 of Y. By a UP(Nj, Ny)-level structure on an ordinary,
prime-to-p quasi-polarized, G,(lm)—semi—abelian scheme (G, 1,j,\) over a general (lo-
cally noetherian) scheme Y/Spec Z,, we mean the collection of a UP(Ny, Ny)-level
structure over each connected component of Y.

By a prime-to-p quasi-isogeny between two quasi-polarized, ordinary G _semi-
abelian schemes with U? (N7, Ny)-level structure

(57 5) : <G7 i>j> )‘a [(7707 771)]> — (le il:j/a Xa [(7767 77/1)])
we mean a prime-to-p quasi-isogeny

B:(Gi,j) — (G, ))
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and an element 6 € Z(Xp) such that
N=pB"oNop
and
()", (M), C", D' ;)] = [(dmg, VP(B) o nf, BC, BD, B o mp)].

If (G,4,7,\, [(n,n7, C, D,n,)]) is a prime-to-p quasi-polarized, ordinary G _semi-
abelian scheme with UP(Ny, Np)-level structure, if g € GI™(A%)°rd and if

(UP)' (N1, N3) D g~ UP(Ny, Na)g

then we define a prime-to-p quasi-polarized, ordinary G%m)—semi—abelian scheme with
(UP)'(N7, Nj)-level structure

(G7 i7j7 Av [(7787 77}1)7 Oa D: np)])g = (Ga iajv )‘a [(V<9)77§7 77? © gp’ C{7 D) np © gp)])

The prime-to-p quasi-isogeny class of (G, 1,7, A, [(n5, 17, C, D, n,)])g only depends on
the prime-to-p quasi-isogeny class of (G, 1, j, A, [( 7,C,D,np,)]). Similarly, if

1
(G7 Z.a j7 /\7 [(7757 775)’ C? D7 np)])

is a prime-to-p quasi-polarized, ordinary G _semi-abelian scheme with U? (N7, No)-
level structure and if

(7;8 :
7707

(UP) (N1, N3) D <, 'UP(Ny, Na)gp,

then we define a prime-to-p quasi-polarized, ordinary G%m)—semi—abelian scheme with
(UP)'(N7, Nj)-level structure

(Gai’j7)‘7‘[(n677711)’07 Danp)])gp = , ,

(G/Clpl. i, pj, F(N). [(png, F(n}), Clp* 2] /Clpl, (D'/Clp])[p™], F'(np))]);
where

A ~
F(X) : Ag/Clp] = A&/AClp] = AL/Clplm — (Ac/Clp))”

with the latter isomorphism being induced by the dual of the map As/Clp| — Ac
induced by multiplication by p on Ag; where F(n}) is the composition of 7} with the
natural map VPG = VP(G/C|p]); where D’ denotes the pre-image of D under the

multiplication by p map C' — C'; and where F'(7),) is the composition of 7, with the
natural identification

Gp™]/(C NG = (G/Clp))p™]/(Clp ]/ Clp) 0 (G/C]) ).
Together these two definitions give an action of G,,(A>)°r.

If (G,i,7, A [(ng,m7, C, D,mp)]) is a prime-to-p quasi-polarized, ordinary G'™ _semi-
abelian scheme with U?(Ny, Ny)-level structure, if v € GL,,(Op ) and if

(UP)' (N1, N3) D yUP (N1, N2)

then we define a prime-to-p quasi-polarized, ordinary G'™ _semi-abelian scheme with
(UP)'(N7, Nj)-level structure

VG, i, 4, N (0,18, C, D)) = (Gyi, oy N [(mh, oy, C, D, mp))).
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The prime-to-p quasi-isogeny class of (G, 1, j, A, [(n5,n7, C, D, n,)]) only depends on
the quasi-isogeny class of (G,1,j, A, [(n6,n7,C, D,n,)]). We have v o0 g = ~(g) o 7.

If (G,i,5,\[(ny,n7,C,D,n,)]) is a prime-to-p quasi-polarized, ordinary G _semi-

abelian scheme with UP(Ny, Ny)-level structure, if m’ < m and if (U?)'(Ny, N}) D
i* . UP(Ny, Ny), then we define a quasi-polarized, ordinary Gim)

mm

with (UP)'(Ny, Nj)-level structure

ﬂ-m,m’ (G7 Z’? .j? )\7 [(ng? 7757 C7 D? np)]) = (G/S7 Z’.] o im/7m7 )\7 [(ng? (n{)>/7 Cl7 Dl? np)])?
where S C S is the subtorus with

X*(8) = X*(S6)/(X*(Sa) N © i mOF))

-semi-abelian scheme

and where

(R) 05 = 1 mod VPS
and C" (resp. D') denotes the image of C' (resp. D). The prime-to-p quasi-isogeny
class of Ty (G, 1,7, A, [(n5,n7,C, D,np)]) only depends on the quasi-isogeny class
of (G,4,7, X\ [(ng,m,C,D,mp)]). If v € Qum(Opp)) then mp 0y = 7 0 Ty,
where 7 denotes the image of v in G L (Op, ). If g € G (A>) then 7, 0g =
Uy m(g) O Tom,m/

For each m > 0 there is a system of Z,)-schemes {An Upor]ii,l Npy} as UP runs over
neat open compact subgroups of Gim (A*°P) and Ny, Ny run over integers with Ny >
N; > 0, together with the following extra structures:

o If g € GU(A®)d and UF(Nay, Nag) O g 'UP(Nyy, Ni2)g then there is a
quasi-finite, flat map

(m),ord (m),ord
g A n,U} (N11,N12) Aﬂ,Ug(Nthzz)'

o If m’ < m and if (U?)" denotes the image of U in G%m/)(AOO’p), then there is
a smooth projective map with geometrically connected fibres

. 4(m),ord ),ord
T agrrord g rerd + A (v, ) P AL Up) (N1.N2)*

o If v € GL,,(Opyp) and Uy D ~yUY then there is a finite etale map
),ord m),ord

v An UP(N1,N )_>-AnUP(N1,N2)

Moreover there is a canonical prime-to-p quasi-isogeny class of ordinary G,(Im)—semi—
abelian schemes with UP(Ny, Ny) level structure

(gunlv ~univ juniv’)\unlv [ umv])/An Upor]il[1 o)

These enjoy the following properties:

(0),ord ord
o A UP(N1,Na) = = A& TP (N1,Na)- (We will sometimes write 7 AGord ) yora instead of

T pGm).exd A(O),ord.) This identification is G,,(A>)°"-equivariant.
® g1 0 go = gog1 (i.e. this is a right action) and v; 0 y2 = 7172 (i.e. this is a left
action) and yo g = v(g) o 7.
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If v e Qm,m’(OF,(p)) then WASLm),Ord/Aglm’),ord o7y = 7 o WAslm),ord/Aglm/),ord, where 7
denotes the image of v in GLy (Op,y)).
T qGm).ord ; q(m)ord © § = g o T qGm).ord ) gom’) ond where ¢’ denotes the image of g in

G%ml) (Aoo)ord.
If g € GIV(A®)°, then the induced map
m),ord % 4(m),ord
R An UT(N11 N12) gA n,US (N21,Na2)
over X°F Up(Nu Ni) 1S finite flat of degree p"™F ¥ If g € G\ (AOO)Ord’X, then

this map is also etale.

If U7 C U} is an open normal subgroup of a neat open compact of G (A>P)
and if Ny; > Ny, then A’ Upo(ﬁu Na) / AnmUpo(i ) 18 Galois with Galois group
U3 (Na1)/UY (N11).

On F,-fibres the map

Sp AgnU);o(lfh’ Not1) X SpecF, — An Upor]?,l x SpecF,
equals the composition of the absolute Frobenius map with the forgetful map
(for any Ny > Ny > 0).
If g € GV (A®)od and UF(Nag, Nao) D g~ UP(Ni1, Nio)g then the pull-back

univ umv -univ )\uan [ umv])

g*( 2 »J2 Ub)

is prime-to-p quasi-isogenous to the tuple (GJmiv, yniv, juniv yuniv [punivy) g
If v € GLy,(Op,p)) and U (Nay, Nag) D yUY (NH, Niz) then the pull-back

univ unlv ~univ unlv [ univ])
)

’7*( 2 7]2 ) 2
is prlme -to-p quasi-isogenous to the tuple v(G} , RNV NIV [paniv])

If m" < m and if UY(Noy, Noo) D i, 7mU1 (Nll,N12) then the pull-back
(Gymiv gymiv ]) is prime-to-p quasi-isogenous to the

lll’llV un1v

~univ unlv [ univ

7]2 9 772

.A(m)/.A(m/)
tuple Wm,m ( imlv’ un1V7Jun1V )\unlv’ [n?niv]»

If U? = (UP) x MP with (U?) C G,,(A>") and MP C Hom "™ (A>") then

(m),ord ord
A’I’L Up(Nl Ng)/Xn,(Up)’(Nl,NQ)

is an abelian scheme of relative dimension mn[F : Q].
(m),ord
n,UP N1

m),ord or 1
Aé,(zUp)'pr)(Nl Np) Over & (‘}]p) (N1 Ng)» Where (UP)" denotes the image of U”
in G,(A>?) and M? = U? N Hom (™ (A>?).

There are natural identifications

In general A ) is a principal homogenous space for the abelian scheme

(m),ord ~ A(m)
A, UP(Np,Ng) = SpecQ = A ,UP(N1,Na)*
These identifications are compatible with the identifications

Xor(UP) 1Ny, Ng) X Spec Q = X, ey Ny, N)
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and the maps 7 (n),ora /Ao and 7 AL /4G They are also equivariant for
() (A%)°rd and the group GL, (OFp))-
Moreover in the case UP = (UP)" x MP, if GwiY /.,él;nU)pmf,1 Ny and A /X0 s
AV 2 Aquy, then there is a Zpy-linear map

the actions of the semi-group G,

are chosen so that 7* J
.A (m),or /Xord

.(m) | (m),ord iv ivi N11\V
 quniv * O ) — Hom Xy <N1,N2>( n () (AT /O ) g,

with the following properties.
e If a € Op,y) then

z'fﬁzﬁv(ax) iV (q) o i&muiiv (x).

o If (5,4) is a prime-to-p quasi-isogeny

univ,/ suniv,/ univ,/ )\univ,/ [ univ,/])
) ) (1

(gumv -univ juniv7 )\univ’ [nuniVD - ( , 1 N

Y

then
5\/ o ZEABIHIV)/ (x) = Z.(Amuguv ($)

In particular i(j”uliv depends only on A" and not on GV,

o If g€ GYV(A®) and 4 € GL,,(Op,p) then
7254’,nu21iv( ) g - /L(Tv)Aumv (I)
and
i%liv (‘r) o f}/ - Z’(TAuniv ('7_11')
e If eq,...,e,, denotes the standard basis of Om then

i ueie = |78V TN ™) 0 i (ex), oo <A<N1>‘m”>-1 0 i (€m)

is a prime-to-p quasi-isogeny

(m),ord N (Auniv/ouniv [pN1])m

n,Up(Nl,NQ)

Here A(Np)"™V refers to the prime-to-p quasi-polarization A" /C|
(A™Y /C[pN1])V for which the composite

Nl] -

Auniv N Auniv/c«[le] )‘(Nl_)u;uv (Auniv/c[pN1])v N Auniv,v

equals p™Nt \uIv,
We have

/B@m O iAuniv - i(Auniv)/.

The composite map

nr(:,r(l])P(NLNQ) : Hom Or (0?7 ATL) ®z AP :) VP(Auniv)m
p_; Vp(Auniv/Cuniv [pN1])m

),ord

— VpAn UP(N1,N3)?
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where the first maps sends

fr=r (™ () oo™ (f (em)
and the third map sends

T —— vp<Z-Auniv)7lx,
is an isomorphism, which does not depend on the choice of GV, It satisfies

(m) . (m),ord
7771,Up(]\71,]\/vz)]\4p TpAn UP(N1,N3)"

(See lemmas 5.2.4.7 and 7.1.2.1, propositions 5.2.4.13, 5.2.4.25 and 7.1.2.5, remarks
7.1.2.38 and 7.1.4.27, and theorem 7.1.4.1 of [La4].)

We deduce the following additional properties:
oo\ or! m),ord m),ord .
e lfge alm (A )ord* then the map ¢ : "451 UP(N1yNi) An U)p(N% Npo) 18 etale.
If further N5 = Nag, then it is finite etale.

o If g € GU(A®) 4, if Nay > 0, and if pM2~N22p(g,) € Z* then

m),ord (m),ord
g ATL Up N11,N12) An UP(N217N22)

is finite. If Ny > 0 then the finite flat map
Sp AgL,I}PO(ﬁl,NQH) — An Upo(r](\ih N2)
has degree p(n+2m)[F:Q]
[ ]
iAuniv 0g = ig*Auniv
and
i qumiv 0y =y 1o Loys funiv .
Also in this case define

m (m),ord (m),ord,V
O ®OF( )€ OF (p) Hom /Xorwp) (N, N2)( n,UP(N1,N2)’ "7UP(N17N2))Z(P)

by
5 (@ @y) = g™ | G ()" 0 AND)™) ™ o il ().
This does not depend on the choice of A™". We have
if\m) (r@y) = zg\m)(y R ).
Moreover
(i;\iniv) o Z&m)( ® y) o Z';‘iniv — (/\(Nl)univ)@m o iuniv(c,txy).
If a € (OF ) ®0p e Oﬁ(p))swzl has image in S(OF ) lying in S( %’f(p))w then

(iJ_Alllniv)V o z&m)(a) o Z-;lllmiv _ ()\(Nl)univ)@m o Z'univ(a/)

for some matrix a’ € M, 5., (O F7(p))t:'3 all whose eigenvalues are positive real numbers.
Thus i()\m)(a) is a quasi-polarization. (See the end of section 21 of [M].)
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The completion of Ag’; ]S,rdN along its IF,-fibre does not depend on N, so we will

denote it m)ond
m),or
QIU,,(NI).

(See theorem 7.1.4.1 of [Lad].) Then {Q[gz)(;);;d} is a system of p-adic formal schemes
with a right G\ (A>)ord-action and a left GL,,(Op, ) )-action. There is an equivari-
ant map
),ord or
{9[ UP(N)} — {X; dU’ (V) -

Q((m ),ord

" for the reduced sub-scheme of nUP(N)-

We will write An Upo
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3.3. Some mixed Shimura varieties.

If U (resp. UP) is a neat open compact subgroup of G (A>) (resp. G (A>P)) we

will denote by Sf:l (resp. S(m 01Fd) the split torus over SpecQ (resp. SpecZ,)) with

X.(8")) = Z(NI™)(@ N U C Herm™(Q)

(resp.

m),ord m ~ m
X.(SU0) = Z(NI™) (Zy) N T € Herm ™ (Z)).

If g € G (A®) (resp. GI™(A®)) and Uy D g~'Uyg (resp. U D g~'UPq) we get
a map

(m)
g: Sn UL - Sn,ﬁg

(resp.

. o(m),ord (m),ord
g . Sn7(7f H Sn Up )

corresponding to

@)l X.(5)75) — Xa(S,7)

n,Ua
(resp.
. (m),ord (m),ord
(9l XS, 5™) — XS, 5™ )
where we think of the domain and codomain both as subspaces of Herm™). If v €

GL,,(Q) (resp. GLn(Zy)) and Uy D vU; (resp. UY D ~UP) we get a map
v Sr(zmﬁ)l — S5

n,Ua

(resp.
m),ord m),ord
s s s
corresponding to

(m) (m)
X*<Sn,t71) — X, (S7Y)

n,Usz
(resp.
5 X*(S(m ord) — X, (S (m), 0rd>>7

n,Ug

where again we think of the domain and codomain both as subspaces of Herm™.
If my > my and if Uy (vesp. UZ) is the image of Uy (resp. UP) in GY™ (A™) (resp.
Gq(lmz)(A"o’p)), then our chosen map Herm™) — Herm™2) induces a map

(m1) (m2)
Sty 7 S
(resp.
S(m1 ),ord . S(m}),ord)'

n,U? n,UY
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As U runs over neat open compact subgroups of G (A*), there is a system of
S (?—torsors

n,

over A together with the following extra structures:

° If g €~Gn (Ai‘i) and Uy, U, are neat open compact subgroups of Gim (A>)
with U, D ¢~'U, ¢ then there is a finite etale map

(m) (m)
g Tn U1 T’n (72
compatible with the maps ¢ : Afzm A(m 5, and g S o — Si”"%

o If v € GL,,(F) and U,,Us, are neat open compact Subgroups of GI™ (A>)
with Uy D yU; then there is a finite etale map

(m) (m)
v Tn Uy — Tn,ﬁg’

compatible with the maps - : A(m(7 — A(m _and 7 : sm 5 (";7)2.
n,Uy n,U: n,Uy n,

e If m; > my and U, is the image of U, in G(m2 2)(A%), then there is a map
T(T’Zl) N T(W?)

n,Up n,Us
compatible with the maps S (ml) — Sn”;z and A Aimgj

These enjoy the following propertles.
® g1 0 go = gog1 (i.e. this is a right action) and v; 0 y2 = 7172 (i.e. this is a left
action) and yo g =(g) o 7.
o If U1 C UQ is an open normal subgroup of a neat _open compact subgroup of
G (AOO) then T /T ~ is Galois with group Ug/Ul

Uz

e The maps T(ml) — T (m ) are compatible with the actions of G\" (A"O) and

G (A%) and the map Gnm1 (A®) — GI™)(A>), and also with the action
of Qumy my(F). B
e Suppose that U = U’ x M with U’ C G,(A®) and M C N{™(A®). Also
suppose that
X € X*(S ) C S(F™)
is sufficiently divisible. Then we can find a € F™ ®p. F™ lifting x such that
i (a) s AT — (AT
is a homomorphism. For any such a

L7500 = (15" (@) Py

o If y € X*(S ) N S(F™)>° then ,C( )( ) is relatively ample for A:Tg/Xnﬁ
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e There are é%m)(Aoo)— and GL,,(F)-equivariant homeomorphisms

T")(C) = G4 (Q)\GL™ (A)Herm ™ (C)/ (T x US . An(R)").

(See lemmas 1.3.2.25 and 1.3.2.72, and propositions 1.3.2.31, 1.3.2.45 and 1.3.2.90 of
[Lad]; section 3.6 of [La3|; and the second paragraph of section [3.2| above.)

Similarly as UP runs over neat open compact subgroups of G (A>°P) and Ny, Ny
m) ord

run over integers with Ny > N7 > 0, there is a system of S -torsors
(m),ord . (m),ord
7:%[7"(]\71,]\72) o Spﬁ @ Enﬁp(Nth)(X)
% m),ord
XGX (sz,ﬁ)P(Nl,NQ))
over Am)erd together with the following extra structures:

Up(Nl,NQ)

o If g € Gnm)(Aoo)ord and UP(Na, Nos) D g UP(Ni1, Nis)g then there is a
quasi-finite, flat map

),ord (m),ord
g - 7; ,UP(N11,N12) 77-1 ,U¥(N21,N22)
compatible with the map g : A;mUpo(r;m Nia) A;mUpo(l;?fm, Naz) and the map

m) ord m),ord
g: S — Sn or

o Ifye GLm(OF, ) and UZ D ~U? then there is a finite etale map

. ~-(m),ord (m),ord
v n,07 (N1,N2) n,U% (N1,N2)’

compatible with the maps

(m),ord (m)
v n,UP (N1,Na) — An,ﬁg(Nl,Ng)

and
~ Sm)ord_>8m ord.

nUp

e If my > my and UP is the image of U” in G(™2)(A*#), then there is a map

(m1),ord (ms2),ord
7; UP(N1,Na) 7; U2 (N1,Na)
. . my),ord (mg ),ord ),ord
compatible with the map Sn,ﬁ{’ S o and the map Al Up (N1N2)

(ma2),ord
n,UL(N1,No)

These enjoy the following properties:
® g1 0 g = gog1 (i.e. this is a right action) and y; 0 y2 = 7172 (i.e. this is a left

action) and v o g = y(g) o 7.

~(m) ¢ A coyord, x (m),ord (m),ord .
o If g € Gy ' (A™) then the map g : T N — 7;7[75(]\[217]\[22) is etale.

If further N5 = Nog, then it is finite etale.
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(m1),ord (m2),ord . . .
e The maps T D7 (N1, Np) — 7;U PNy, L€ compatible with the actions of

GU™(A®)ord and GU™ (A®)o and the map GU™(A®) — G (A™), and
with the action of Q. m,(OF,p))-

e If UY C Ul is an open normal subgroup of a neat open compact of Gim (A>P),

(m),ord (m),ord . . . .

and if Ny; > Ny then T UP(N117N2)/7;L’[7§(N21’N2) is Galois with Galois group
US(Na1) /UY (N11).

o If g € GIV(A®)™ if Ny, > 0, and if pN2N2p(g,) € 7, then the map
g: g (m)ord —y g mord is finite. If Ny > 0 then the finite flat map

Up(Nll,ng) n UP(N217N22)
(m),ord m),ord
T UP(N1,Na+1) 7; U2 (N1,N2)
has degree p(n+m)*[F*:Ql,
e On the [F)-fibre
o : Tmherd x SpecF, — T SpecF,

n,UP(Ny,No+1) n UP(Nl,Ng)

equals the composition of the absolute Frobenius map with the forgetful map
(for any Ny > Ny > 0).
e Suppose that U? = (UP) x M? with (UP)' C G,(A®?) and MP C N{™ (A%P).
Also suppose that
X € X*(87D) € S(0F,)

is sufficiently divisible. Then we can find a € (’)m ) @05 ) O%(p) lifting x
such that

.(m) . 4(m),ord (m),ord v
Bna) A vy 7 A e

is a homomorphism. For any such a

gm0 = (L (@) P yomona

n,UP(N1,N2) nUP(Nl No)

o If x € X*(S ) NS(O%, )>0 then £ m{;po(ﬁ N, )(X) is relatively ample for

(m),ord / ord
n7Up(N1aN2) anp(N17N2)'

e There are natural identifications

(m),ord ~ q(m)
7:1,(7P(N1, x SpecQ = Up(Nl,N2)

These identifications are compatible with the identifications

Alm)ord x Spec Q = A(m

anp(vaN) (N17N2)
and the maps
(m),ord (m),ord
n,UP(N1,N2) — Anﬁp(Nl,Nﬂ

and (m) (m)
n,ﬁP(Nl,Nz) —* An,ﬁp(Nl,Nz)'
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The identifications are also equivariant for the actions of the semi-group
G (A%)d and the group GLy(Op ).
(See lemmas 5.2.4.26 and 7.1.2.22, propositions 5.2.4.30, 5.2.4.41 and 7.1.2.36, and
remark 7.1.2.38 of [Ladl.)
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3.4. Vector bundles.

3.4.1. Vector bundles on Shimura varieties in characteristic zero. : Suppose that U
is a neat open compact subgroup of G, (A*). We will let €2, ; denote the pull-back

by the identity section of the sheaf of relative differentials Q,lﬁlumv Xy This is a

locally free sheaf of rank n[F' : Q]. Up to unique isomorphism its definition does
not depend on the choice of A™V. (Because, by the neatness of U, there is a unique
quasi-isogeny between any two universal four-tuples (AWY, juniv \univ fpuniv)) ) The
system of sheaves {2, y} has an action of G,,(A>). There is a natural isomorphism
between Qzuniv X and the pull-back of €2, 7 from X, iy to AV We will write

Wy = Wpu = /\n[F:Q]Qn,U~

Similarly, if 7 : A" — X, 7 is the structural map, then the sheaf

RZT(*QJ = (/\JQTL,U) ® Riﬂ-*OAuniv

Auniv /Xn U

is locally free and canonically independent of the choice of A"™". These sheaves again
have an action of G, (A>).
We will also write =,y = Ox, ,(|[v]|) for the sheaf Ox, , but with the G, (A>)-
action multiplied by ||v||.
For any m € Z such that mA™ is a true isogeny we get a class
[(1, [m])\univ)*’PAuniv] c Hl (Auniv, O:univ)
— HO (XTL,U) RIW*O;univ)
dlo
4 HO (X’IL,U7 Rl?T*Qzuniv/XnyU)'
The class
[(]_, Auniv)*PAuniv] — [(1, [m] Auniv)*PAuniv]/m G HO (Xn7U, RITF*Q}LXHMV/X%U)
is well defined independently of m. We obtain an embedding
En,U — Rlﬂ*Q}411niv/Xn U

sending 1 to ||n™V[|[(1, \")*P 4univ]. (See section [3.1] for the definition of ||n"™V||.)
These maps are compatible with the isomorphisms

1 1 ~ 1 1
R 7.‘—>)<ngAuniv/)(n U — R 7T>)<ngAuniv,//)(n U

induced by the unique quasi-isogeny between two universal four-tuples. They are also
Gn(A™>)-equivariant.
The composites of induced maps
Hom (QH,UJ EH,U) (j Hom (QH,U7 Rlﬂ—*Qzuniv/Xn’U>
— HOII] (Qn7U7 Q’I’L,U ® Rlﬂ-*OAuniv)
t_r> Rl ﬂ-* OAuniv
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are G, (A™)-equivariant isomorphisms, independent of the choice of A"™. Moreover
the short exact sequence

(0) — O, , @ Opquniv — Qyuie — Loy @ O guniv — (0)
gives rise to a map
Qv — Qﬁ(n’U ® R, O guniv
< QY ®@Hom (Qu, )
and hence to a map
Q%}J — Qﬁ(n’U 02y En,U'

These maps do not depend on the choice of A™" and are G,,(A*)-equivariant. They
further induce G,,(A*)-equivariant isomorphisms

S Qny) — Q, , ® Env,

which again do not depend on the choice of A"V, (See for instance propositions
2.1.7.3 and 2.3.5.2 of [Lal]. This is referred to as the ‘Kodaira-Spencer isomorphism’.)

Let &y denote the principal L, ,)-bundle on X,y in the Zariski topology defined
by setting, for W C X,y a Zariski open, & (W) to be the set of pairs (&, 1), where

50 : En,U’W — Ow
and
&1 Quu — Homg(V,/ Vi n), Ow).
We define the L, (,)-action on & by

h(&, &) = (v(h)™ &, (oh™") 0 &).
The inverse system {£y} has an action of G, (A>).

Suppose that R is a Q-algebra and that p is a representation of L, (,) on a finite,
locally free Ro-module W,. We define a locally free sheaf &y, over X,, ;7 x Spec Ry
by setting Ey,(W) to be the set of Ly, ,)(Ow)-equivariant maps of Zariski sheaves of
sets

(C/,U’W — Wp PR, OW
Then {&y,} is a system of locally free sheaves with G, (A>)-action over the system
of schemes {X,, v x Spec Ry}. If g € G,,(A*), then the natural map

9 Ep — Euryp

is an isomorphism.

In the case Ry = C, the holomorphic vector bundle on X, ;/(C) associated to &y,
is

QSU,/J = Gn(@>\ (Gn(AOO)/U X pr)
over
Xav(C) = Gu(Q)\ (Gu(A®)/U x $57) -

(See section for the definition of the holomorphic vector bundle €,/HE.)

Note that

Eustav = Qv
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and
Eup—1 S Enu
and
Ey aniraigav = Wu
and

Euks = V-
(See section |1.2] for the definition of the representation KS.)

3.4.2. Vector bundles on Kuga-Sato varieties in characteristic zero. : Suppose Now
that U is a neat open compact subgroup of G4™ (A>) with image U’ in G, (A*).
We will let QflmU) denote the pull-back by the identity section of the sheaf of relative

differentials Qéunivm(m). This is a locally free sheaf of rank (n + m)[F : Q]. Up
n,U

to unique isomorphism its definition does not depend on the choice of G*™V. The
system of sheaves {QflmU)} has actions of GY™ (A>) and of GL,,(F). Moreover there
is an exact sequence

0) — 7 Quyr — QflmU) — F™ ®9 O

Al x, — (0)

AT
which is equivariant for the actions of G&™ (A>) and GL,,(F).

Let El(Jm) denote the principal Rfﬁzl)—bundle on AimU) in the Zariski topology defined
by setting, for W C A;mU) a Zariski open, Sl(Jm)(W) to be the set of pairs (&, &), where

50 : En,U’W — Ow
and

n

& Q(mU) — Hom o(V,/Va,(n) ® Hom o(F™, Q), Ow)
satisfies
& Ly — Hom (Vi / Vi, (), Ow)
and induces the canonical isomorphism

Fm 0300) Ow — Hom Q(HOHlQ(Fm, Q), Ow)
We define the Riﬁl)—action on Eém) by

h(&, &) = (v(h)™ &, (oh™") 0 &).

The inverse system {7} has an action of GV (A%) and of GL,,(F).
Suppose that Ry is a Q-algebra and that p is a representation of RST(”L) on a finite,

m)

locally free Ryp-module W,. We define a locally free sheaf 8((;";) over Aq(%U X Spec Ry

by setting S((Jinp)(W) to be the set of Rflnzzl)(OW)—equivariant maps of Zariski sheaves
of sets

EMw — W, @p, Ow.
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Then {5U )} is a system of locally free sheaves Wlth both G\ (A>)-action and

GL,,(F)-action over the system of schemes {A U X SpecRo}. If g € G (A>)
and v € GL,,(F), then the natural maps

sE) — £

and
~* (m) — 5
are isomorphisms. If p factors through Ri ny Ly ny then 5((]77;) is canonically

isomorphic to the pull-back of &y, from X, . In general W, has a filtration by

m)

Rf1 () )—mvarlant direct-summands such that the action of R\ n(n) OLL each graded piece

factors through L, (n). (To see this apply proposition 4.7.3 of exposé I of [SGA3J] to
the action of Ly, (n)herm on W,.) Thus Sl(f;) has a GU™ (A%)- and GL,,(F)-invariant
filtration by local direct summands such that each graded piece is the pull-back of
some &y from X, 1.

3.4.3. Vector bundles on Shimura varieties in mixed characteristic. : Similarly sup-
pose that UP is a neat open compact subgroup of G, (A?), and that No > N; > 0

are integers. We will let ergp Ny No) denote the pull-back by the identity section of
Qi\umv pord . This is a locally free sheaf of rank n[F' : Q]. Up to unique iso-

n,UP(N1,Na) )
morphism its definition does not depend on the choice of A"™Y. (Because, by the
neatness of UP, there is a unique prime-to-p quasi-isogeny between any two universal
four-tuples (A", guniv \uwnlv [puniv]) ) The system of sheaves {Qn Up(Ny.No) ) has an
1

action of G,,(A*)*d. There is a natural isomorphism between ! o and
_Aumv/)( i UP(Nq,N2)

the pull-back of ergp (N1,Na) . We will write

/\n[FQ] Qord

Wur(Ny,Np) = Wn,UP(Ny,N2) = n,UP(N1,Na)*

(HVH) for the sheaf O yora but

UP(N Ny n,UP(N1,N2)
with the G, (A>)°"-action multiplied by ||v||.
For any m € Z such that p fm and mA"™" is a true isogeny we get a class

[( ]_ P [m] )\univ>*7)_Auniv] E Hl (Auan Ojlumv )
— HO(X vy RO )

We will also write Z, yr(v, N, = O o

a HO(Xﬁ)rgp(Nl Na)» RlW*Q«lél““”/X”Up(Nl Ng)
The class
(1, AV P ] = [(1, [m] AN™)*P guniv] /0
€ HO(ngr(C}P(N1 N2)» Rl7r>'<g2J14""‘V//"—/o Up(N1 Ny)

is well defined independently of m. We obtain an embedding

'—~ord
Up(Nl N2) — R 7T*(Z‘Aumv/‘)(o

Up(N1 Na)
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sending 1 to [|n"¥]|[(1, A"V)*P 4univ]. These maps are compatible with the isomor-
phisms
Rlm, O}

Aunlv/Xor ; Rlﬂ-*Ql

univ,/ ord
A /Xn ,UP(N1,N3)

UP(N7,N2)
induced by the unique prime-to-p quasi-isogeny between two universal four-tuples.
They are also G,,(A>)°"-equivariant.

The composites of induced maps

ord —ord
Hom (Qn UP(N1,N3)» =n UP(Nl,Ng))

d 1
< Hom (QZTUP (N1, N2’ , R, Qb

‘Aunw/X»er'P Nl No)
~ ord ord
(_ HOIII (Q’I’L Up Nl 1\72 Qn Ur ]\[1 ® R W*OAunw)

tr

R W*OAumv

are G, (A>)°"d-equivariant isomorphisms, independent of the choice of A™". More-
over the short exact sequence

(O) H QXord ® OAuniv H Ql univ ergp Nl NQ ® OAuniv —> (O)

,UP(N1,N2)

gives rise to a map

er,?]p(]\rl’]\b) — QXSISP(M o) X RIW*OAuniv
— szrgl’(m Na) % Hom <er%p(N1 Nz)? = g"(1\7171\72)>
and hence to a map
<Q%r7([i]p(Nl’N2)) — QXnDrzc}p(Nl Nag) ® Ezf?]p(Nl,NQ)'

These maps do not depend on the choice of A" and are G, (A>)-equivariant.
They further induce G, (A>)*d isomorphisms

ord —ord
S(Qn UP (N1, N2)) ’ ngrgp(Nl No) ® —n,UP(N1,N2)>

which again do not depend on the choice of A™. (See for instance proposition
3.4.3.3 of [Ladl.)

Let Sgrpd( NuND) denote the principal L, (,)-bundle on Xﬁf{}p( NyNp) 1 the Zariski topol-
ogy defined by setting, for W C Xsf[‘}p(Nl’NZ) a Zariski open, 882‘1(N17N2)(W) to be the
set of pairs (&, &), where

~

o E(T)Lr,((ijp(NhNQ)’W — Ow
and
& er?]p (N1,N2) = HomZ(An/An,(n), OW).

We define the L, (,)-action on 5(‘},7( N1No) by
h(&bgl) - (V( )_ISOa (Oh_l) © 51)

The inverse system {E{}f,,d( N1.N)} has an action of G (A%e)ord:x,

Suppose that Ry is a Z,-algebra and that p is a representation of the algebraic
group Ly (,) on a finite, locally free Ry-module W,. We define a locally free sheaf
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ETNL ) p OVEL X (v, v,y X Spec Ry by setting Egfiy, v, (W) to be the set of
Ly, (n)(Ow)-equivariant maps of Zariski sheaves of sets
ord
gUp(N17N2)|W — Wp ®RO OW

ord, x

Then {S{}I;d( Ny.Na) o) 18 @ system of locally free sheaves with G,(A*)*“*-action over

the system of schemes {X;’rgp( N1.Np) X Spec Ro}t. The maps
g SUP(Nl,Nm — Ewry (VN
are isomorphisms. The pull-back of 881;‘1( NiNa),p 1O
chz),lgp(Nl,NQ) x Spec Ro[1/p]

is canonically identified with the sheaf Eyr(ny,n,)p0p, Rol1/p). This identification is
G, (A®)r X _equivariant.

Note that
ord ord
gUP(Nl,Ng) StdY — =, ,UP(N1,N2)
and
Sord ~ —ord
UP(Nyi,N2),v=1t — —n,UP(N1,N2)
and
gord word
UP(N1,No),AnlF:QStdY — #UP(N1,N2)
and

Eord o~ Ql
Up(N17N2) KS n Up(Nl N2)

3.4.4. Vector bundles on Kuga-Sato varieties in mixed characteristic. : Suppose now
that UP is a neat open compact subgroup of G\ (A>P) with image (UP) in G, (A>P).

We will let 0 Upo(rjcvl No) denote the pull-back by the identity section of the sheaf of

relative differentials Ql (m).ord . This is a locally free sheaf of rank (n+m)[F :
G AL b (N Ny)

QJ. Up to unique isomorphism its definition does not depend on the choice of G™V.

The system of sheaves {Q;”U)po(r;\i,1 Ny} has actions of G (A®) and of G Ly, (O F.(p))-

Moreover there is an exact sequence

* ord (m)
(0) — WAglm),ord/XﬁrdQn7(UP)/(N1,N2) — 0 nUP(N1,N2) 7 Or, v @0 OAime(Nl N3) =0

which is equivariant for the actions of G4™ (A>)r and GLyy,(Opp)).

Let SUZL) A‘;rdN denote the principal R( ,-bundle on Anm[}por;\i, N , in the Zariski topol-

ogy defined by setting, for W C AnmU);,OI}ii, Ny & Zariski open, EU,] ]f;rdN )(W) to be the
set of pairs (&, &), where

~

—ord
o : :(r):UP(NI,NQ)’W — Ow

and

I Qflf“(};?(g‘;bNQ) 5 Hom (A /A () @ Hom (O, Z), Ow)

satisfies
& ergp (N1 Ny) — Hom (An//\m(n), Ow)
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and induces the canonical isomorphism

¥ ©z,, Ow — Hom (Hom (O, Z), Ow).
We define the R -actlon on SI(JTE( jﬁlrdNQ) by

(&, &) = (v(h) ™ &, (oh™") 0 &).

(m),ord

The inverse system {&;;,(y, y,)} has an action of G (A%)r X and of GL,, (OF,(p))-

Suppose that Ry is a Z,)-algebra and that p is a representation of R( on a

+(n)

finite, locally free Rg- module W,. We define a locally free sheaf EUP( ]\(;rdN2) over

Aflmgpo(rﬁ,l Ng) X Spec Ry by setting 8 (W) to be the set of Rn (n)(OW)—equlvarlant
maps of Zariski sheaves of sets

m),ord
g((fp)]\c;l Na2) |W — W X Ry OW

Then {E(UZ”( A(;lrdNQ } is a system of locally free sheaves with G\ (A%)d*_action and
),ord

G L (Op,p))-action over the system of schemes {.An Ur(NiNy) X SPecRo}. If g €
G\ (A>)r4* and v € GLy,,(OF, ), then the natural maps

9 Epativae ™ EGANLND.p
and

*gUP Jslr,ng) — & gbp) O(rJ(\lf’ N3).p
are isomorphisms. If p factors through R ) Ly (ny then 552( 13 dN » is canonically
isomorphic to the pull-back of Sgp(N No)op from Xn b (N1,N2)- In general W, has a
filtration by R j-invariant local direct-summands such that the action of Rn (n) O1

each graded plece factors through L,, (). (To see this apply proposition 4.7.3 of exposé
I of [SGA3| to the action of L, () nerm on W,.) Thus Elgf(ﬁrdNﬂ has a G (A®)-
and G L,,(Op,p))-invariant filtration by local direct summands such that each graded
piece is the pull-back of some 5(‘}1;?( NuNw), from Xsr{}p( N1 Na)-

3.4.5. Higher direct images from Kuga-Sato varieties to Shimura varieties, character-

istic zero case. : If m > m/ and if U is a neat open compact subgroup of G (A>)

with image U’ in GU™(A>) then the sheaf
RjﬂA%"””)/ASL""),*Qi

(m) s A(m/)
AMU/An,U/

depends only on U’ and not on U. We will denote it

(RjW*QZ‘(m ) /4G o

If g € G (A>*) and ¢g~'U,g C U, then there is a natural isomorphism
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where ¢’ (resp. Uj, resp. Uj) denotes the image of g (resp. Uy, resp. Us) in G,(lm/)(Aoo).
This isomorphism only depends on ¢’, U] and U) and not on g, U; and U,. This

gives the system of sheaves {( R/, )i} a left action of GY™)(A). Also if

A(m)/A(m,)
Y € Q. (F) then v : A % Al nAU 8ives a natural isomorphism

v (RJW*QZ

A(m)/A(m'>)U’ — (R,

;%m)/ASZ"’) Jurs
which depends only on U’ and not on U. This gives the system of sheaves
{(RjW*Q;%m/A;mU)U'}

a right action of Qv (F). We have yo g = 7(g) 0.
If U] D Uj and ¢’ € Uj normalizes U] then on

(Rim, Q) ~ (R, Q0

AL 74mD ))us A<m>/A<m'>)U ®o a(m") O 4o

n U n, U/
the actions of g and 1 ® g agree Moreover if U is a neat open compact subgroup of
G (A>) with image U’ in GY")(A>) then the natural map

1

*

WAS{"WASZ”,) (ﬂ'* 5 o

A(’m) /An U’

is an isomorphism. These isomorphisms are equivariant for the actions of the groups
G (A>) and Quym (F).
The natural maps

/\i(W*QZ;’"VASIW))U’ & N (R0 yom o — (RjW*Q;S:’L) /Ai:”’))U’

are G (A%)- and Q. (F)-equivariant isomorphisms.

Suppose that U is a neat open compact subgroup of G (A>) with image U’ in
GEZ”/)(AOO) and U"” in G,,(A>). If U is of the form U’ x M, then the quasi-isogeny
i guniv A;mU) — (AWVym=m" over Aff}}? gives rise to an isomorphism

Hom F(mem/, Qn,U”) & OA(mU) ~ (!

(m) /A
and a canonical embedding
- =®(m—m') 1 1
Zn,ur & OA(mU’ o ® OA(mU’), = (B8 ) g )

where the first map denotes the diagonal embedding. These maps do not depend on
the choice of A™Y. They are G (A>)-equivariant. The first map is also Q. (F)-
equivariant, where an element v € Q. (F') acts on the left hand sides by composi-
tion with the inverse of the projection of v to G Ly, (F'). This remains true if we
do not assume that U has the form U’ x M.

This gives rise to canonical G(m/)(A"O)—equivariant isomorphisms

Hom p(F™™, Q) ® OAff” o <7T*Qi1$1m)/A£Z"'>)U'
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Moreover the composite maps

Hom ((m, Q!

A(m>/A<m’))U s = U @ OA“"'))

n, U’

— Hom ((W*QZ;T”)/AW'))U" (R! W*QA<W )G (m ) U")

<~ Hom ((W*Q;;M/A;m,))w, (W*QA("‘)/AW/)) ' @ (R! W*OA%M))U/)

(R'.0 4o o

tr

are G%ml)(A"o)—equivariant isomorphisms.

3.4.6. Higher direct images from Kuga-Sato varieties to Shimura varieties, mized
characteristic case. : If m > m' and if UP is a neat open compact subgroup of
G\ (A>P) with image (U?)" in Ggm,)(Aoo’p), and if 0 < N; < N, are integers, then
the sheaf

R‘]TF.AT(‘LM),ord ), ord Q

(m (m),ord (m’) ord
[An A NQ)/

n,UP(Ny, L(UP)(N1,No)

depends only on (U?)" and not on UP. We will denote it

(Rj”*%m) ord ) 4nend ) (UPY (N1 Na)

If g € G,(lm)(AOO)Ord and g UV (Ny1, Ni2)g C UF(Noy, Noy), then there is a natural
map

g- (g) (R W*QA%W)»Ord/ASLm'%DTd)(Ug)/(NQthz) — (R W*QA;m)yord/A;m')’ord)(Uf)/(NuJVm)’

where (U?)" denotes the image of U? in GU™)(A*?) and ¢ denotes the image of ¢ in
GYM (A If g € GU™M(A™)* then it is an isomorphism. Moreover this map
only depends on ¢, (U}) (N11, N12) and (UF) (Nap, Noz) and not on g, UY(Nyq, N12)
and UY(Nap, Nag). This gives the system of sheaves

{(RjW*QiAglm),ord/A;m’),ord)(Up)/(N1,N2)}

a left action of GE{”')(AOO)O“

If v € Qumum (OF,p)) then v : Alm Up (NN2) A(T;LV)UP NiNp) 8ives a natural isomor-
phism

,y : (RJW*Q;(m) ord/A(m/) ord>(Up)/(N17N2) ;> (R]W*Q:LA(m) ord/A(m/) ord)(Up)/(N17N2)7
which depends only on (U?)'(Ny, Na) and not on UP(Ny, No). This gives the system
of sheaves . '
{(RJ,]T*Q;?(’Lm),ord/A’ELm’),ord)(Up)/(Nl,NQ)}

a right action of Q. (OF,p)). We have yo g = vy(g) o7.

If (U7) (N1, Ni2) D (US)'(Nay, Nag) and g € (UY)' (N1, Ni2) normalizes the sub-
group (U3)'(Na1, Naz), then on

1%

J %
(R W*Q.A(m) ord/A(m’) ord)(UQP)/(Ngl,NQQ)

Jj
(R W*QA(m)vord/A(m'),OTd)(U{))’(NH,NM) ®O (m?),0rd O (m),ord
' ' A"’(U1p>'(N117N12) 7,(U5) (N21,N22)
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the actions of ¢ and 1 ® g agree. Moreover if U? is a neat open compact subgroup
of GI™ (A>P) with image (UP)" in G\ )(Aoo’p), and if 0 < Ny < N, then the natural
map

1
(m),ord (m'),ord (ﬂ-*Q 'm) ord (m/) ord)(Up) (N1 NQ) Q (m),ord ( ),ord
T /An fAn A6 ) A0 vy v

is an isomorphism. These isomorphisms are G4 (A%)°" and Q p, (O, )-equivariant.

The natural maps
NTL, 0y ra ) i ona) U9y (2 N2) © N (BITO g ona ) Uy (v1,Nz) —
(R]W*Q;’(nm),ord/A&m/),ord)(UP)I(N17N2)

are G (A®)rd and Qmm (OF,p)) equivariant isomorphisms.
Under the identification

Xor(Up) (N Ny X SPecQ = X, mry (v )
the sheaves Qo U (N1.N) (resp. Em(Up),(Nl’NZ)) are naturally identified with the
sheaves €, (ur) (N, Ng) (T€SD. Ep (Ur)y(Ny,N2))- Moreover, under the identification

(m/),ord ~ (ml)
A, UP(N1,Na) X SpecQ = nUP(Nl,Nz)

the sheaf (R/7, (Y A(m,),ord)(Up)/(NLNz) is naturally identified with the sheaf

A(m), ord/
(Rm Q" AT 40 ) )@wry(ny,Nz)- These identifications are equivariant for the actions of
Gn (Am)ord and Qm,m’(OF,(p))~
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4. GENERALIZED SHIMURA VARIETIES

We will introduce certain disjoint unions of mixed Shimura varieties, which are

associated to Ly, ;) n and L, ) and PJr /Z( () and P;, to L ()) iy and L,E:zz)

and Pim) /Z(N, (m ) and P . and to Pn’(z.)) . The differences with the last section

are purely book keepmg We then describe certain torus embeddings for these gen-
eralized Shimura varieties and discuss their completion along the boundary. These
completions will serve as formal local models near the boundary of the toroidal com-

pactifications of the X,, ; and the A to be discussed in the next section.

We remind the reader of our conventwn that, if U is a subgroup of G and H is a
quotient of G, then we will sometimes use U to denote its image in H. We hope that
this causes no confusion as we will only do this when the context makes clear we are
referring to a subgroup of H.

4.1. Generalized Shimura varieties.

If U is a neat open compact subgroup of L hn(A"o) we set

Yn(T('g;; = H Spec Q.

LT i (A%)/U

In the case m = 0 we will write simply Y+() y- Then {Y("z)’zr]} is a system of
schemes (locally of finite type over SpecQ) with right L hn(AOO) action. Each
Y(Tg iy also has a left action of L ()) i, (Q), and the inverse system has a right action
of L m) iiin(A%). If 0 € GLy(F) we get a map

which sends (Spec Q) — (Spec Q)snysy via the identity. This gives a left action
of GL,,,(F ) on the inverse system of the Y(( 1o e GL,(F) and v € L (2) i (Q)

and g € L (A>) then oy = d(y) o d and o g = d(g) 0 0. If U’ denotes the
image of U 1n L n,(i),lin(A%) then there is a natural map

),lin

(m),+ +
Y’Z)U—»Y()U

These maps are equivariant for

Lfﬂz),lin((@) X L

The naive quotient

hn(Aoo) — Ln,(i),lin(@) X Ln,(i),lin(Aoo)-

7

(m) (m),+
Ln,(z) Jin (Q) \Y ,(3),U

)

makes sense. We will denote this space

(m).f
Yn,(i),U
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and drop the (m) if m = 0. The inverse system of these spaces has a right action of

L(""(”) iy (A%), and a left action of G'L,,(F'). The induced map

(m).f b

Yoo — Yaou

is an isomorphism, and GL,,(F') acts trivially on these spaces. (Use the fact that
(UN (Hom ¢(F™, F') @9 A®)) + Hom p(F™, F') = Hom z(F™, F') @y A®.)

Similarly if UP is a neat open compact subgroup of L )hn(AC’O’p) and if N € Z>g
we set

(m )ord,+
y i),UP(N) H Spec Z(p).

L("zz) hn(Aoo)ord,X/Up(N)

In the case m = 0 we drop it from the notation. Each Y m))oéi 7 has a left action of

("E)) iin(Zp)) and the inverse system of the y(m Oéi(}) has a Commutmg right action

of L(m hn(AOO)Ord It also has a left action of GL,,(Opp)). If 6 € GL,,(Opyp)) and

v e th(g),lm(z ) and g € L™ o 1m(lzsvo)ord then § oy = &(y)od and §o0 g = 6(g) o 4.

There are equivariant maps

(m),ord,+ rd,+
Vutorr(v) — Vv

We set
ord,f ord,+ _ r(m) ord +
Y (), UP(N) — =Ly ()hn(Z(p))\yn (i),UP(N) — Ln,(z) hn(Z(p )\y P(N)*
There are maps
y‘”(“))or“ X SpecQ — Y. TF; Zp( N
which are equivariant for the actions of the groups L' ()) 1in(Zp)) and LgL Z)Jm(A“)Ord

and GL,,(OF,p)). Moreover the maps ynmjf,jdp} — ygri)ﬁ]p and Y( l§+ o)
Yn+(i) ur(n are compatible. The induced maps

(m)v I'd7h ~ (m),h
ym(i),oU”(N) x SpecQ — Ym(i),UP(N)

are isomorphisms.
Suppose now that U is a neat open compact subgroup of L 2 (A>). We set

9

)+ _ | (m) -+
Aniv = (X"“U“G”"(Am) <Y v, hnmw))/ .

In the case m = 0 we will write simply X:;(i),U. Then {X( U} is a system of
schemes (locally of finite type over SpecQ) with right L;"Ez) (AOO)—actlon via finite
etale maps. Each X (T’Z)) has a left action of L("Ez) 1in(Q), which commutes with the
right Lnng) (A*>)-action. The system also has a left action of GL,,(F). If § € GL,,,(F)

and y € L") . (Q) and g € L") (A) then doy = d(y)0d and Jog = d(g)od. If U is
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an open normal subgroup of U then X" (m (i ) U is identified with X" (Z LU / U. Projection

to the second factor gives L( i 1in(Q) X Ln,(z‘) (A>)- and GL,,(F)-equivariant maps

X — Yol

The fibre over g € Ly (5)1in(A%) is simply X,_;vna, =) If U’ denotes the im-
age of U in Ly, (;(A>) then there is a natural, L Wz)) i (Q) X Lf:g) (A>)-equivariant,
commutative diagram

(m )+ +
X — Xn,(i),U’

Q

i) l
™) +
Y,(z), —» Yn,(i),U“
We have
XI0E(C) = Lo e @V LU (A%)/U x H%)
and

mo(X\ T x Spec@) 2 (L7, (A%) X (Cai @\Cons (A)/Coci(R))) /U

The naive quotient
(m)h  _ 7 (m) (m),+
X (z) Ln hn( )\X ,(4),U
makes sense and fibres over Y.’ () , the fibre over g being X,,_; i7,, where U; denotes
the projection to Gn i(A>) of the subgroup Uy C U consisting of elements whose
pmJectlon to L lm(A‘X’) lies in g 1L(nz yin(Q)g. We sometimes write X ! (v for

Xfl oo HU denotes the projection of U to L, ;(A*), then the induced map

(m).4 ;
Xt — Xn v

is an isomorphism. The action of L ™ (iy(A%) is by finite etale maps and if U’ is an

open normal subgroup of U then X (m ()) y 1s identified with xom (l U, /U. We have

mo(X 1), x SpecQ) = (F* x On_i<@>>\<AX x Cri(A))/U(F % Coi(R)").

We define sheaves Q U and = ( ) over Xt (i) U B the quotients of

Qi UnGr—s(8o) | XnmiUNGami0) X Vo) UL, o (4%)
and

UM i (%) Xni UG (8%) X Yoy unL, oy ()
by U. Then {Q:;(Z.),U} and {‘:n,(i),U} are systems of locally free sheaves on XZ(@'),U
with left L, ;(A>)-action and commuting right L, (; 1in(Q)-action.

Let S(JZT)’U denote the principal R, (4).(i)/N(Ry,(n),1))-bundle on X:;(Z.)’U in the Zariski

topology defined by setting, for W C X;r’(i)’U a Zariski open, 5;;)7U(W) to be the set
of triples (&g, &11,&12), where

&1 Ep ol — Ow
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and

& QJF WU = HOH’IQ(Vn z/V —i,(n— 1)70W>
and .
We define the R, (n) 7,)/N( (n),(i))-action on 5(Jz'r),U by

h(o, 11, €12) = (v(h) &, (0h™1) 0 &11, (0h™1) 0 &1).
The inverse system {E(JZT)’U} has an action of L, ;(A*) and of L, ;) 1in(Q).

Suppose that Ry is a Q-algebra and that p is a representatlon of the algebraic
group Ry, (n),(i)/N(Rn,n),:)) on a finite, locally free Ro-module W,. We define a lo-
cally free sheaf €+ .U, OVer X:;(Z.)’U x Spec Ry by setting S(J;),pr(W) to be the set of
(Rn,(n), i)/ N (R (n),5)) ) (Ow )-equivariant maps of Zariski sheaves of sets

Efolw — W, @r, Ow.

Then {5&“) vt is a system of locally free sheaves with an Ly ;(A™)-action and an
Ly, ()i (Q)-action over the system of schemes {X:{(i) oy X Spec Ry}. The restriction of
8 yup b0 Xn—i hUh—1nG,_;(a~) can be identified with E,yp-1na,,_,a%) ). . How-

n—i,(n—1)

ever the description of the actions of Ly ;(A>) and L, () 1n(Q) involve p and not

just plr, oy 19 € Ln@(A%®) and v € Ly 1)1 (Q), then the natural maps
* O+ +
TEawe 7 Eiurs
and
v +

are isomorphismes.
We will also write

QEL,@),U = an(i)»hn(Q)\Q;(i),U
and

Ei,(i),U = L, i)m(Q)\E,, (), U
locally free sheaves on Xi’(i)l]. (If p is tr1v1al on Ln’(i),lin then one can also form the
quotient of 5 ) Up by Ly (i)in(Q), but in general this quotient does not make sense.)

If U? is a neat open compact subgroup of L%) (A°P) and Ny > N; > 0 we set

m),ord,+ ord (m),ord,+
Xn 2, UP(N1,N2) (X (UPAGr—i(A%P))(N1,Nz) X y ()(Ume(m())ln(Aoo’p))(Nl))/Up.

In the case m = (0 we drop it from the notation. Each Xn (l)) ?EQJV No) has a left action

of L 0. hn(Z( ) and the inverse system has a commuting right action of L™ i )(AOO)‘“”d
There is also a left action of GL,,(Op,p)). If 6 € GLp(Opyp)) and v € L( ()) iin(Zpy)

and g € L ()hn(Ao")ord then 6oy =d(y)odand dog=4(g)od. If g € ngi)(Aoo)ord

and if
. X(m),ord,+ X(m) ord,+

9+ A () ,UP(N1,N2) " (i), (UPY (N],NG)?
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then this map is quasi-finite and flat. If g € Lglng) (A>)°rdX then it is etale, and, if

further No = N, then it is finite etale. If N5 > 0 and p™2~*21(g,) € Z then the map
is finite. On F,-fibres the map ¢, is absolute Frobenius composed with the forgetful
map. If (UP)" is an open normal subgroup of U? and if N; < N{ < N, then

K merd (N1, N2) JUP(Ny, No) — K m)ord+

n,(4),(UP)( n,(i),UP(N1,N2)"
There are commutative diagrams
(m),ord,+ ord,+
(@ UP(NLND) T X 6,UP (N1 M)
(m ),ord,+ ord +
Vo Up (NN 7 Vo ()0 (N1, N2
We set (m),ord, (m) (m),ord
m),0r m m),ord,+
&, n,(i),UP(N1,N2) — Ln,(i),lin(Z(p))\X (8),UP(N1,Na)?
and write X Or(dqup( Ny Ny for A, © )O gipu( NiNg)- Lhe system of these spaces has a right

action of L(m) (Am)ord and a left action of GLy(Opp)). If 6 € GLy,(Opyp)) and

ge Ll lm(Aoo)ord then § o g = d(g) 0 d. If g € L) (A%)" and if

(m),ord,h (m),ord,h
n,(3),UP(N1,N2) — &, n,(3),(UP) (N} ,N}%)°

then this map is quasi-finite and flat. If g € sznzi) (A*)ord> then it is etale, and, if
further Ny = NJ, then it is finite etale. If Nj > 0 and p™2~*21(g,) € ZX then the map
is finite. On F,-fibres the map ¢, is absolute Frobenius composed with the forgetful
map. If (U?)" is an open normal subgroup of U? and if N; < N| < N, then

(m),ord,h (m),ord,h
X ()(Up N/ N2 /U (N]_,NQ) HX ()Up(N17N2)

The natural maps

m),ord,f ord,f
XTL, 7,) Up(Nl,NQ) X ( ) Up(Nl,NQ)

are isomorphisms.
rd —ord,+ rd,+
We define sheaves " )JFUP(Nl Ny and Z(l) Up(Ny.Ny) OVeT X’ B .Ur (Vi Ny) S the quo-
tients of

ord ord ord,+
O (UG i(aom)) (N1, N2) X (UG (Ao #)) (N1, N2) X Vi AUPOL i i (A7) (V1)

and

ord +

—ord
[ UPAG i (Ao 2)) (N1, N2) X Vo (D AUPO Lo o) 0 (557)) (V1)

—n—i (UpﬂGn Z(Aoop )(Nl N2

by UP. Then the systems of sheaves Qor(l | Up(NhNy) 20 "Or((i )+ Up(N N) DAVe commuting
actions of Ly, i) 1in(Zp)) and Ly, ;) (A>)°d.

Let SordUi( Ny denote the principal Ry (n),i)/N (B, m),))-bundle for the Zariski
topology on X;fg) Ur(\y.N,) defined by settmg, for W C X org)+Up( Ni.Ny) & Zariski open,
EzrdUt(Nl Ny (W) to be the set of triples (&, &11,&12), where

. —ord,+ ~
€o “n,(i),UP(Nl,Nz)‘W > Ow
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and

511 : Qor?z;_Up(le ) —) Hom (ATI, Z/ATL 7, n Z OW)

and
&2 : O @z Ow — Hom (A, /A, (i), Ow).

We define the R, (n) i)/N (Rn,(n),:))-action on €°rdUJ;( NyNg) DY

(&, &1, 612) = (v(R) &0, (0h™) 0 &1y, (0B ™) 0 &1a).
The inverse system {8( ). UP(NyN,) ) has an action of L ) (A>)ord* and an action of
Ln,(z),hn(Z(p))-

Suppose that Ry is a Z)-algebra and that p is a representation of the algebraic
group R, (), i)/ N (Rn,n),i)) on a finite, locally free Ry-module W,. We define a locally
free sheaf Sor [’]J;( NyN)p OVET X, Or(lerUp( Ni.N) X Spec Ry by setting SordUJ;( NNy (W) o
be the set of (R, (), (i) / N (R (), i) ))(OW) equlvarlant maps of Zariski sheaves of sets

golgdU—:(Nl N2 |W — Wp ®RO OW
} is a system of locally free sheaves with L, ;(A>)°*-action

Then {Eor L UP (N1 No)
ord,+

and Ly, () in(Z(p) )-action over the system of schemes {X," 5 (v, n,) X Spec Ro}. The

restrlctlon of Sor)dUJ;(N Ny)p 1O Xord (RUPh=10Gyy (Ao P)(N1.Ny)) CALL be identified with

5(‘),fgph UG (AP (N N2l However the description of the actions of the
groups Ly, ;3 (A®)"* and L, ()1in(Z()) involve p and not just ply,

L,y (A®)" and v € Ly, (»), hn(Z(p ), then the natural maps

If g €

n—i,(n—1) "

* cord,+ ord +
9 E@Ur (N1 N2y T ). Uy (NN
and
* ord,+ ord,+
TV E@Ur (N1 N2 T Eli Uy (NN

are isomorphisms.
We will also write

ordh ord,+
Q Up(Nl,NQ) Ln’(i)vlin(Z )\Q ( ) Up(Nl,NQ)

and

= I‘d,h [ I'd,+
Z(z) UP(N1,Na) — Ln,(i),lin(Z(p)) “‘?L,(i),UP(Nl,NQ)’

locally free sheaves on X Ord)uUp( N1,N2)*

There are maps

(m),ord,+ (m),+
X (1), UP (N1, Na) X SpecQ — X" no(1).UP (N1, N2)

which are equivariant for the actions of the groups L! ()(AO")OTd and L( i 1in(Zp))

and GL,,(OF,p)). Under these maps the sheaves Qord +Up( Ny.Ny) (Tesp. "Or?z;r UP (N1 Ny’
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d,+ + =+
resp. 52?),UP(N1,N2),p) corresponds to ) o, ny) (18P 80 E7 ) 1m(, ny)» T€SP- O

ord, :
S(i),U*;(NhNQ)’@Q). The induced maps

(m),ord,h (m).f
X (e ) X SPecQ — X0 v )

are isomorphisms.
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4.2. Generalized Kuga-Sato varieties.

Now suppose that U is a neat open compact subgroup of

(PIFJZ(NITON)A®) = (PO /Z(NID)) (A%).

A(m).’+ _ H A(i—l—m)

n,(i),U n—i,hUR=1NG\ T (Aoe)

We set

(m)
hEL ,(2),lin

(A>=)/U
In the case m = 0 we Will write simply AJr WU

Ifge ( m) +/Z( ))(AOO) and g 1Ug C U’, then we define a finite etale map
. ) (m),
g: An,(i),U — An,(i),U/

to be the coproduct of the maps
(i+m) Ali+m)
n—i,hUL=1NG 1T (Ao0) n—i,h U’ ()= 1nGUT™ (a0)

where h,h' € L NS hn(AOO) and ¢ € GUT™(A™) satisfy hg = ¢'h’. This makes
{Anmz)t]} a system of schemes (locally of finite type over Spec Q) with right action
of the group (P(m /Z( ))(A"o) If U’ is an open normal subgroup of U then
A (i), " is identified with Agjzi),U,/U.

Ify e L(sz) 1in(Q), then we define

g A

. oAlm)+ +
v Avor T Aneu
to be the coproduct of the maps

(i+m) A(i-‘:—m)

cA . . .
R hUh*lmG(’:.m)(Aw) n—i ('yh)U('yh)*lﬂng—Z”)(AW)

This glves a left actlon of L ) 1in(Q) on each A ) ", which commutes with the action

of (PYYT/Z(NY)) (),
If5 6 GL (F ) deﬁne a map

(m),+
0: An (), U — A 5(U)

as the coproduct of the maps
. Alitm) (i+m)
0: Anfi,hUh—lﬁGif:m)(Aoo) — Anfi,é(hUh—l)ﬂGﬁffZ")(Aoo).
This gives a left GL,,(F')-action on the system of the Af:r(bz)z If 6 € GL,,(F) and

v e L) (@) and g € (PYF/Z(NY))) (%) then doy = 6(y)od and dog = d(g)od.
There are natural maps

(m),+ (m)Hr
Ao — Xaiw

which are equivariant for the actions of (P, m) */z (N (m) ) (A=) and L(m 1in(Q) and
GLpn(F).
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If U’ denotes the image of U in (P;:(i) /Z(Ny,i)))(A>®) then there is a natural
commutative diagram:

(m),+ +
Anf)y — An,(j)y/
(m),+ +
an‘),U = X oo
Viw = Yaw
which is L;(z) (Q)- and (PT(:Z.))’Jr /Z (NT(LTQ)))(A“)—equivarian‘c.

We have
AT(C) = (P JZ(NSEIN@NPY 1 Z (NI () (VTS Ani(R)").

»

Note that it does not make sense to divide A(m) + by L(Wz)) 1in(Q), so we don’t do
SO.
We define a semi- abelian scheme G™V/AF U by requiring that over the open

and closed subscheme A" it restricts to GV, It is unique up to

n—i,hUh=1NG")  (A%)

unique quasi-isogeny. We also define a sheaf Qr ()T (resp E: 0 ) over A:: DU

to be the unique sheaf which, for each h, restricts to Q® ) (resp.
n—i,hUR=ING, ., (A>)

= (@)

i hUh-10G) (Aoo)) on An ARG (4 ooy Thus Q yu 18 the pull-back by the

identity section of QL . Then {Q yo) (Tesp. {H y.0)) is a system of lo-

Gllan /A+ ( ) U
cally free sheaves on A" (.o With aleft (P;r(i) / Z(Nni))) (A“)—aetlon and a commuting
right Ly, ()1in(Q)-action. There are equivariant exact sequences

(0) — 7 oy — QF oy — F' @ Opt  —(0),

where 7 denotes the map A:;(Z.)’ — X7 ()T

Let 5+ denote the principal R, (»),;)-bundle on A+ v in the Zariski topology
defined by setting, for W C A+ o @ Zarlskl open, 8 (W) to be the set of pairs
(&o,&1), where

—_

&1 Zy o ulw — Ow
and
SE QJr( i), U — Hom o(Vo—i/Vi—i,(n—iy ® Hom o(F", Q), Ow)

satisfies
& Q+ U — Hom g(Vo—i/Vi—i (n—1), Ow ).

We define the R, () ;)-action on 5 v by

h(&o,&1) = (V( )" 60, (0h™h) 0 &).
The inverse system {g(f)U} has an action of P;(l.) (A*) and of L, (;)1n(Q).
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Suppose that Ry is a Q-algebra and that p is a representation of R, ) ) on a
finite, locally free Ryp-module W,. We define a locally free sheaf S ) OVer A ) X
Spec Ry by setting £
Zariski sheaves of sets

)UP(W) to be the set of Ry (), (Ow)- equlvarlant maps of

g‘(—:),U|W — W, ®r, Ow.

Then {5(1 vt 1s a system of locally free sheaves with both a PJr i (A>)-action and

an L, (;1in(Q)-action over the system of schemes {A+ b X Spec Ro} The restric-

tion of 5+ v, to AD 0 can be identified Wlth v o
p n—i,hUR=1NG) , (A%) RUR=10G (4%).0] g

n i,(n—1)

However the description of the actions of P;(i) (A>) and Ly, (;)in(Q) involve p and
not just pf 4 g e Pl (A%) and v € Ly, () (Q), then the natural maps

n—i,(n—i)

T Ehwe = Eoury
and
*5+) Up
are isomorphisms. If p factors through R, () ) / N (R, (n),)) then g(—;_),U,p is canonically
isomorphic to the pull-back of £; + 0.0 from X +( 5.0 In general W, has a filtration by
Ry, (n),(s)-invariant local direct- summands such that the action of R, () ) on each
graded piece factors through R, (n),)/N(Rn (n),i )) (To see this apply proposition
4.7.3 of exposé I of [SGA3] to the action of A, (jjun on W,.) Thus S(Jg)’U’p has a

P;(z') (A*®)- and L, (;) 1in(Q)-invariant filtration by local direct summands such that
each graded piece is the pull-back of some S(Jg)’U’p, from X;;(i)’U.

Similarly if Up is a neat open compact subgroup of (PygTi))”L /Z <NT(L7,7(Z¢))>>(AOO”’) =
(PYOFJZ(NID)))(A%P) we set

+
- g(i)vU’,p

A(m ),ord,+ H (i+m),ord
),UP(N1,N2) — n—i,(hUPh=1NGUTT™ (A%0)) (N1, N2)”
hEL(m> (Aoo)ord,x/Up(Nl)

n,(1),lin
In the case m = 0 we will write simply Aor(l )U( N1 Na)- The inverse system of the

A(”z))olrji&l has a right action of (P(m FJZ(NY NU™ ))(A“)Ord and a commuting left

action of L (). (Zy). It g € (P! m(i) /Z(N(m ))(A“)Ord then the map

n,(2),lin
. g(m),ord,+ m),ord,+
g- An,(i) UP(Ni,N2) 7 ‘A i),(UP) (N1, N%)?

is quasi-finite and flat. If g € (P, m)+ /Z(N,; ))(A‘X’)Ord * then it is etale, and, if

further Ny = NJ, then it is finite etale. If N’ > 0 and p*N2y(g,) € Z,) then
the map is finite. On F,-fibres the map ¢, is absolute Frobenius composed with the
forgetful map. If (UP) is an open normal subgroup of UP and if N < Nj < N,

then A(m °rd+ ((v1.n)/ UP (N1, N2) s identified with A Olrﬁ,iv Ny)- Further there is a
left actlon of GL (Op,p)) such that if 6 € GL,, (OF(p)) and v € L ()) iin(Zp)) and
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g€ (Pém) /Z(N(m )(A®)rd §oy = §(y)od and §og = 6(g) od. There are natural
equivariant maps

(m),ord,+ ),ord,+
An,(i)7Up(N1,N2) — X UP(Nl Ng)

If (U?)" denotes the image of U? in (P:(i)/Z( n,(i)))(Aoo’p) then there is a natural
equivariant, commutative diagram:

(m),ord,+ or
An O UP(N1,N) ‘A (UP) (N1,N2)

(m),ord,+

ord,+
Uy

n,(2),(UP)"(N1,N2)

(m),ord,+ ord +
yn,(i)»Up(NlJ\b) - y ) (N1,N2)*

There are equivariant embeddings

(m),ord,+
'A (8),UP(Ny,Nz) < Speo@<—>A )s p(N1 Na2)-

7

univ ord ord
We define a semi-abelian scheme G /.An (Ur (N1, Na) OV AL o (v gy DY Te-
),ord

univ
ni (BUPR=10G | (Ao%m) (N1, N2) it restricts to g™, It is unique up to

quiring that over AD

unique prime-to-p quasi-isogeny. We define a locally free sheaf Qord )JFUP( N1ND) (resp.

gzlj?{)fm(]vl, Np)) Over the scheme Aord JUp(Ny.N,) O De the sheaf Whlch, for each h,

restricts to the sheaf

Q(i),ord v
n—i,(hUPh=1NG), (A%-P))(N1,N2)
H(z) ord ),ord
(resp. i (WUPh-10GY (A%)) (N, NQ)) on the sub-scheme An L (RUPh-INGE) (A=) (N1 Na)'
Then Qord +Up (N1.N) 18 the pull-back by the identity section of QL . The

niv rd,+
Gunt LA P (v Ny

Qord +Up (N1.N) ) (T€SD- {J’rd +Up( Ni.N)}) 18 a system of locally free sheaves

collection {
on Azr (). Up(N1.Np) With a left (Pi(i) /Z(Ny (i))) (A%)"d-action and a commuting right

Ly (iyin(Zpy)-action. Also there are equivariant exact sequences

(0) — T g — Qo vy — O ®2 O —(0),

where 7 denotes the map Aord X Ord)j“U

Let Sordlj; (\1.n) denote the pr1n01pal Ry, (n),(i)-bundle on the scheme Aff (). 0P (N1.N»)
in the Zariski topology defined by setting, for W C Af:?i;’rm( Ny.Ny) @ Zariski open,
E(O:dUt(Nl N, )(W) to be the set of pairs (&g, &), where

€o: Ezr,?{)TUp(Nl,NQ)‘W — Ow
and
& er‘(i;Up(va M) — Hom 7(Ay—i /Apin—iy @ Hom 7(0%, Z), Ow)

satisfies

ord, ~
fl : Qn,(i;UP(Nl,Ng) — HOInZ(AAnfi/An—i,(n—i% OW)
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We define the R, (n) ;)-action on 5°r )\ UP (N1 N) by
h(&, &) = (v(h)"*&, (oh™) 0 &).

The inverse system {58 rdU*; NoNo) } has an action both of the groups P+(l (Aoe)erdx
and of L )hn(Z(p))-
Suppose that Ry is a Q-algebra and that p is a representation of R, ) ) on a

finite, locally free Ry-module W,. We define a locally free sheaf Sorde,( Ny Na)p

Aord) Un(v, Ny X Spec I by setting Eor) Ur (v, o) p (W) to be the set of Ry, ) i) (Ow)-
equivariant maps of Zariski sheaves of sets

over

oord,
gl) U—:(Nl N2)|W — W,D ®R0 OW

Then {Sc’lgdUJ; Ny.N)p) 1S @ system of locally free sheaves with P;(z) (A>)ord: > _action
and L, ;) 1in(Z(p))-action over the system of schemes {Aord L UP (N1 Ny) X Spec Ro}. The

(i),0rd can be identified with

gord +
n—i,(hUPh=10G) , (A%:P))(N1,Na)

(.U (N1, Na) p 1O A

restriction of

(4),ord
(hUPR=1NG) , (A%0P))(N1,N2),p| o)

n i,(n—1)

However the description of the actions of the groups PJr (A"O)‘”d “and Ly, (3) 1in(Zp))

involve p and not just p|R(> g e PJ(Z.) (A"o)"rd . and v € Ly )’hn(Z( y), then
the natural maps
*Eord ,+ gord "+
(4),UP(N1,N2),p ),(UP) (N1,N3),p
and
* ord,+ ord -+
TV E@ PN N2 T E iUy (NN

are isomorphisms. If p factors through R, () )/N(Rn,m),6)) then 8 ord.+ is

)UP(N1,N2)
canonically isomorphic to the pull-back of Eor)dUt( Ny.Ny),p frOm X orc, +Up( Ny.N)- D gen-

eral W, has a filtration by R, ) @)-invariant local dlrect—summands such that the
action of R, () ;) on each graded piece factors through R, (n)i)/N(Rn ),(i)). (To
see this apply proposition 4.7.3 of exposé I of [SGA3] to the action of A ),lin O

W,.) Thus Eor)d[; N1 No).p has a P;(i (A>)ord*_and L, ) 1in(Zp))- 1nvar1ant filtra-
tion by local direct summands such that each graded piece is the pull-back of some
gord + f Xord +

(0).UP(N1,N2)p T U (5),0p (N1, N

The next lemma follows from the discussion in section B.41

Lemma 4.1. If U’ is the image of U (resp. UP) and if m denotes the map Alm ()U —
At wqiyo then there are Ly (i) 1in (Q)-equivariant, (P;(i)/Z (N (i) (A>®)-equivariant and
GL,,(F)-equivariant zsomorphzsms

J o~
R W*QA<W bk o
n,(1),U/ " "n (3),U’

(/\k(pm QF Qn,(i),U’)) ® (/\j(pm ®p Hom (27 ;) s E:,@),U’») :
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4.3. Generalized mixed Shimura varieties.

Next suppose U is an open compact subgroup of qum (A>). We define a split torus
o(m),+ (m),+

. ~ as
n,(i),U’ " n,(i),U

H Glm+i)
n—i,hUL=1NG" T (a%)’
heL{™) |, (4%0)/T

Thus X*(gi@)%)@ is a constant sheaf:

X.(S7WF%)q & Hermg™ 2 Z(N1)(Q).

Ifge ﬁé”é))’+(A°°) and §~'Ug C U’, then we define
. N(m)7+ ~(m)7+
g- Sn,(i),ﬁ — Sn,(i)ﬁf
to be the coproduct of the maps

(m+z)~ I — S(m+l)~ ) 7
n—i,RtUR=INGI™ T (A) n—i,h'U'(W)~1nG,"T" (A*>)

where h,h € L(m yiin(A%) and ¢ € é(m+i)(A°°) satisfy hg = ¢’h’. This makes

{N ~} a system of relative tori with right P(m (A>)-action. If v € L' ()) i (Q),

then We define

. alm),+ a(m),+
VS (i),0 — Sn,(i),if

to be the coproduct of the maps

. g(m+i) (m—+i)
v:S P YT ” L AmAD) [ 4 oo
n—i,hUR=ING " (A>) n—i,(yh)U(vh)~ NG~ (A )’

This gives a left action of Lﬁg)mn(@) on each S gm ﬁ which commutes with the action
of P (A"o)

Slmllarly suppose U? is an open compact subgroup of P(m (A°P) and that N is

(m ),ord,+ /y(m ),ord,+

a non-negative integer. We define a split torus S oy Yooy o)

as

M s
n—i,(hﬁphflmég"j” (A%e.p))

heL("E)l) lln(Aoo)ord,X/ﬁP(N)

for any N’ > N. Thus X, (S Sm. O;i (J;V))Z(p) is a constant sheaf:

(m),ord,+ ~ (m+1) ~ (m)
X.(8, (), ﬁP(N))Z(;D) Hermg - = Z(N, i) Zp))-

If § € PU"(A%)d and g=UP(N)g C (UP)'(N'), then we define

n, Z

o(m),ord,+ o(m),ord,+
.07 7 S Ty (v
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to be the coproduct of the maps
(m+4) _ (m+4) '
n—i,(hUPh=1nG™ ) (Aco.p)) n—i,(h'(OP) () =1NG" T (Acop))

where h,h' € L™ n(i) hH(AC’O)OM and ¢ € G mﬂ (AOO)Ord satisfy hg = ¢’'h’'. This makes

{§("8) e } a system of relative tori Wlth right P (A“)Ord action. If v is an
(m)

element of L n(i) tin(Z(p)); then we define

St S(m) +
VS T T SO

to be the coproduct of the maps

 olm+i) (m-+i)
v Sn—i (hUPh=1nG™ T (Asep)) — Sn—z (Yh) TP (yh)~1NGU™ T (Acep))|
This gives a left action of Ln It )hn(Z( y) on each S e ) p(N)’ which commutes with the

action of P(WZ (Aw)ord

The sheaves X*(S ) ) and X, (S(m U) have actions of L )hn((@) The sheaves

n,(z),U
7/ o(m),ord, m),ord
X (S( ()) G (J]rv)) and X, (S (Z) Up (JJFV) have actions of the group L )lm(Z(p)). The
systems of sheaves {X* ( )} and {X.(S m))}r])} (resp. {X*( T(L Oéi&rv))} and
a(m),ord m 0o ) 00 \or
{X.(S )UP(J;V))}) have actlons of PTE?(Z.) (A>) (resp. Pm(i) (Ace)ord),
The sheaf
g(m),+ _ g(m+i)
(XS, 5) N Hermpn) = 1T (X*(Sn_i,hﬁhflméi”i?)(Am)) N Hermpn )
heLl™). . (A%®)/T

,(2),lin

is a subsheaf of X, (S n(l)) ~). (Recall the embedding

Herm™ = ke r(Z(NfLTZ.))) — Z(NT(LTB))) C Herm(”m),)

It is invariant by the actions of the groups ngg)’lin((@) and P (AOO) We define a
split torus

m)+
n,( z)U/Y,z

by

X*(gsz))%) = X*(génzl))g) N Hermpm.

If U denote the image of U in PX’&))’JF(AOO), then we will write

(m),+ _ g(m)+ ,glm)+
Snv(i)vU B Sn,(i),ﬁ Sn,(i),ﬁ'
It depends only on U and not on the choice of U mapping onto U. The sheaf

X*(Sﬁzﬁr])@ is constant:

X.(SU e = Z(NIH(@).
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In the case m = 0 we will write simply Sn O The tori S ()U and S (z) [7 inherit
a left action of L' ()) 1in(Q) and a right action of P (A"o) In the case of Sn o0

the latter factors through P(m (A‘X’). If Uis a neat open compact subgroup of
P(m (AOO) with image U in P (AC’O) and image U’ in P (A>), then there is a

natural L (2) i (Q)-equivariant and ))+(A°°)—equivariant, commutative diagram:

)+ (), +
STG  Sen — Shaw
(¢> (i) !

m),+ . m),+
Yoor = Yaou 7 Yoeuo

Similarly the sheaf

o(m),ord,+
(X*(S( ()) (717(N)) N Hermpm) =
HheL(m)> lin

is a sub-sheaf of X,(S m))oéi JV)). It is invariant by the actions of L 7(2) iin(Zp)) and

o(m+i),ord

(Aoo)ord,x/fjp(N)( *( i (hﬁphflﬁé(ﬁﬂ)(lgoovp))) N Hermpm)

P?E"é) (A>)°rd, We define a split torus
a(m),ord,+ (m),ord,+
S n,(i),U7(N) /y ,(1),0P(N)
by

a(m),ord,+ o o(m),ord,+
X*(Sn,(z‘)ﬁp(N)) = X*(Sn,(i)ﬁp(zv)) N Hermpm.

If U? denotes the image of U? in Pémi) (A>P), then we will write
(m),ord,+ _ G(m),ord,+ /\(m ),ord,+
Snﬁ(iLUP(N) T Tn,(),UP(N / J(0),0P(N)"

m),ord,+

It depends only on U? and not the Ur mapping to UP. The sheaf X, (S ()UP(N))Z(p)

1S constant:
(m),ord,+ ~ (m)
X*(S i )Z(p) = Z<N i )(Z(P)>

+(8),UP(N) n, (i)
In the case m = 0 we will write simply S,/ ;) 175 (y)- The tori g(w(b))’oéi’(}) and S, (m Oéf,(})
inherit a left action of L )hn(Z(p) and a right action of P m)+(A°O)°rd. In the

case of S' (l)ord(+) the latter factors through Pﬁ T(A®)erd If UP is a neat open

compact subgroup of P! m) +(A°°’p) with image U? in P(m) +(A°°’p) and image {ury

in P;f(i) (A>P), then there is a natural, L (2) 1in(Zp) )-equivariant and P (A“)Ord

equivariant, commutative diagram:

o(m),ord,+ (m),ord,+ ord,+
Spmirey 7 Sn@ury T Sa@ weym)
{ { {
(m),ord,+ o (m),ord,+ ord+
Vwtrey = Yn@oray —* Vuweywy
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There are natural equivariant embeddings

o(m),ord,+ a(m
e X SpecQ > ST
and
m),ord
87(1 l)Uer xSpecQ<—>S (N)
and
&(m),ord
87(17()) (U;)r X SpecQ — Sn U V(N
We write X, (S ()J{])*O (resp. X, (S ()J{])]EO, resp. X, (S ))’J{])zo) for the sub-

sheaves (of monoids) of X, (S mt )R corresponding to the subset eV, ) C

(8),U
Z(Nyg"(?))(R) (resp. to the subset €™>0(V,, ) C Z(N(m))(]R), resp. to the subset

,()
Cm20(V, ) € Z(NID))(R)).

We will also write X*(S;(g)}’])ﬂ%o (resp. X*(S( (Z)+ )20, resp. X*(S(m?’Jr )=0, resp.

X*(S¢ (3)+ )70) for the sub-sheaves (of monoids) of X*(S(m) )R (resp. X*(S( (Z))Jr)

resp. X *(S:T(li) u), resp. X *(87(1"8)})) consisting of sections that have non-negative
(resp. strictly positive, resp. non-negative, resp. strictly positive) pairing with
each non-zero section of X*(Sf:’g)’z)]ﬁo. All these sheaves have (compatible) actions

of L ) hn(@). The system of sheaves {X*(SS?Z))E)} has an action of P(WZ)J“(AOO)

and the same is true for all the other systems of sheaves we are considering in this
paragraph.

We may take the quotients of the sheaves X*(S(nz))’z) (resp. X*(S(Tr{z);) , Tesp.
xS (Z)) )29) by LU hn((@) to give sheaves of sets on Y((; which we will denote

X*(S( (3)+)h (resp. X*(S( (Z)) )>04 | resp. X*(S(’(Z))’U)M’”). If y = hU lies in Yn( (l;U

above 3 € Y, m)b then the stalk of X*(S ) at y* equals

(m) . _ * ( g(m+i)
{rve Ln,(i)Jin(Q) Y = y}\X (Snfi’hUh_lm@;njz‘)(Aoo))'

m),ord m),ord, ord,
We will write X, (8( UP(JJFV))>O (resp. X, (S( ()) UPJV))]EO, resp. X*(Sf%()) UP(JJFV))]%O)

for the sub-sheaves (of monmds) of X,(S, m) Ord ™ () R corresponding to
@W”MmQCﬂM%MM

(resp.
em=0(Voi) © Z(N)(R),

resp.

20V, i) € Z(NID)(R)).

Again we will write X *(Sg%oﬁ’&))ﬁo (resp. X *(82";2)’052’&))20) for the sub-sheaves

(of monoids) of X*(S T'Z))Oéf,(}))ﬂg (resp. X *(ST(LTZ)OIE(;&))) consisting of sections that
m),ord,+ >>O

have non-negative pairing with each section of X, (ST(I (U (N)R We will also write
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X *(S(T))’Oéi’(}))w (resp. X *(5(7?))’0[;;1,’&))>0) for the sub-sheaves (of monoids) of the

sheaves X *<Sn7?))0rd(—}_v))]]g (resp. X *(S(m Oéf,&rv))) consisting of sections that have

strictly positive pairing with each non-zero section of X, (ST(LTZ.))’%%&))H%O. All these

sheaves have actlons of L )hn(Z(p)). The system of sheaves {X, (S(m O;,i, 4]'\,))} has

an action of P i ) (Aw)ord and the same is true for all the other systems of sheaves
we are COHSlderlng in this paragraph.

We may take the quotients of the sheaves X*(S (7?3)05?,(+ ) and X*(S "Z))Oéi(}))w

and X*(S T)Oéi(}))m by L™ D), hn(Z( )) to give sheaves of sets on ) (m), Oédp’(uN), which

we will denote X *(S(nz))oéi(})) and X *(S,Sml)‘)éif )70 and X *(S,(lm@)oéi;r )20,

Suppose again that U is a neat open compact subgroup of P( (AOO) and set

+ (m+1)
T+ | | ot o
n,(i),0 i AURINGTD (a%)
heL") o (8%) /T

It is an S ) U-torsor over Al (Z)+ If U denotes the i 1mage of Uin P T'(Z))’JF(AOO) then the

m) + (m)+ __ p(m)+
push-out of 7™ (z),(? T under Sm(Z)’U 7 iU = An,(i),ﬁ’
(m),+

which only depends on U (and not U ), and which we will denote T, iy In the case
o . . . + F(m),+ (m )+
m =0 We~W1H write simply Tn;(i)’U. iVote that Tn’ O is an Sn (z),ﬁ -torsor over T ()0
Ifge PTETZ.))’JF(AOO) and g~'Ug C U’, then we define
N . T(m)7+ — T(m)7+

g: n,(4),U n,(3),0’

—» S (Z) U is an S( ) -torsor over

to be the coproduct of the maps

~1 . (m+i) 7(m+i)

g ‘Tnfi JLOR=1NGI™ D (ace) — n—i,h U’ (K)~1nG™ ) (a00)
where h,h' € L(nzl i (A%) and ¢' € Gt (AO") satisfy hg = ¢’'h’. This makes
{T (m +} a system of {S m) +} torsors over {A( + 5} with right P(m (A>)-action.
It also induces an action of P(m (A>) on {T 0. U} which makes {T(m U} a system

of {Snml))z} torsors over {A . .} with right P m) +(Ao") action. If v € L ()) i (Q),

then we define

7

Syt Am)t
VT s 7 Taao

to be the coproduct of the maps

_p(mt) (m-+i)
v Tn—i ARG (A%e) Tn—i (yh)ﬁ(yh)ﬂmé;”ji’mw)'
This gives a left action of L( 0, 1in(Q) on each T (i ) U, which commutes with the action

of P(m (A*>). It induces a left action of L! (2) i, (Q) on each T ())+ which commutes

with the action of P) m) +(AC’O) Suppose that U is a neat open compact subgroup of
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Prgm (A>) with image U in Pg'(";))’JF(AOO) and image U’ in P;(i) (A>). Then there is

a commutatlve diagram

T(m),+ (m),+

Tooo = Taov = Tlow
(i) (i) ¢
m),+ m),+

An,(i),U - An,(i),U - Z,(i),U’
(i) (i) ¢
m),+ m),+ +

Xowo = Xooov = Xoow
(i) (i) ¢
m),+ . m),+ +

Ym(i),U = Yn,(i),U - Yn,(z’),U’

Ty w(C) = F i <@>\<P,Em?’+<A>Z<N<"z>>><<c>>/<UU2 oo An-i(R)").
Similarly if U? is a neat open compact subgroup of P(m (A>*P) and 0 < Ny < N
we set

~(m),ord,+ o H T(m—f—i),ord
n,(i),UP(N1,N2) n—i,(hUPh=10G™ ) (Ac0.p)) (N1, Na)

hEL(Wt)) hn(Aoo)ord,X/f]p(Nl’N2)
It is an S" %" torsor over AT If U? denotes the image of U in
(Z) UP(N1) ()Up(Nl,N2)
(m),+/ p oo, ),ord,+ o(m),ord,+ )ord,+ .
P (i) (A°P) then the push-out of T )Up(Nl,Ng) under S (5.7 (1) —» S )UP(N) is
ns, (m oéc,l,(Jr ny)-torsor over A wzz)olr]i ;;Vl N » which only depends on U” (and not U (?) and
Nl, Ng, and which we will denote T (l);f(; Na)- In the case m = 0 we will write sim-
rd,+ 7(m), ord + m),ord,+ (m),ord,+
ply T, Up(N1.Ng)- Note that T (), TP (N1 N2) isaS (). p (v, tOTSOT Over T 0.7 N )
As above the system {T(m) er (;\; } has a right action of Pﬁm) (A>*)d and a
n 7/ 17

commuting left action of Ln ()) hn(Z(p)). If g € Pé%))jL(AOO)Ord * then the map g is
finite etale. The map

),ord,+
) Up(N17N2 ].

G ! f(m),ordﬁ

n’(i)jjp(Nl,NQ X SpeCF —_ T

x SpeclF,

equals absolute Frobenius composed with the forgetful map. If Ny > 1 then the map

. 7-(m),ord,+ ~7-(m),ord,+
Sp n,(1),07(N1,Nz) n,(4),0P(N1,No—1)

is finite flat. Further there is a left action of G L,,(Op,p)) such that if § € GL,,(Opp))
and v € LE;YZ)MH(Z(Z))) and g € f’éz))’Jr(Aoo)ord, then ~ followed by § equals § followed
by dv6~1, and g followed by & equals d followed by dgd~!. These actions are also

m))oédj } There are induced actions of the

groups GL,,(Op ) and Ln (iy1in(Z(p)) and P (A‘X’)Ord on {T ?]r:(;l Np)}» Which

all compatible with the actions on {S
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are compatible with the actions on {Siml)oéi J]rv )} There is an equivariant commuta-

tive diagram

~(m),ord,+ (m),ord,+ rd,+
n,(3),07 (N1,N2) - n,(i),UP (N1,Na) — n,(1),07(N1,Nz)
(m),oid,+ _ (m),o‘rvd,—i— — ord,—l—~
n,(1),UP(N1,N2) n,(1),UP(N1,N2) n,(z),UP(N1,N2)
m),ord,+ o (m),ord,+ ord,+
Xn i), Uj(Nl,Ng) o n,(),UP(N1,N2) - n,(),UP(N1,N2)
(m),ord,+ o (m),ord,+ ord,+
Yowiraey = Yy 7 Ynorany

There are natural equivariant embeddings

(m),ord,+ 7(m),+
7;'7(7:)’l7p(N1:N2 X SpeCQ = T 7(7')’UP(N17N2)

and (m) (m)
m),ord,+ m),+
7;L’(7;)7UP(N17N2) x Spec Q — Tn’(i),Up(Nth)'

If a is a section of X*<S£WZB)E)(W) over W C Yn(r('g;; then we can associate to it a
line bundle

L (a)
over AEL"ZE)JFU]W as in section There are natural isomorphisms
Li(a) ® L) = L (a+d).
Suppose that Ry is a noetherian (Q-algebra. Suppose also that U is a neat open
compact subgroup of P, (A®). If a is a section in X*(S,,, ,)”°(W) then L(a) is
relatively ample for A wulw/ X;:(l.) glw. If 7% denotes the map

Ajz_,(i),U|W X Spec Ry — X:;(i)’U|W x Spec Ry,

then we see that

R'mf L (a) = (0)
for i > 0. (Because A, ;lw/X," ;) ;|w is a torsor for an abelian scheme and £{;(a)
is relatively ample for this morphism.) We will denote by (m4+/x+.L){;(a) the image
mr L (a). Suppose further that F is a locally free sheaf on X:;(i)’U x Spec Ry with
Ly i)1in(Q)-action. If a’ is a section of X*(LS”;T(Z,)’UPO’u we will define

(Tas /x5, L ® F)f(a)
as follows: Over a point y* of Yh DAL take the sheaf
H(WAJr/X*,*E)U(a)y ® Fy
Y,a

over X (i) Ut Spec Ry, where y runs over points of Y, U above 3% and a runs over
sections of X*(S:Lr Q) U) above a?. Tt is a sheaf with an actlon of Ly, (3)1in(Q).
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Lemma 4.2. Keep the notation and assumptions of the previous paragraph.
(1)
~ 7 in(@) .
(WAWX“,*C ® }_)J&(a ) = Ind {1}( " ((WA+/Xh,*£ ® .F)J[;(ah)Ln,(w,hn(@))

as a sheaf on Xh u X Spec Ry with Ly, ;y1in(Q)-action.
(2) If

m AT

(iU % Spec Ry — Xfl v X Spec Ry

then
R'm, Haex-(s7 ) )70 (L (a) ® F)

~ HaheX( )>0h(7TA+/Xh*£®f) (ah) if 1=0
1 (0) otherwise.

Proof: For the first part note that if v in Ynf(i)y and if a € X*(S;(i)’U);O then the
stabilizer of a in {7 € L, ;(Q) : vy = y} is finite, and that if U is neat then it
is trivial. The second part follows from the observations of the previous paragraph
together with proposition 0.13.3.1 of [EGA3|. O

y(m ord +

S(m)’ord’+1)) over W C

(), UP (N then we can

Similarly if a is a section of X*(
associate to it a line bundle

‘C;p(NLNQ)(a)

(m)7ord7+ . .
over An’(i)ﬂp( N1, N2) lw. There are natural isomorphisms

£?er(N1 Ny) ( ) ® LUP (N1, NQ)( ) EJ(}F (N1 NQ)(OJ + a/)'
Suppose that R, is a noetherian Z,-algebra. Suppose that U? is a neat open
compact subgroup of P:(i)(Aoo’p) and that 0 < Ny < Ny, If a is a section in
XH(S, iy wrnn)” (W) then L7,y v, (@) is relatively ample for .Aor .U () [ OVeT

d+
X;f(i)’Up(NhNQﬂW. If 7% denotes the map

ord, ord
An,(i)—t_Up(Nl,N2)|W X Spec Ry — &, ()J;Jp N1Na) lw X Spec Ry

then we see that
R L vy (@) = (0)

for i > 0. (Again because .Aord) Ur(Ny N W/ ;f(j)JrUp( Ny.No) W 18 & torsor for an abelian

scheme and EUP Ny.Na )(a) is relatively ample for this morphism.) We will denote by
(7 gord.+  xgord.+ *£>UP(N1, 2)( a) the image 77 L1 (a). Suppose further that F is a locally

free sheaf on XOr(ci)JrUp (N1.Na) X Spec Ry with L, (i) 1in(Z ) )-action. If a” is a section of
* rd,
X (Szy(i)TUp( Ny)” 08 we deﬁne a sheaf

(7TAord,+/Xord,h’*£ ® ‘F);P(Nl,]\fz) (ah)
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as follows: Over a point y* of y‘”d’hw( N1.Ny) We take the sheaf
H(WAord,+/Xord,+7*£)$p(N1’N2)(a)y ® Fy

y,a

over X Or(dihUp( AR Spec Ry, where y runs over points of ygri’)”m( N1N2) above 1

d
and a runs over sections of X *(80r y

)UP(Ny ))y above af. It is a sheaf with an action of
Ly (iyin(Zpy). As above we have the following lemma.

Lemma 4.3. Keep the notation and assumptions of the previous paragraph.

(1)

(7TAOrd +/X0Td,h7*£ ® F);P(N17N2)(au>
in(Z
In d {1}(”’1"'( (p>) ((WAord,+/Xord,+,*£ X ‘/—'.)—UFP(NI,NQ)(au)Ln’(i>’lin(Z(p))>

as a sheaf on Xor(dqup(Nl x Spec Ry with Ly, ;) 1in(Zp)) -action.
(2) If
Aord+ x Spec Ry — X% x Spec R
Up(Nl N2 pec fip ( ) UP(N1, N pec g
then
Rim. 11 (Lo g (@) @ F)
QX (ST um(ny) "

18 1somorphic to

H <7T_Aord,+//\/0rd,h,*£ @ F)J&P(Nl,Ng)(ah)

¥ rd,
atEX* (S )+UP(N ))>08

if i =0, and otherwise is (0).
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4.4. Partial compactifications.

We will now turn to the partial compactification of the generalized Shimura varieties,
T("Z)) y» we discussed in the last section. These will serve as models for the full
compactification of the Alm) ».0» Which near the boundary can be formally modeled on
the partial compactifications of the T(”Z)) U

Suppose that U (resp. UP) is a neat open compact subgroup of L hn(A‘X’)
(resp. L )hn(AOO’p)) and that N is a non-negative integer. By an admzsszble cone

decomposztzon ¥ for X*(ST(L’() )0 (resp. X, (S(m?’ord’jv))io) we shall mean a partial

1), U/R n,(4),UP(
fan ¥y in X*(Sflnzl))j;) (resp. X*(Sfl (.))Oéi(Jr ))r) such that
m m),ord
o |30 = XL (U )R0 (resp. XL (S )2%);
m m),ord
o S0’ = X(S{0 )R (resp. XASURT 2%

e X is invariant under the left action of L' ()) 1in(Q) (resp. L ni )hn(Z(p)));
. Lgréz) in(Q@)\Zg (resp. qu(z)ﬁhn(Z(p \Xo) is a finite set;
eifoeYyand 1 #£~e L™, (Q) (resp. L™, (Z then

( (p)

n,(4),lin n,(4),lin
oN~vyo & Y.

(Many authors would not include the last condition in the definition of an ‘admis-
sible cone decomposition’.) In concrete terms ¥, consists of a partial fan X, in

Z(Nénz)))(]R) for each g € L( (A>) (resp. Lf:zg)’hn(AOO)OYCLX)7 such that

o X gu0 = VX4 for all v E LEL,()) (Q) (resp. L;,(z) iinZp))) and u € U (resp.

),lin

Ur(N ))

o [Xy0]= >O(Vn,(i)) and |3, 0]° = (m)’>0(Vn7(i)) for each g;

. <L51,’8>,nn<@> UG NS0 (resp. (LD 1 (Zi) 0 gUP(N)g™)\,) is finite
for all g;

e for each g and each 0 € X o, if 1 # v € (L( 1in(@Q) N gUg™) (resp.

<L,S’?8),nn(Z<p>> NgUP(N)g™')) then

ocNyo & Xgo.

Note that an admissible cone decomposition ¥ for X*(SS’ZZ))J{JP

restriction) one, which we will denote X', for X*(ST(LT?;)’%(;’(}))HEO

a bijection between admissible cone decompositions for X*(Sy(:g)’j;p( N))]EO and for

(m),ord,+
X*(Sn,(i),Up(N))JEO-

(N))]EO induces (by
This sets up

Lemma 4.4. Suppose that U (resp. UP) is a neat open compact subgroup of the
group L™ (i) tin (A%) (resp. L("E ) 1in(A%) ) and that N is a non-negative integer. Sup-

pose also that ¥y is an admissible cone decomposition for X*(Sﬁi)’[])ﬁgo (resp. for
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(S(m Oéf,&rv))*o). Also suppose that T C |Xo| is a rational polyhedral cone. Then
the set
{1 € L (@ A n7 (%o # 0}
(resp.
{7 € L) (@) : 77070 S0 # 0})
s finite.

Proof: We treat the case of X*(Sﬁgﬂ])ﬁo, the other being exactly similar. Suppose
that 7 has support y = hU and set I' = LS@) i (Q) N AUR™! a discrete subgroup of

LSZE) i (Q). We certainly have

{v € LI (@ yrnrn S’ #0} = {y €T yr N7 |Sol’(y) # 0}

That this set is finite follows from theorem I1.4.6 and the remark (ii) at the end of
section 11.4.1 of [AMRT]. O

Corollary 4.5. If ¥ is an admissible cone decomposition for X*(ST(:?Z?)’E)HEO or for

X*(Sflnzg)’%f,’(}))io, then X is locally finite.

Proof: Let 7 C |¥o| be a rational polyhedral cone. Let oy, ...,0, be representa-
tives for L( iy 1in(A)\Eg (resp. L (Z) 1in(Zp))\X0); and suppose they are chosen with
the same support as 7 whenever pos&ble Let 7" be the rat1onal polyhedral cone
spanned by 7 and those o; with the same support as 7. If v € L lln(A"") (resp.

L") (Z))) and

o N TN %0|° # 0,
then

AT T NS0 £ 0

and so by the previous lemma ~ lies in a finite set. The corollary follows. [

If g € P (AOO), if U' D g~'Ug are neat open compact subgroups of the group

Prgm (AOO) and if 33f, is a U’-admissible cone decomposition for X*(Sing)’z,)ﬁo, then

Y9! is a U-admissible cone decomposition for X*(Sflnzz)z)ﬁo We will call a U-

admissible cone decomposition X, for X, (Sfl (B)Z)EO compatible with X{, with respect

to g if 3y refines $g~". Similarly if g € Pn’(i) (A=) if (UP)(N') D (g~ UPg)(N),

and if X is a (U?)'(IN')-admissible cone decomposition for X, (S (nz))’o(r;;;r " N/))1§07 then
(X'g~1, 209 ") is an admissible cone decomposition for X, (S(m oéf,&))*(). We will

call a UP(N)-admissible cone decomposition ¥ for X, (Sflnzg)oéi(}))ﬂzo compatible with
¥, with respect to g if X refines 3¢~
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If U’ is a neat open compact subgroup of PJr (AOO) which contains the image of U,

we will call an admissible cone decomposition Eg of X, (S, (m ())J{J)R and an admissible

cone decomposition Aq of X, (SJr U,)ngO compatible if, under the natural map

+
X, (S( (2) )20 = X, (SJF U’)H]?
the image of each o € ¥ is contained in some element of Ay. Similarly if (U?)" is
a neat open compact subgroup of P;(Z.) (A>P) which contains the image of U? and if
N' > N, we will call an admissible cone decomposition ¥, of X*(Sg’zi))’%f,’(}))io and

an admissible cone decomposition Ag of X, (Sorg )JF(U,,) " N/))}EO compatible if, under the

natural map

(m),ord,-l— =0 ord,+
Xu( Sy orn)® = XSy iy wry (v))R

the image of each o € ¥ is contained in some element of Ay.
If ¥y is a smooth admissible cone decomposition for X*(Sﬁ?)’z)ﬂzo (resp. for

X*(S(nz))oéi&l Noy)&)s then the log smooth, log scheme

)50

Y

(T, i M)

nv(i)vUsz’

(resp. the log smooth, log scheme

(Tt 0 M)

n,(1),UP(N1,N2),X0’

has a left action of L' ()) 1in(Q) (resp. L (Z) iin(Zpy)) extending that on 7 (7?))’+ (resp.

T(Tg ?Jrf(;l ,)- (Recall the definition of S from section ) If g € P(m (A>)

(resp. g € P(’ Z) (A*)ord) and if ¥y is compatible with ¥j with respect to g then the
map

(m) + (m)

(resp.

(m),ord,+ (m),ord,+
9 Ty oeivyng — Toii) woy (N1, N’))
)

uniquely extends to an L (i).1in(Q)-equivariant (resp. L )hn(Z(p))—equivariant) log
etale map

g: (TU o Mg) — (T5 o Mg,

TL,(i),U,Eo’ ( ) U’ Zl ’
(resp.
. (m),ord,+ ~ (m),ord,+ _
g: (7;"7(7;)»UP(N1,N2)7§07M20) (7; (i),(UPY (N;,Né),ig)’Mzg))'
: m),+ ord,+
This makes {(7:57(3)(]E , Mg, )} (resp. {(7;((‘),UP(N1,N2),§)0’M§30>}> a system of log

schemes with P "Z T(A>)-action (resp. P("(?)’ (A>)°rd_action). There are equivariant
embeddings

( ord + . m)1+ ~
( n,(i),UP(N1,Nz),5g" x SpecQ, Mzgrd) = (TTL i),UP(N1,N2),50’ MEO)'
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We have
SETE ) = ISETT )=
(L0 (B%) X (Co s @N\Cami (A ConsRIDJU X (€[5 /R).
If U" (resp. (U’)?) is a neat open compact subgroup of the group P;(i) (A>)
(resp. PJ(i) (A>P)) which contains the image of U (resp. UP), if Ay is a smooth

admissible cone decomposition of X, (S+ SRl (resp. X, (Sord +(U,)p(N ))>0), and if

Yo is a compatible smooth admissible cone decomposition of X, (S( (2)’+ =" (resp.

(S(m Oéf,(f\, })z"), then the map

(m),+ +
Tn,(z‘),U — Tn,(i),U’

(resp.
(m),ord,+ rd
Ty Up(Ny Ny 7;10 (). (UP (N1, N))

extends to an L' ()) ., (Q)-equivariant (resp. L ()) 1in(Zp) )-equivariant) log smooth

map

(m),+ B + B
(Tn,(i),U,io’ M20> — (Tn,(i),U/,Zo’ MAO)

(resp.
(T(m),ord,-i- N Mio) (Tord A+ M§0)>

n, Z) Up(leNZ) E0 (U/)p(N17N2) AO

This gives rise to a P(ng (A*>)-equivariant (resp. P(m (A>®)°rd_equivariant) map

of systems of log schemes
m),+
{(Trg,(i)),U,flo Z0)} — {( NOR%S Ao ’Mﬁo)}

(resp.
LT v s M)} — LT Mz,)}):

n,(1),UP(N1,N2),X0 ),(U"P(N],N}),Ap’
These maps are compatible with the embeddmgs
(m),ord,+ _ m),+ B
(T, Gy om (v a5 < SPEEQ M) = (T vy 5500 M)
and

(7ot ~ X SpecQ, Mg ) —

+ ~
n,(4),UP(N1,N2),Ao <Tn,(i),Up(N17N2),50 g MAO)'
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4.5. Completions.

If ¥y denotes a smooth admissible cone decomposition of X, (S(m?jz)io (resp. of
(S(m)oéi(j;vl NQ))) %), then the associated log formal scheme (T(T))_IFJ/Z\O &,) (resp.

(T(T('g ((}r,?(;lANQ £, M3,)) inherits a left action of Lt )) i (Q) (resp. Lg’(g)’lin(Z(p))). If
g€ Pfle) T(A™) (resp. p (i) (Am)ord) and if ¥ is compatible With ¥, with respect to

g, then there is an induced L ) i 1in(Q)-equivariant (resp. Ln (i).1in(Z(p) )-equivariant)
map

. m)7+’/\ (m),+,/\
9- (T’ﬂv i),U, 50’ /2\0) — (Tn,(i),U’,Z()? /X\){))
(resp.
. (m),ord,+,A (m),ord,+,A
g (7:17(i),(0]P(N1,N2)7207 & ) ( n, (i) OUp) (N/ N’) E' 5 gé)))

This makes {(T(m.)’J“A &)} (resp. {(7;( (i),U S(RANQ 1300 ME,)}) a system of log

+(#),U,50° ;
formal schemes with P m) +(A"O) action (resp. pm: (i) T(A>®)rdaction).
),ord,+

Similarly the schemes GZOT 72 (v (resp. s, T(m U,,( N1.N,)) inherit a left action of the
group L") . (Q) (resp. L\ 7(3)@(2 ). Ifge P ) (A%) (resp. P (A%)d) and
if 3¢ is compatible with 3 with respect to g, then there is an induced LEL Q) 1in (Q)-

(m)

equivariant (resp. L, 1, (Zp))-equivariant) map

m)+ m)+

— aEO n (’L) U’

g:0s,T,
(resp.
g- 8207#(7(71';’35(;1 — Oy 7:1(772) OBCL)JF(N/ N/)>
This makes {0y, T" ey U} (resp. {05, T Tg ?ff&l N,)}) @ system of log formal schemes
with Pém (A*>)-action (resp. P(m) +(A"O)Ord action).
It v (resp (UP)") is a neat open compact subgroup of the group P;’(i) (A>)
(resp. PJr(Z (A>P)) which contains the image of U (resp. UP), if Ay is a smooth

ord, .
admissible cone decomposition of X, (S+ U,)H) (resp. X. (S, +(Up) (N ))H)), and if
Yo is a compatible smooth admissible cone decomposition of X*(S( (2)’+ =" (resp.

(S(m Oéf,(fv })z"), then there are induced maps
m),+,A +,A
(Tn,(z) UXo’ /2\30) (T (1),U",A0? /A\O)
and
aZIOTFTE7 aAO NORU
(resp.
(m),ord,+,A rd + /\
( n’(i)7Up(N17N2)7EO’ ) (TO Nl,NQ) Ag? /A\())

and

(m),ord,+ rd,+
O Ty Ur (N1, v2) — 0o T (i) Uy (w1, 8) )
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which are L(W(”)) i (Q)-equivariant (resp Lfl (z) iin(Zp) )-equivariant). This gives rise

to PnE T (A*>)-equivariant (resp. pim:

formal Schemes

(i) T (A%®)°rd_equivariant) maps of systems of log

T 05 M8y — (T 0.y MR
and of systems of schemes

{0%, nmz)+} — {0a T, n,(9), v}

(resp.
(m),ord,+,A rd,+
{( n,(4),UP(N1,N2),%0” >} — {(TO U’)P (N{,N3),A¢° go)}
and ond
(m),ord,+ rd
{820 n,(i),UP(N1,N2) } — {aAOTO "(Ny N2)})

IfoeXyandif 1 #v¢€ L(Tré)) 1in(Q) (resp. L;,(Z),lin(Z(P)» then o N yo & ¥y. Thus

(m),+,A (m),+,A .
(Tn7(i)7U720)0 m (Tn,(i),U,Eo)fyg _ @

and
(O, 3)e 0 (O, T e = 0
(resp.
(m),ord,+,A (m),ord,+,A -
( n,(i)vUp(Nl,Nﬂon)a ﬂ( n7(i),UP(N1,N2),Eo>'Y =0
and

m),ord, m),ord,
(aEOT( )OUz7 ]—i\_{l N2) ) (aEOT (l) ([)]p(j\_fl NQ)) = (D)
It follows we can form 1og formal schemes

(m)7u7/\ (m) m),+,N\
<Tn,(i),U,EO7 ) L ) lin (@)\(T’m 7;))7(]7207 /Z\]0>

(resp.
(m),ord,h,A 1 (m) (m),ord,+,A
( n,(i),UP(N1,Nz),50° /2\30) - n,(i),lin<Z(P))\( n,(i),UP(N1,Nz),50° QO))
and
m 7h+7 m 7 m
(Tn, i)),U,E/;’ go) = Hom p(F™, F )\(Té (1));;20 /2\0)
(resp.
(m),ord,g+,A o m (m),ord,+,A
( nv(i)’Up(N17N2),EO7 /Z\0> T Hom OFv(P) (OF:( >\( n (Z Up(Nl,Ng) Yo? /Z\O>)

We can also form schemes

m), )+
820T7§? (Z))FU - L< ) m(@ )\, T e
(resp.
(m),ord,f (m) (m),ord,+
320T (3, ?JP(NhNg) Ln( )hn( >\an7; (3), OUP Nl,Ng))
The quotient maps

(m),+,A (m),h+,A (m),h,A
<Tn,(i),U,207 o) = <Tn,(i),U,207 o) = <Tn,(i),U,Eo7 o)

and

aZOTém) U —» 820 " (Z)),U



146 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

(resp.
( (m),ord,+,A A ) ( (m),ord,+,A A ) ( (m),ord,f,A A )
’n,(i),Up(Nl,NQ),EQ’ n,(’i),Up(N17N2),EO’ TL,(i),Up(Nl,NQ),Z()’ >o
and (m) (m),ord,jg
m),ord,+ m),ord,
aEOTz,(i),UP(Nl,Ng) — aZOE,(i),UP(NI,NQQ
L1 . . m),g+,A
are Zariski locally isomorphisms. The log formal scheme (Té (i)) USor s,) (resp.
(7'(7('3 Zr;l(?\}t JAVQ) §,)) inherits an action of Ly, (3)1in(Q) (resp. Ly (i) in(Zp)))-
If g € P( )) (A>) (resp. P(m (A>)ord) and if ¥ is compatlble with 3 with
respect to g then there are 1nduced maps
. (m)vhv/\ (m),h,/\
g (Tnv(i)7U7207 /2\10) — (Tn,(i),U’,267 /2\6)
(resp.
. (m),ord,b,A (m),ord,i,A
g- (E,(i),OUP(Nl,Ng),Ew S) — (7; (i), ?UP) '(NY,NL), 0 /E\g))
and )f (m),h
m),0+,A A m),0+,A A
g - (Tm i),U, 20’ Eo) — (Tn,(i),U’,267 Eg))
(resp.
(m),ord,j+,A (m),ord,j+,A
(7; (i),UP(N1,N2),50” o) — (7:1 (i),(UP) (NY,Nb), b §’0>)
and
(resp.

(m),ord,h (m),ord,}

g- 8207— (),UP(N1,Na) — " 82’7; (),(UP)’ (N’ N’)>'

m),0,A (m),ord,h,A
This makes the collections {(T( ))uUEO o)} (resp. {(T, ) Up(]uvl,Ng) 5, Ms,)}) and

m (m),ord,

{(Ti (l)) hl;rz/:) §,)} (resp. {(T, Up(f\;;/]:,g) o , Mg,)}) systems of log formal schemes
with P ) T (A>)-action (resp. P( (i) T(A®)rd_action). It also makes the collections
{05, T (1’ } (resp. {0s,T m) (gf(?\,l N,)}) systems of schemes with pi (l T (A*>)-action

(resp. Pé,(l)) (A>)°rd_action).

If U’ (resp. (UP)') is a neat open compact subgroup of the group P;(i) (A>)
(resp. PJF(Z (Aoovp)) which contains the image of U (resp. UP), if Aq is a smooth
Sord +Up)( ))H)), and if

)(
Yo is a compatible smooth admissible cone decomposition of X*(SST(LZ?)E)]EO (resp.

X*(S(m.)’ord’Jr ))]EO), then there are induced maps

admissible cone decomposition of X, (S+(l o)’ (resp. X (

n,(2),UP(Ny
m),g,A A B,A
(Tn7 i)7U7207 E0) — (T’n,(’l’),U/,Ao’ gO)
(resp.
(m),ord,fi,A rd,f,A
( n!(i)vUp(Nl’N2)7ZO7 ) <7:’LO l) Up (Nl NQ) AO go))
and

m)vu‘h/\ +,A
(Tn, 1),U, X0 /E\o) (T NORUNNE /A\o)
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(resp.
(T(m),ord,h—i—,/\ ) (Tord , A A ))
n,(4),UP(N1,N2),X0°’ n,(4),(UP) (N1,N2),A¢’ Ap
and
O, T0Y% — 08 T2 ) o
(resp.

(m),ord,f rd7h
aEDT )Up(Nl N2) — 6A0T0 ) (Nl N2))

(

These give rise to P(m (A>)-equivariant (resp. P +(A°°)°rd equivariant) maps of

systems of log formal schemes

(T MEDY — {(TE0 o ag MAL)}

(resp.
( Ofd,ﬂ A I‘d u N
{(7:1, ’L Up Nl,NQ) 20 )} — {(7:10 ’L) Up (N{,Né),AO7M/AO)}>
and
(T MB)Y — LT g MAL}
(resp.

(m )ord,bJr/\ rd,+,A
(T 0 (v Nay 0 M0} — LT G vy v vgy a0 M) -

They also give rise to a P )(AOO) equivariant (resp. P )(Am)ord -equivariant) map
of systems of schemes

{05, Ty — {08aT gy 0}
(resp.
m) ord,f rd,h
{820 n,(i),UP (N1, NQ)} - {aAoﬁ(i),(Up)/(Nl,Nz)})'

We will write

—(m),ord,f m),ord,
05T (i),0m(N) 0207;( ().U? ]hv ) X Specl,,.

It is independent of Ns.
We also get a commutative diagram

m),+,A

Tn,(i),U,Eo

?

m),0+,A +,A

Tn, ii,U,zo — T n,(3),U", Ao
m),h,A BN

T, zi e " Loy o,
n,\ﬁi),U n,\(Lz),U’
(m).b _ b

Yn,(i),U - Y,
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(resp.
(m),ord,+,A
7:1’(“7UP$V17N2)720
(m ) ord,j+,A rd
n, ) Upfivl,NQ),Eo — 7-0 (Up) (N1,N2) Ao
(m),ord,h,A i,A
7:1 (2),UP(N1,N2),%0 — T ,(3),(UP) (N1,N2),Ag
X m),ord,f _ ord,
n, ’L) Up(N1,N2) n,(i),(U’)p(Nl,NQ)
(m ord,h o ord,
y i),UP(N1,N2) - ynv(i)7(U’)p(N11N2))’

We will let I(m)(h; " denote the formal completion of the ideal sheaf defining

(m),+ (m),+
oT s, © 1 e (i)U.S0"
We will let Z; m) 5 denote its quotient by Hom p(F™, F*) and Ian (l) vy, denote

(i ) Uy
its quotient by L )hn(@). Similarly we will let Za,n,((;)ri;(?vl, Na).x, denote the formal

completion of the 1deal sheaf defining

(m),ord,+ (m),ord,+
n,(4),UP(N1,N2),50 n,(4),UP(N1,N2),50 "

We will let I( )(Oi(;}hpz\/,\l No).x, denote its quotient by Hom o, (OF ), (9’ ) and
m),ord,f,A\
Ié n)((;) Uhp(Nl v.).5, denote its quotient by L )hn(Z( )-

There are P(m (A>)ord-and L, hn(Z(p))-equlvariant maps

(m),ord,+,A (m),+
7:1,(1),UP(N1,N2) sord X SpfQ — T, ()UP(Nl,Ng) S0

if $39'4 and ¥ correspond under the bijection of section . These embeddings are
compatible with the maps

(m),ord,+,A

rd,+
n,(3),UP(N1,Na), g TO

UP(N1,N2) Agrd

and

(m),+,A +,A

Ty vr i va 20 7 Tl ve (v, N).0°

Moreover they are also compatible with the log structures and with the sheaves
(m),ord,+,A nd I(m),—‘r,/\

9., (8),UP (N1, N2) 55370 AE Z0,m,(6),UP (N1, N2), S0

(m),ord,g,A (m),h,
7:1,(1'),Uzu(z\/1,NQ),zord x SpfQ — T, )UP(Nl,Ng) S0

They induce isomorphisms

Lemma 4.6. Suppose that Ry is an irreducible noetherian Q-algebra (resp. Zy)-
algebra) with the discrete topology. Suppose also that U D U’ (resp. UP D (UP)')
are neat open compact subgroups of Pm)+(A°°) (resp. P(m (A>P)) that N§ >

N{ > 0 and Ny > N; > 0 are mtegers with N§ > Ny and N{ > Ny, and that

Yo and Xy are compatible smooth admissible cone decompositions for X*(ST(L”ZZ?)’E)EO
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m), m),ord, m),ord,
and X*(ST(L(Q)L/)]EO (resp. for X*(Siy(i))’Up(J]thNQ))ﬂEO and X*(ST(L’(Z.))’(U;)F,(N{’N@)HEO). Let

T, 0),(US0) (TESP- T(UP) (NI,NS).51),(UP(N1,No),0)) denote the map

. p(m).h,A (m),a,A
LT oo, s T, iy Us,

(resp.
(m),ord,h,A m) ord,f,A
7:1 ,(UP)(N{,N3),5 - T i),UP(N1,No), Eo)

) ’L

(1) If i > 0 then

i m),BA i
R W(U',zg),(U,zo),*(I( )(h) '3 ®Ry) = R W(U’,Eg),(U,EO),*OTiT)f oy XS0 Fo = (0)
(resp.
Riﬂ' o (I(m),ord,h,/\ @R ) o (0)
((UP)(N1:N3),%50),(UP(N1,N2),%0) +\F9,n,(i),(UP) (N} ,Nb), = 0) —
and
Rim T(Ury (NN, 26)7(UP(N17N2)720)’*OT(7Z))?Efdpi ?Nl Nb), 26XSprO N <O))

(2) Suppose further that U’ (resp. (UP)') is a normal subgroup of U (resp. UP)
and that X, is U-invariant (resp. UP(Ny, No)-invariant). Then the natural

maps
U
OT(WZ)) hUAz xSpf Ro (W(U/’EG)’(U’EO)’*OT(T))h 0 '35l xSpf Ro)
(resp.
O (m),ord,f,A
T (i).UP(Ny ,Np), 2o X SPF Fo
(T ((UPY (Na,N2),520),(UP (N1, Na),50), O ord . YU (N1,N2))
) 10/ ) ) ’ 7~n (), (UP)! (Ng,Na), Z/ XSpr()
and
(m)bA 3 (m), H A
Ia,n,(i),U,E()@RO ’ <7T(U’726),(U,Eo) (I RORUSA ®R0))
(resp.

(m),ord,f,A =
D), UP (N1, Ng), 50 DT80 —

(m),ord,h,A = ,
(T(Ury (82, N2) 2), U (N1, 8250}, (L o) (0 (N ), D FR0) ) U V)
are 1somorphisms.

The same statements are true with § replaced by + or by §+

Proof: It suffices to treat the case of +. We treat the case of TT(LTELZ.))’J[;’,A% x Spf Ry,
the case of T (m). O{J(i;r (]AVL No) 3, X Spf Ry being exactly similar.

Let U” denote the open compact subgroup of P m) Jr(A"") generated by U’ and
Unlz (N )(A‘X’). Then ¥, is a U” admissible smooth cone decomposition of
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X*(Ssg)’j{],/)io. Moreover

Té@)’mz x Spf Ry —» T“”))jj go x Spf Ry

is finite etale, and if U’ is normal in U then it is Galois with group U/U”. Thus we
may replace U by U ""and reduce to the case that U and U’ have the same projection
to ( /Z (N, ))(AOO) In this case the result follows from lemma [2.15[ O

Define Q U, O 5" n().U.A B the quotient by L, ;1in(Q) of the pull-back of
O +,A rd,u rd,h,A
Qn,(z’),U from Am to T, .- Also define QO D) UP(N1N) Ay O1) T°

_ (’L Up(Nl,NQ) Ao
as the quotient by L 7( yiin(Zp)) of the pull- back of the sheaf Qord )JFUP(NL Na) from

ord + rd
A (2),UP(N1,N2) to 7-0 Up(Nl,Nz) A
Suppose that Ry 1s a Q-algebra and that p is a representation of R, ) ;) on a

finite, locally free Ro-module W,. Then we define a locally free sheaf 5(1),U, Agp O

TTE(A) U, S the quotient by Ly (;)1in(Q) of the pull-back of SFZ)’UW from A:;(Z.)’U to

T+(A) v.a,- Lhen the system of sheaves {Eé),a Ao,p} over {T EQ)U Ao} has an action of

P;(l (A>). If g € P;f(i) (A>), then the natural map

*5ﬂ N 5

),U.Ao,p ), U AG,p

is an isomorphism. The sheaves 5 ) U, DAVE P;(Z.) (A>)-invariant filtrations by

local direct summands whose graded pleces pull—baeked to TJT) U.A, A€ equivariantly

isomorphic to the pull-backs of sheaves of the form S(Jg) , On X:(z) U
Similarly in the case of mixed characteristic suppose that Ry is a Zy)-algebra and
that p is a representation of R, (n) ;) on a finite, locally free Ro-module W,. Then

we define a locally free sheaf Sord’Uhp( N1.N) Agp O Tord’h,}/;,( N1N).A, S the quotient by

rd rd rd,
L, 1in(Zp)) of the pull-back of &, U*;(Nl Ny p frOm A jUp(Nl o) toﬁl)ZQNLNQ) Ay

Then the collection {Eor)dUhp N1.N).Ag ) 1S @ System of sheaves over {ﬁrz’hUAp( N1N) A0

with an action of P, (A®) > If g € B}, (A*)"®*, then the natural map

*gord,h gord,b
(Z Up(Nl NQ) Ag,p ; Up)'(Nl,Ng),Aé),p

ord, oo \or : :
o Uhp(NLNQ) Ao, DAVE P;(Z.) (A%)ord X invariant filtra-

tions by local direct summands Whose graded pieces pull-backed to the formal scheme

Tord U,, (N1,N2),A BT€ equivariantly isomorphic to the pull-backs of sheaves of the form

ord + ord,+
5(1 ),UP(N1,Na),p' O X, ,(4),UP(N1,N2)"

is an isomorphism. The sheaves

Corollary 4.7. Suppose that Ry is an irreducible noetherian Q-algebra (resp. Zp)-
algebra) with the discrete topology. Let p be a representation of R, (nyi) on a finite,
locally free Ro-module W,. Suppose also that U D U (resp. UP D (UP)') are neat

open compact subgroups of PT(L Q) T(A®) (resp. P( (AOOP)) that N3 > N{ > 0 and
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Ny > Ny > 0 are integers with Ny > Ny and N{ > Ny, and that ¥y and X, are com-

patible smooth admissible cone decompositions for X*(Sfl (Z)Z)ﬁo and X, (S(m )R’

m),ord,+ m),ord,+
(resp. Xu(Syh Do) & and XSO ov &) Let mw sy o) (resp.
T(UPY (N],N}) ), (UP (N, Na),So) ) denote the map

Lo TS0 s T

TL,(’L),U’, 0 7(7') UZO
(resp.
. g-(m),ord,h,A (m),ord,j,A
L. 7;L,(1)7(U1”)'( 1:V3),56 - T ,(1),UP(N1,Nz2), Eo)‘

(1) If i > 0 then

i (m) A el _ pi b _
R W(U'vEB):(U:EO)v*(IB,n,(i),U’,E()®g(i),U’,26,p) =R W(U'»EB):(U,xo)v*g(i),U’,Eg,p = (0)
(resp.
i (m),ord,h,A ord,f o
R Tr((Up)/(N{7Né)’26):(Up(Nl7N2)7EO)7*(Ian (9),(UP)"(N],N4), %4 ®E i),(UP)’(N{,Né),Zé,p) = (0)
and

ord,} o
Ry (1, M), 5,0 (8N1,V2) E0) oy (my vt vy o = (0))-

(2) Suppose further that U (resp. (UP)') is a normal subgroup of U (resp. UP)
and that X is U-invariant (resp. UP(Ny, No)-invariant). Then the natural
maps

i b U
5(1 ),U,S0,p — <7T(U’726)7(U720),*S(i),U/,Eg,p>

(resp.

ord,f
(2),UP(N1,N2),%0,p

ord,f UP(Ny,N:
(T (P (N2, N2) )02 (N1, N2, 50) 50 (U (N V) ) )

and
(m),B,A b (m),1,A U
L5 i), U20®g(i),U,Eo,p — (M), 000+ Ly () 07 5, ®5(1 v sp.0))
(resp.
(m),ord,h,A ord
DU (N1, N2), 50 OE (o (N1 M) Bop

(m),ord,h,A ord,f
(7 02 012233809 (T ) Gy (v ) BE D0y v v ) )

are isomorphisms.

Lemma 4.8. Suppose that U is a neat open compact subgroup of Péné))’Jr(Aoo) and
let U denote the image of U in P:(Z.)(AOO). Let Ay be a smooth admissible cone
decomposition for X, (S+ U,) and let Yo be a compatible smooth admissible cone
decomposition for X*(Sflr?l))Z) Let 7t = 7T2_U7ZO) A denote the map

(m),h+,A +,A
To s, — Tn,(z’),U',Ao
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and let m° = W?U,ﬁo),(U’,Ao) denote the map

(m),h,A B, A
Tn,(i),U,Eo — 1) (), U Ao

(1) The maps 7&20)7([],’%) and WEU,Zo),(U’,Ao) are proper.
(2) The natural maps

Oz sy 7 Tvzo).2004 01 e
and
+,A (m),5+,A
Z& n (7,) U’ AO (U Eo) (U/ Ao) *Ia n (7,) UEO
and
; s
OTE:(Ai),U’,Ao W(U’ZO)’(U/’AO)’*OT:)ZZ) hUAED
and
1,1 (m),f,A
dm,(3),U", Ao >7T(U 20),(U7,A0), x5 0,m,(3),U, 0

are 1somorphisms.
(3) The natural maps

I+,/\ (m),5+,A

o+
9, (1)U, A0 & R 7T(U,zo),(U',AO),*OTW&))”;EAO R 7T (U,20),(U",A0) ¥ 8,n,(3),U,Zo

and
B,A (m),f,A

j b j
Lo ni).0r,00 @ I ”(U,zo),waAo),*OT,E";Q)“UAEO — BTy 50),07,20) 5 L0,0,00),0,20

are isomorphisms.

Proof: 1t suffices to treat the + case.

The first part follows from lemma[2.19, We deduce that all the sheaves mentioned
in the remaining parts are coherent.

Thus, by theorem 4.1.5 of [EGA3| (‘the theorem on formal functions’), it suffices
to prove the remaining assertions after completing at a point of T’ (A) UA . The set

points where the assertions are true after completing at that point is open (Again
because the sheaves involved are all coherent.) This open set is S pr-invariant.

(The sheaves in question do not all have S )0 -actions. However locally onT +E DU Ao

they do.) Thus it will do to prove the lemma after completion at O T+( )07 Ko’ for

o € Ap maximal. We will add a subscript o to denote completion along 0, T*( .
0

We write 7 for the map

T(m)+/\ N, L)

n,(3),U,Z0 n,(3),U",Ag
and factor ™ = 7y o my, where
(m),+,A +,A (m),+
T oy = T layoae XAt A, v

and

+,A
NN Xar
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Also write w3 for the other projection

+,A (m),+ (m),+
N XAt o Anio = An@o

We will first show that

(0) if 7>0
R?T U*O (m),+,A = O A m 1f:O
! n,(i),U,50,0 +(z) U \Ag.o <At M. U,AEL,(%TU J
and
0) if 7>0
Rimy o, I = { ( e
1 8 n (Z) UE0,0' 7T2 O-I;n/\(z) 1 AO o 1f ] = O
AsT) + A) U’ Mg X AT * o A (l) has the same underlying topological space as Alm (Z

i.e. w3, is a homeomorphism on the underlying topological space, it suffices to show
that

R (3 0 7T1)a,*OT<m> +.

73540 m if 7=0
(0,0, 0,0 30’* +/\ A() j

n(z) U’,Ag,o A+(’L>U n,(4),U

{(0) if §>0

and

} ()b (0 it 5>0
R Wl,a,*l_avn,(i%U,Eo,U - { T3.04T UIgn/\('L) U Ao if j = 0.

This would follow from lemma [2.22| as long as we can show that, for all y € YTE (lg
pr» We have [So["(y) = [Ao]Y () and [So]"(y) = [Ao]"(y
Concretely these requ1red equalities are

{(x € €(Vo@)”: x=0o0n WO( (@)} —
{x € Q:(m)(Vm(i))v : x>0oncm ’H)(Vm )}

U
with image ' in Y, ), N.

and
{X S Q:(Vn’(i))v :x >0on Q:>_O(Vn,(i)) - {0}} -
{x € €™ (V)" : x>0 on ™0V, ) —{0}}.
If x lies in one of the right hand sides then x(z, f) > O for all z € €>°(V,, ;) and
all f € Hom (F™,V,, ;) ®g R. Taking the limit as 2 — 0 we see that x > 0 on the
vector space Hom (F™,V}, ;)) ®g R and so x = 0 on this space. Thus the right hand
sides are the set of x € Q:(V (&))" such that x > 0 (resp. x > 0) on the images of

Q(m ’>O(Vn,(i)) — Q:<Vn,(i))
(resp.
Vi) = {0} — (Vo) -
But these images are € °(V,, ;) (resp. €°(V,, ;) —{0}) and so the required equalities
hold.
We deduce that
R’ WU*O (m),+,A (/\jHomF(Q;(i)’U,,Fm ®Q E:() )) ®(9 <+ O +,A

n(z)Uan ’ n,(4),U’ n,(i),U',Aqg,0
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and
j = (m)7+1/\ . j + m =+ +,A
RJW‘L*I&TL,(Z‘LU,EO,U = (A]HomF(Qn,(i),U” F™ ®q “n,(i),U’)) ®OXZ(1'> » Ian (), U Ao,
As T (), hJEA o is the quotient of T, T?Z))Uz o by Hom p(F™, F'), we obtain spectral
sequences
Hjl (HOHI F(Fm’ Fl), (/\JQHOm F(Q:,(’L'),U” Fm ®@ E’:’(Z),U/))) ®O +( . o O +(/\> ut AO .
= RM2aEO, (m) s
n,(1),U,Xq,0
and
Hn (Hom F(Fm Fl)’ (/\JQHOm F(Q:;(i),U” Fm ®Q Ej;(i),U’))) ®0X+(_> U;’Z'-;:’;l/?(i),U/,Ao,O'

(m) b+,
= RJ1+J2 +I o (0).U.S0.0°

These can also be written
Hom (A*Hom p(F™, F*), A2Hom F(Q:;(i)’U,, F™ ®q E:y( )0 ))®0 o Open

) ] (,L) UTTL (4),U’,Ag,0
= R]1+]27T:FOT(m),u+,A
n,(i),U,5g,0

and
Hom (A*Hom p(F™, F*), N2Hom () ;) 1, F™ ®q E’:L_,(i),U’))®OX:(”IUéi;z/j(i),U/,Ao,o

= Rn +j27T+I<g771)&i;_5\20 )

The lemma follows (as Z; /\( ).U" Ao 18 flat over (’)T+(/Z\) vrage) O

The following lemma is equation (1.3.2.86) in lemma 1.3.2.79 of [La4].

Lemma 4.9. Suppose that U is a neat open compact subgroup of P (AOO) and
let U" denote the image of U in P;Z (A>). Let Ag be a smooth admzsszble cone
decomposition for X, (S ()U,) and let Yo be a compatible smooth admissible cone

(m)+)

decomposition for X*(Sn,(z‘),U . There are canonical equivariant isomorphisms

O+
Hom p(F™, Q7 ) 1) ®0 . Opmyrn — QT“”) b gt (log 00).
n,(4),U’ n,(1),U,3g ,(0),U, 307 " n,(3),U’,A

We deduce the following lemmas.
Lemma 4.10. Suppose that U is a neat open compact subgroup of P(m (A>) and

let U" denote the image of U in P;Z (A>). Let Ag be a smooth admzsszble cone
decomposition for X, (S ()U,) and let Yo be a compatible smooth admissible cone

decomposition for X*(S("Z) ). Let wt (+UZO) (U7.0) denote the map

(m),5+,A +,A
T,". n,(1),U,30 — 1 n,(3),U",A¢

and let % = W?U,E()%(U/,Ao) denote the map
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(1) = QTWM e (logoo) = Hom p(F™, QF ), U,) is locally free of finite
J(4),U,20" "n,(4),U’,Aq
rank.
(2) The natural map
- b
Y ¢ sy oS o n log o) —
Q(IU FoHA (UZO)’((U ’AO)’) T( (>)hU ZO/TE,,(Ai),U’,AO( )
YA log oo
T s/ T 07,8

18 an isomorphism.
(3) The natural maps
(RJIWHOT(m) boA ) ® (/\J27Tth (m) A

T8N
n,(1),U,Xq n(z)UEO/ n,(i),U’,Aq
RJITFHQ;(M)E]A (log o0)

()UEQ/ n, (1) U’,Aq

(log >©)) —

and
(leﬂho (m) b, A )@ (/\Jzﬂuﬁl

Th:
n(l)UEO T()UEO/nZ)U/

(logoo))®IhA()U,A —

Rirt (QJTW on e (l0goo) @ o)

n,(1),U,5 ' n,(9),U7,80

are isomorphisms.

Lemma 4.11. Suppose that U D U’ are neat open compact subgroups of the group
PT(Lm (A>®) and let V' and V' denote the images of U and U’ in B, (A™). Let
Ag ('resp Af) be a smooth admissible cone decomposition for X, (Sn @) (resp.

(SJr yvr)) and let 3o (resp. X5) be a compatible smooth admissible cone decom-

position for X, (S(m u) (resp. X, (S U,)) Further suppose that ¥y and X are
compatible and that Ao and A are compatzble

(1) The natural map

* 1
7T(U/,zg)),(U,zO)QT(mm,A TN (log 00) — QT<m )AL
n,(i),U,2q" " n,(4),V,Aq n,(i),U",2(/ "n, (1) v’,ay

(log o)

18 an isomorphism.
(2) The natural map
T A T(U,30),(V,A ,Q m),i,A (lOgOO) ;
(V7,80),(V2220) " (U:Z0), (Vi Ao) 42 2 s I TE o vy

1
T2, (v, ) S pmn e
n,(i),U’, E’ n,(i),V/, A’

(log o0)

18 an isomorphism.

Similarly we have the following lemma.

Lemma 4.12. Suppose that UP is a neat open compact subgroup of P(m (A°°P) and

let (UP)" denote the image of UP in P; (i) (A>P). Suppose that Ny => N1 Z 0 are inte-

Sord +

gers. Let Ay be a smooth admissible cone decomposition for X.( ) (UP) (N) NQ)) and
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let X0 be a compatible smooth admissible cone decomposition for X*(Sgg)’?[ﬁ’gvhm)).

—
Let 7% = T (Up (N1, N2),50),((UP) (N1,N2), A0) denote the map
(m),ord,h,A rd,f,A
7;"07(2')7UP(N17N2)720 — 7;Loy(i)a(Up)'(Nl7~’\72),A0'

h .
(1) The map T(UP(N1,N2),%0).((UP) (N1,N2),A0) *5 PTOPET
(2) The natural maps

O rd,f, A — 7Tu O (m),ord,,A
7_;)7(i)7<Up)/(N1’N2)7A0 (UP(N1,N2),%0),((UP)'(N1,N2),A0),* T (.07 (Ny N5
and
Ord7h7/\ h (m)70rd7u7/\

0,n,(1),(UP)'(N1,N2),A0 - T (UP(N1,N2),Z0),((UP) (N1,N2),A0),x0,n,(8),UP(N1,N2),.Zo
are 1somorphisms.
(3) The natural map

ord,f,A 7 h j _h(m),ord,f,A
! Q RI7iO (m),ord, i, A — RI7ST ;
avnz(l)v(Up)/(leNZ):AO * n,(i),%p(Nl,NQ),EO * 8,n,(z),UP(N1,N2),EO

18 an isomorphism.
We finish this section with an important vanishing result.

Lemma 4.13. Suppose that Ry is an irreducible, noetherian Q-algebra (resp. Zy)-
algebra) with the discrete topology. Suppose also that U (resp. UP) is a neat open
compact subgroup of Pz(i)(A‘”) (resp. P;(i)(A"o’p)), that Ny > N, > 0 are inte-
gers, and that Aqg 1s a smooth admissible cone decomposition for X*(SI(Z.),U)]EO (resp.

X*(SZTES,U)HEO)' Let 7w denote the map

. A g
™ Tn,(i),U,Ao — Xn,(i),U

(resp.
7-(- . rd?u7/\

ord,f
T U (N Na) A0 T )-

n,(i),Up(N17N2)

Further suppose that £ is a coherent sheaf on the formal scheme TE:@.)’U’AO x Spf Ry

(resp. 7;071{?)’7%,( Ny Na).Ag X Spf Ro) with an exhaustive separated filtration, such that the
pull-back to TJ@U’AO x Spf Ry (resp. 7;1(??;1)7EI’A(N17N2),A0 x Spf Ry) of each
gr'€
i8 L, (i) 1in (Q)-equivariantly (resp. Ly ;) 1in(Zp))-equivariantly) isomorphic to the pull-
back to T;,é\),U,Ao x Spf Ry (resp. 7;07??)7?;\(N1,N2),A0 x Spf Ry) of a locally free sheaf F;
with Ly, ;)10 (Q)-action (resp. Ly iy1in(Zp))-action) over X:;(i)’U x Spec Ry (resp.
X;rg)z X Spec Ry ).
Then for i >0
Rr.(ERTEN iy vay) = (0)

(i
(resp.
Rim (€ & T30 )= ().

) Z)vUp(NlaNQ)yAO
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Proof: We will treat the case of T U.Ag X Spf Ry, the other case being exactly
similar. We can immediately reduce to the case that the pull-back to TI(;\)’U Ay X
Spf Ry of € is Ly, (3),1in(Q)-equivariantly isomorphic to the pull-back to T:(;\)U Ay Spf Ry
of a locally free sheaf F with Lm(i)’hn((@)—action over X:;(i)’U X Spec Ry.

Let 7 denote the map

* T+&/.\) v.a, X Spt Ry — th(i)’U X Spec Ry

Also write 7+ = 7rfr o 7r2 , where

AJr (i X Spec Ry — X? niyw X Spec Ry
and
o T;é\),U,Ao x Spec Ry — A:;(Z.),U x Spec Ry.
By lemma we have that
]: ® Han*(SrJLr,(i),U)>O £$(6L) lf Z prmnd O

Rnf (FRI), =
772,*( ® &m(%),U,Ao) { (0) otherwise.

Then by lemma (or in the case of Tord’uUAp( Ny.Na).A X SPE R lemma we deduce
that

R'm +(‘F®I{/9\,n,(i),U,Ao)

2 in(@) N\ 1k . .
Ind {1}( . (Hauex*(sjm )70 (Tt xz, L @ -7'—)§(ah)L“"”"‘“(Q)> it i =0
(0) otherwise
Finally there is a spectral sequence
H'(Ln, (31 (Q), Rjﬁj(f®zé\,n,(i),U,Ao)) = Ri+j7r*(f®zé\,n,(i),U,Ao)v

and so the present lemma follows on applying Shapiro’s lemma. [J

Corollary 4.14. Suppose that U (resp. UP) is a neat open compact subgroup of
P;(i)(AO") (resp. P:(i)(Aoo’p)), that Ny > Ny > 0 are integers, and that Ay is a
smooth admissible cone decomposition for X*(Sz(i),U)EO (resp. X, (Somur )=°). Let

denote the map

(resp.
. rd,f,A ord,f
T T U (NN e~ o) 0 (N1 M) )
Also suppose that Ry is an irreducible noetherian Q-algebra (resp. Zy-algebra)
with the discrete topology and that p is a representation of R, ) ) on a finite locally
free Ry-module.

Then for i >0
i b AN
R 000,800 © Lomyv,0,) = (0)
(resp.
ord,h ord,f,A
R (8 Up(Nl NQ) Ao,p ®Ia n,( )Up(Nl,NQ) Ao) (O>>
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5. COMPACTIFICATION OF SHIMURA VARIETIES.
We now turn to the compactification of the X, ;y and the AflmU)

5.1. The minimal compactification.

There is a canonically defined system of normal projective schemes with G, (A>)-
action, { X7 /SpecQ} (for U C G,,(A>) a neat open compact subgroup), together
with compatible, G,,(A>)-equivariant, dense open embeddings

Jo s Xy — X00-
These schemes are referred to as the minimal (or sometimes ‘Baily-Borel’) compact-
ifications. (The introduction to [Pi] asserts that the scheme X7 is the minimal
normal compactification of X, 7, although we won’t need this fact.) For g € G,,(A*>)
and ¢g~'Ug C U’ the maps

g: X0 — X0
are finite.

Write
DX = XIH — X0
There is a family of closed sub-schemes
X3 = X3 D X = OX5 D X0 D . D 0 X D 0un X =0
such that each
XY = 0K = D X2

is smooth of dimension (n —4)*[F* : Q|. The families {9, X7} and {0} X5} are
families of schemes with G,,(A*)-action. Moreover we have a decomposition

0 ymin __ b
0, nU H Xn,(z‘),hUhflmP;(i)(Aoo)'
hePT ;) (A)\Gn(A>)/U ’

n,(i

If g € G,(A®) and if g-'Ug C U’ then the map
g: XM — XD
is the coproduct of the maps
g qu% — X¢

(0),hUR=INP] ) (A%) n,(0),hU’ (W) ~INP, o (A)

where hg = ¢'h/ with ¢’ € P;(Z.) (A>). We will write X E;A for the completion of
it along 0P X", (See theorem 1.3.1.5 and proposition 1.3.1.14 of [Lad].)
There is also a canonically defined system of normal quasi-projective schemes with
G (A®)"d_action, {xoomm ) /Spec Zy) }, together with compatible, dense open

nyUp(N17N2
embeddings
‘min . ord ord,min
JUP(N1,Na) * XU (N1 N2) ™ X b (1, N)

which are G, (A>)"d-equivariant. Suppose that g € G,,(A>)°"d and that
g UM (N, Na)g C (UP)(N], Ny),
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then

. ord,min ord,min
9+ X ur(vi,Ng) T X ey (1N

is quasi-finite. If p>~N2u(g) € Z and either N} = N, or Nj > 0, then it is also finite.
On F,-fibres ¢, acts as absolute Frobenius composed with the forgetful map. (See
theorem 6.2.1.1, proposition 6.2.2.1 and corollary 6.2.2.9 of [La4]. We remark that
we are, perhaps unfortunately, following a different convention from [La4]. According
to our convention .
X;f;;‘?]l\z’m) X Spec Q = erlr,l;,rflp(Nl,Ng)'

In contrast [Lad] works with an open sub-scheme which only contains the ‘ordinary’
part of the boundary. Our X°%min ) is the union of this open sub-scheme with

n,Up(Nl,NQ

min
Xn,UP(Nl,Ng)')

Write

aXord,min - ord,min . ord
n,UP(N1,No) — “'n,UP(Ny,Nz) n,UP(N1,N2)*
There is a family of closed sub-schemes
ord,min - ord,min ord,min . ord,min ord,min
aOXn,UP(Nl,Ng)_ Xn,UT’(Nl,Ng) 2 aan,UP(Nl,Ng) - aXn,UP(Nl,Ng) 2 aZXn,U?(Nl,Ng) -

Xord,min ord,min

e DOy n,UP(N1,N2) D (9n+1Xn,Up(N1,N2) =0
such that each

0 q-ord,min __ a gord,min -~ ord,min
ai XTL,U”(Nl,Nz) - aZXn,U"(NLNz) 8Z+1XH,U’?(N17N2)

is smooth over Z, of relative dimension (n — ¢)?[F'" : Q]. Then

rd,min
{&XsyUp(Nth)}
and
0 qp,ord,min
{az Xn,UP(NhNQ)}

are families of schemes with G,,(A%)action. We will write X;rg;f?jvnl J)\@)i for the

. ord,min 0 q-ord, min cpr
completion of XmUp( N1,N2) along 0, X, v (N1,Na)* We have a decomposition

0 y-ord,min - ord,f
9; Xn,UP(Nsz)_ HhEPZ(i)(AOO)Ord’X\Gn(A‘X’)O“l’X/Up(Nl) Xn,(i),(hUphflmp;(i)(Aoow))(Nl,Nz)

i
1 Hh Xn,(i),hUp(Nl,Nz)h—lmP;f(i) (A>)?

where the second coproduct runs over
h € (P o (AXN\GL(A®)/UP (N1, No)) — (B () (A%) NG, (%) JUP(NY)).

(Again see theorems 6.2.1.1 and proposition 6.2.2.1 of [Lad].)
[We explain why the map

P (AX) NG, (A) 4 JUP(Ny) — P (A)\G(A%) /UP (N1, Np)
is injective. It suffices to check that

(P;(i) N PT—:(n))(Zp)\P;:(n) (Zp)/Up(Nla Nl)jz_,(n)

= P;(i)(zp)\Gn<Zp JUp(N1, No)n,
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or even that
(Pl N Bl 2D\ (Z/p™Z) |V
= Pl (Z/pL\GW(Z/p"2) |V,
where
V =ker(PY,(Z/p™Z) = Ly mn(Z/p" 7).

This is clear.]
If g € G,,(A®) and if g7'UP(Ny, No)g C (UP)'(Ny, N3) then the map

a(] ord,min ord,min

0
g0 nUp(Nl 2) — a (Up) (N{,N3)

is the coproduct of the maps

1 . qord,h ord,f

I 5 @) (hUPR=INPY | (A%9)) (N1 Na) n,(i),(W (UPY (W) ~1NP;F  (A%P))(N],Np)

(
()
where hg = ¢'h’ with ¢’ € P;(Z.) (A>)°rdand of the maps

1oyl

b
g: Xn (),AUP(N1,N2)h=1nPF — X

(%) n,(0), 1 (UP) (N, N§) () =10P5 ) (A%)

where hg = ¢'I/ with ¢’ € P:(i) (A*). (Again see theorems 6.2.1.1 and proposition
6.2.2.1 of [Ladl.)
If N, > Ny > N; then the natural map

ord,min ord,min

n,UP(N1,N3) X”:UP(NLN?)

is etale in a Zariski neighborhood of the [F)-fibre, and the natural map

ord, min ord,min
n,UP(N1,N3) — %n,UP(NLNz)
between formal completions along the F,-fibres is an isomorphism. (See corollary
6.2.2.8 and example 3.4.4.5 of [Lad].) We will denote this p-adic formal scheme
ord,min
%H,Up(Nl)
and will denote its reduced subscheme
—ord,min

Xn,Up(Nl) .

We will also write
—ord,min —ord,min —ord

a)(TLUip Nl) XTLUP(Nl) _Xn Up(Nl)'

—ord,min —ord,min

The families {%Ord i p and {X, gy} and {0X,, o)} have Gy, (A>)ord_actions.
There is a family of closed sub- schemes

—ord,min —ord,min —ord,min —ord,min ord ,min

00X v vy = Xnen) 2 0X, ey = an Ur(N) = D 0, X nU; Ny 2 -
D WXy ur(vy D On1 X vy = @

such that each

ord ,min —ord,min —ord,min

a’? n,UP(N aXTLUp (N) — 8H—l*XVnUp( N)
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——min —min

is smooth of dimension (n — i)*[F* : Q]. Then {9;X,, 7y} and {9) X, 7wy} are
families of schemes with G,,(A>)°"d-action. Moreover we have a decomposmon

0 —ord, min —ord,f
0 X uw(ny = I X, () (RUPR=10P] | (A0)) (N)-

HEP T ) (A2)ordX\Gin (A20)re X JUP(N)

If g € G,(A>)™d and if g7'UP(N)g C (UP)'(N’) then the map
ord ,min —~>ord,min
9+ 0/ X, ve iy — 00X iy )
is the coproduct of the maps

;  —~oord,j —ord

9 X @), (hUPh=10P o (Ao )(V) T K, (i), 00 (U9 (W) 1P, (B 2)(N)

()(

where hg = ¢'h/ with ¢’ € PT:F(Z.) (A%)°rd_ In particular ¢, acts as absolute Frobenius.

The schemes X Org;}(“ﬁ N are not proper. There are proper integral models of the

schemes X", but we have less control over them.

More specifically suppose that U C G, (AP x Z,) is an open compact subgroup
whose projection to G, (A®P) is neat. Then there is a normal, projective, flat Zg-
scheme A" with generic fibre X277 If g € G (A™P x 7Z,) and if

g 'UgcU

then there is a map

. min
Xn U n,U’

extending the map g : X' — Xfln;}“, This gives the system {X}}'} an action of
Gn(A>™P x Z,). We set

X =&M<, T,
On A" there is an ample line bundle wy, and the system of line bundles {wy} over
{X"7} has an action of Gy (A™? x Zy). The pull-back of wy to X,y is Gn(A™P x
Z,)-equivariantly identified with A"MFAQ, ;;.(See propositions 2.2.1.2 and 2.2.3.1 of
[Lad]. The rough idea is to take A"} as the normalization of X over the minimal
compactification of some Siegel moduli of genus n[F : Q] and a suitable neat level
away from p, and take wy to be the pull-back of the corresponding Hodge invertible
sheaf there. It is not easy to describe such normalizations in as much detail as in
[CE] and [Lall, but we can still verify the assertions in this paragraph using the
corresponding assertions for the minimal compactifications of Siegel moduli.)
Moreover there are canonical sections

Hassey € HO(X ™, wi®=D)

such that
g*Hasseyr = Hassey

—min,n-ord

whenever g € G, (A®? x Z,) and U' D g~'Ug. We will write X, ;; for the zero

locus in 72“5 of Hassey. (See corollaries 6.3.1.7 and 6.3.1.8 of [Lad]. The rough idea
is to take Hassey to be the pull-back of the corresponding section over the minimal
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compactifications of some Siegel moduli.) Then 7:“; - Y,Izi;mmd is relatively affine

over 7;“15 associated to the sheaf of algebras

o
(@ w®(p1)“i> /(Hassef, — 1)
i=0
for any a € Z~q. It is also affine over [, associated to the algebra
(65 HO(Y%M@“"”%) J(Hassef; — 1)
=0

for any a € Zy.
There are G,,(A%)°"%*_equivariant open embeddings

ord,min min
anp(N17N2) % Xn7Up(N17N2)‘
These induce maps
yordgnin ymin —>min,n-ord
n,UP(N1,N2) = n,UP(N1,N2) = “*n,UP(N1,N2)

on IF,-fibres which are open and closed embeddings. (See proposition 6.3.2.2 of [Lad].)
In the case N; = Ny = 0 this map is in fact an isomorphism. (See lemmas 6.3.2.7
and 6.3.2.9 of [Lad].) We remark that for Ny > 0 this map is not an isomorphism:
The definition of er’?]p(NLN{Z) requires not only that the universal abelian scheme

is ordinary, the condition that defines X, yn(ny ng) — 72?;?}313]\,2), but also that the

universal subgroup C"Y C A"V[pM2] is connected above each geometric point.
Also the pull-back of wyr(n, n,) tO XTff(}lp( NyNg) 1S G (A®)r > equivariantly iden-
tified with the sheaf A""U Qflf‘[i]p( NNy g€ G (A>®)ord > and

g " (UP) (N7, N3)g C UP(Ny, Ny),

then the commutative square

ord,min g ord,min
Xn Oy Ne) T R Ur(Ny,Ny)
J/min 9; J/min

n,(UP)'(N{,N2) n,UP(N1,N2)

is a pull-back square. (See theorem 6.2.1.1 and proposition 6.2.2.1 of [Lad].)

At the referee’s suggestion we include a few remarks about the construction of
Xg;‘}ﬁiﬂw) and X" in [Lad]. If p is unramified in F then one has good control
of certain integral toroidal compactifications Xy 0),a and of the integral minimal
compactification X(%?O,O). Moreover over Xy (o0),a there is a ‘universal’ semi-abelian
scheme and ‘ordinarity’ and UP(Ny, Na)-level structure can be defined for this semi-
abelian scheme. For U = UPU, with U, C G,(Z,) one can then define X as a

normalization of Xg}}f?o o) I X min - One can then define Xy ar as a suitable normalized
blow-up of A", We don’t have very much control of Xy as or X", One can also
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define X[‘}f,‘} NuND)A and it solves a relative moduli problem over X&%o,o), A C Xur0,0),A-
There are maps

ord mi
XUP(Nl,Ng),A — XUP(N17N2)7A — XUP(Nl,Ng)'

The key point is to show that this map has open image, which we define to be

Xgﬁ,(’]rVHI?W) and that X{};‘%NLNQ)A is the pre-image of this open set in Xys(n,, ), A-

In the case that p ramifies in F' things are a bit harder, because we don’t even
have a good candidate for X;},}?O 0 In this case one first constructs the corresponding
spaces in the Siegel case, which is analogous to the good case discussed in the previous

ord ord,min ord,min
paragraph. One then has a proper map XUP(NhNQ)’A — ZVP(NLNQ), where ZVP(NLNQ) is

the integral minimal partial compactification of the ordinary locus of a Siegel variety.

One applies Stein factorization to this map and uses this to define X;ﬁ,‘%}vmlir}vz)):

ord ord,min ord,min
XUP(NLNZ)»A XUP(Nl,NQ) ZVP(Nl,NQ)'

Then Xf};‘%f\?’r}m admits a quasi-finite map to X;l,}?Nh Np)» Which is shown to be an

open immersion using Zariski’s main theorem.
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5.2. Cone decompositions.

Let U ¢ G(™ (A>) be an open compact subgroup. By a U-admissible cone decom-
position $ of G (A®) x (G, (R)) x €™ we shall mean a set of closed subsets
oc Gy (A®) x mo(G,(R)) x €™ such that

(1) each o is contained in {(g,8)} x €™0(1¥) for some isotropic subspace W C
V, and some (g,9) € G%m)(AOO) X mo(Gn(R)) and is the set of Rsg-linear
combinations of a finite set of elements of Hermy . x W™;

2) no ¢ € ¥ contains a complete line through the origin in any (g, §) x €™ (W);

3) if 0 € ¥ then any face of o also lies in ¥;

4) 1fa a € ¥ then either o N o’ —(Z)oraﬂa is a face of o and o;

5) G (A%) x 7o(Gn(R)) X € =, 5 0

6) E is invariant by the diagonal action of GI™(Q) on G&™ (A®) x mo(Gn(R)) x
¢lm),

(7) X is invariant by the right action of U on G4 (A®) x (G, (R)) x €™ (acting
only on the first factor);
(8) G (Q)\Z/U is a finite set;
(9) if o € X lies in G (A%) x mo(Ga(R)) x €OV, () and if h € P (A),
then ho € X;
(10) if o € 3 lies in GV (A®) x m(Go(R)) x €OV, ) if v € GI(Q), if

ueUandifh e PTETZ.)) (A) satisfy

(
(
(
(
(

o Nyhou N (GU(A®) x mo(Gr(R)) x c(m)’>0(vn,(i))) 70

then v € P(TZ))(Q).

(Here we let GU™(A) act on GI™(A®) x mo(Gn(R)) x €™ via multiplication on the
first two factors. The restriction of this action to G\ (Q) does not coincide with the
standard action of GS”)(Q), which we are using.) Note that if U’ C U and if X is
a U-admissible cone decomposition of G\ (A®) x 7o(Gn(R)) x €™ then ¥ is also
U'-admissible. We will call a set ¥ of closed subsets of G&") (A®) x 75(Gn(R)) x €™
an admissible cone decomposition of G%m)(AOO) X To(Gp(R)) x €™ if it is U-admissible
for some open compact subgroup U.

We remark that different authors use the term ‘U-admissible cone decomposition’

in somewhat different ways.
We call ¥ a refinement of ¥ if every element of 3 is a union of elements of '.

We define a partial order on the set of pairs (U,X), where U C G (A*>) is an

open compact subgroup and ¥ is a U-admissible cone decomposition of G%m) (A>) x
7o(Gn(R)) x €™ as follows: we set

U, x> (U,%)
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if and only if U' € U and ¥’ is a refinement of $. If ¢ € GY™(A®) and ¥ is a
U-admissible cone decomposition of G{™ (A®) x mo(G,(R)) x €™ then

Yg={o(gx1): oceX}

is a g~ 'Ug-admissible cone decomposition of GI™ (A®) X (G, (R)) x €™, The
action of G (A™) preserves >.
There is a natural projection

G (A®) X m(GR(R)) x €M™ — G, (A®) X m(Gr(R)) x €.

We will call admissible cone decompositions & of G™ (A®) x mo(Gn(R)) x €™ and
A of G, (A*®) x m9(G,(R)) x € compatible if the image of every o € ¥ is contained in
an element of A. If in addition ¥ is U-admissible, A is U’-admissible and U’ contains
the image of U in G,,(A*) we will say that (U, %) and (U’,A) are compatible and
write

(U, %) > (U, A").

Now let U? C G™)(A>?) be an open compact subgroup and let N > 0 be an integer
and consider UP(N) C GU™(A%®)d% By a UP(N)-admissible cone decomposition ¥
of (GI™(A®) X mo(Gn(R)) x €™)rd we shall mean a set of closed subsets o C
(GI(A) X mo(Gn(R)) x €m)ord such that

(1) each o is contained in {(g,8)} x €™=9(1¥) for some isotropic subspace W C

V., and some (g,d) € G%m)(AOO) x mo(Gr(R)) and is the set of Rs¢-linear
combinations of a finite set of elements of Hermy y,. x W™;

2) no o € ¥ contains a complete line through the origin in any (g, ) x €™ (W);

3) if o € 3 then any face of o also lies in ¥;

4) if 0,0’ € ¥ then either o N o’ —@oraﬂa is a face of o and o;

5) (G () x (G () x €)= U ey

6) ifo € %, ify € GI™(Q) and if u € UP(N, N) are such that you C (G (A%)x
mo(Ghn (R)) x ¢m))erd “then you € ¥;

(7) there is a finite subset of ¥ such that any element of ¥ has the form you with
v E G,(lm)(@) and u € UP(N, N) and o in the given finite subset;

(8) if o € X lies in GI™(A%) x 7o (G (R)) X e:<m 0V, i) and meets GY™ (A%) x

7o(Ga(R)) x €™ >0(V,, )), and if h € P) (%)% x PY)(R), then ho € ¥

(9) if 0 € X lies in GY(A®) x mo(G, (R)) x €=y, o), if e GY(Q), if
u € UP(N,N) and if h € P\) (A%)4% x PUD(R) satisfy yhou € X and

(
(
(
(
(

o N~yhou N (Gn (AOO) X mo(Gn(R)) X ¢(m) ’>0(Vn7(,~))) # ()

then v € Pé%))((@).
Note that if (U?)'(N') € UP(N) and if ¥ is a UP(N)-admissible cone decomposition
of (G m)(A‘X’) x To(Gn(R)) x €m)erd then ¥ is also (UP)'(N')-admissible. We will

call a set X of closed subsets of (G%m) (A®) x 75(Gn(R)) x €m))erd an admissible cone
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decomposition of (G™ (A®) x m(Gp(R)) x €m))erd if it is UP(N )-admissible for some
open compact subgroup U? and for some N.
If ¥ is a UP(Ny, N)-admissible cone decomposition of G4™ (A®) x o (G (R)) x €M)
then
S ={oe¥: g C (GIV(A%) x m(Ga(R)) x €M)}
is a UP(N;)-admissible cone decomposition for (G,(lm) (A®) x (G (R)) x €m)yerd,
We call ¥ a refinement of ¥ if every element of ¥ is a union of elements of >'. We

define a partial order on the set of pairs (UP(N),X), where UP C GI™(A®?) is an
open compact subgroup, N € Z>( and ¥ is a UP(N)-admissible cone decomposition

of (GI(A®) X mo(Gn(R)) x €m)ord a5 follows: We set
((UP)(N'), %) = (UP(N), ¥)
if and only if (U?)(N’) C UP(N) and ¥ is a refinement of ¥. If g € G (A>)ord and
S is a UP(N)-admissible cone decomposition of (GY™ (A%®) x (G, (R)) x €m))erd,
then
Yg={o(gx1): oceX}
is a g7'UP(N)g-admissible cone decomposition of

(G (A%) x mo(Ga(R)) x €™,

The action of G\ (A>)ord preserves >.
There is a natural projection

(GRM (A®) % o(G(R)) x €)M = (G (A%) X mo(Ga(R)) x €)™,

We will call admissible cone decompositions 3 of (GY(A%®) x mo(G,(R)) x ¢(m))erd
and A of (G,(A%) x m(GL(R)) x €)Y compatible if the image of every o € ¥ is
contained in an element of A. If in addition ¥ is UP(V)-admissible, A is (UP)'(N')-
admissible and (UP)'(N’) contains the image of UP(N) in G,,(A>)°™ we will say that
(UP(N),X) and ((UP)(N'), A) are compatible and write

(UP(N), %) = ((UP)(N'), A).

If ¥ is a U-admissible cone decomposition of G&™ (A®) x mo(Gn(R)) x €™ and if
h € GI™(A™) then we define an admissible cone decomposition (h)g for

(m)7+ >0
X (Sn,(i) AUR=IAP (8%9) )k

as follows: The cones in ¥(h) over an element

- (m),+ (g o0 - (m) / p o0 (m),+
y = [N((RUL™ NPT (A®) /(UL N PG (A®)))] € Ynm,hUh_lum#(Aw)

are the cones

(m),~0 L) o (m),+ =0
ocCC€ (Vn,(l)> - X*(Sn,(i),hUhflﬂP::(li))&(Aw))R7y
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which meet €™)>0(V,, ) and satisfy
{(Wh,1)} xo€X.

This does not depend on the representative h’ we choose for y. It also only depends
on
heP "(Z (A®N\G™ (A>)/U.
If hy € L ”8) 1in (A%) then under the natural isomorphism
.y (m)+ ~, ym)+
I Yn,(i),hUhflmijj'gg)’*(Aoo) Yn,(i),h1hU(h1h) 1np(m); it (a)

n,(i)
we see that 3(h) and 3(hih)o correspond.
Similarly if ¥ is a UP(N)-admissible cone decomposition of

(Gslm) (A*) x mo(GR(R)) x @(m))ord

and if h € G (A>)ordX then we define an admissible cone decomposition $(h), for

X* (S m),ord,+

=0
n,(3),AUP(N)R=1 AP LT (aooyord.x ) "
as follows: The cones in E(h)o over an element y given as

[W (RUP(N)h™1 N Pn T(A%)erdx) /(hUP(N)h ™t 0 P(”(?)“‘(Aoo)ord,x)]
y(m ),ord,+
(i),hUP(N )h—lmPif’(lz)‘+(A°°)0rdaX

are the cones

(m),=0 N\~ m),ord,+ <0
o C Q: (V'rh(l)) — X*(Sn,(i),hUp(N)h_lnp»,(lt?,?;Jr(Aoo)ord’X)R’y

which meet €™)>0(V, ) and satisfy
{(W'h,1)} x o € .

This does not depend on the representative h’ we choose for y. It also only depends
on

he P(m) (Aoo>ord,><\G(m)(Aoo)0rd,></Up( )
If by € L™ (z) i (A0 then under the natural isomorphism

m),ord ~ ~y(m)ord
ha wi,(Z),,hUjEN)h1ﬁPT(LT’(Li))’+(A°°)°rd1X — 1(1,(1‘))7,h1;L—~(_]P(N)(h1h)1OP£ZL2)’+(A°°)°rde

we see that X(h)o and X(hih)g correspond

There are sets J™"" (resp. J\"™""™) of pairs (U, ) (resp. (UP(N),)) where
U C G%m)(Aoo) is a neat open compact subgroup (resp. U? C G%m)(Aoo’p) is a
neat open compact subgroup and N € Zs() and ¥ is a U-admissible (resp. UP(N)-
admissible) cone decomposition of G (A®) x 7o(Gn(R)) x €™ (resp. (G,(mm) (A>) x
70(Gn(R)) x €™)rd) "with a number of properties which will be listed in this section

and the next section. (See [La4].)
Firstly we have the following properties:
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(1) The sets jnm )tor (resp. Jimhtor ') are invariant under the action of G (A>)
(resp. G (A“)Ordx).

(2) If U is any neat open compact subgroup of G (A*), then there is some X
with (U, %) € J™*.

(3) If UP is any neat open compact subgroup of Gaim (A°P) and if N € Z>o, then
there is some ¥ with (UP(N), ¥) € JmHtererd,

4) If (U,Y) € FU™" and if U’ C U then there exists (U', %) € J™™ with
U',x) > (U, %).

(5) If (UP(N), ) € Ji™ if N' > N and if (UP)(N') C UP(N) then
there exists an element ((UP)(N'),Y') € Jimrrererd ith ((UP)(N"),%) >
(UP(N), %)

(6) If (U", %)) > (U, %) are elements of J\™"™ and if moreover U’ is a normal
subgroup of U, then we may choose (U’,%¥") € T such that Y is U-
invariant and such that (U’,¥") > (U’,3).

(7) If ((UP)(N"), %)) > (UP(N), ¥) are elements of J\™"""" with (U?)’ a normal
subgroup of U?, then there is an element ((UP)'(N),%") € J™™" such that
¥ is UP(N)-invariant and such that ((U?) (N'),¥") > ((UP)(N'), ).

) If (U, %) and (U, %) € F™"™ (resp. if (UP(N),S) and (UP(N),Y) €
JmHererdy then there exists (U, 37) € JA™" (resp. there exists (UP(N), ©7)
in g™ with (U,7) > (U,%) and (U, %) > (U,Y)) (resp. with
(UP(N),%") = (UP(N), %) and (UP(N), ") > (UP(N),X)).

(9) If (U',A) € Jr (resp. ((UP)(N'),A) € Jrerd) and if U is a neat open
compact subgroup of Gim (A*°) mapping into U’ (resp. U? is a neat open
compact subgroup of GY™(A°P?) mapping into (U?) and N > N’), then
there exists (U,2) € J\™™ (resp. (UP(N),%) € J™ ™) compatible
with (U, A) (resp. ((UP)'(N'),A)).

(10) If (UP(Ny, N), ) € ™ then (UP(N), £ord) € gilmhtorerd,

(11) If (UP(N),Y) € Jmemod and if N’ > N, then there exists (UP(N, N'),¥) €

Tgm),tor with Sord — v/

(12) If (UP(N1, N,), ) and (UP(Ny, N3), %) € J™™ with £ord = (3)erd then
there is an element (UP(Ny, Np),%") € F™"" with (£7)°rd = serd = (3/)ord
and with (UP(Ny, Ny),X") > (UP(Ny, Ns), %) and with (UP(Ny, Ny), ¥") >
(UP(Ny, N2),3).

(13) If (UP(Ny, N3), %) and ((UPY/(NI,N3), ) € F™™ with (UP)(N!,N}) C
UP(Ny, No) and with (3')°™ refining 3°™¢, then there also exists another
pair ((UPY'(N],N}), ") € J™*" with © refining both ¥ and ¥’ and with
(E//)ord — (El)ord.

(14) If (UP(Ny, N3),A) € J' and ((UPY(N],N}), %) € F™*" are such that
(UP) (N7, N3) C UP(Ny, Ny) and (¥/)°4 is compatible with A4 then there
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exists ((UP)' (N}, N3), ") € Fi™"" with ¥ refining &' and compatible with
A and with (X")°rd = (x/)erd,
(15) If (UP(Ny, N»), %) € J™* and if N} > N, then there exists a new pair
(UP(Ny, N3), %) € Fim o with (3/)erd = yerd,
(See propositions 1.2.4.52 and 7.1.1.21 of [Lad].)
Secondly if (U, ) € J™" (resp. (UP(N),X) € J\™ ) and if h € G (A)
(resp. h € GV (A®)rd) then S(h)g is smooth.
Thirdly if (U,2) € J™"™, then there is a simplicial complex S(U,Y) whose
simplices are in bijection with the cones in

GM(Q)\X/U

which have dimension bigger than 0, and have the same face relations. We will write
S(U,%)<; for the subcomplex of S(U,X) consisting of simplices associated to the
orbits of cones (g,0) x 0 € ¥ with o C €0™+0(W) for some W with dimp W < i.
We will also set

ISWU.2)|=i =[SV, E)<i| — [S(U, ) <ial,

an open subset of |S(U, ¥)<;|. Then one sees that
S, = G QN ((GE(67)/U) x m0(Ga(R)) x (€7 — €%))/R%,))
and
S(U, 2=
= @)\ (G (a=)/0) % TolGa(R) x (€ ) /R%))
= HhGP(m)+(A°°)\G(m)(A°°)/UL ( )\L ( )/
(hUR=1 0 PY (%) L ) ermn (R) (Lff,'éi),nn
(See section [1.4])
If (UP(N), %) € ™ then there is a simplicial complex S(UP(N), $) whose

simplices are in bijection with equivalence classes of cones of dimension greater than
0 in X, where o and ¢’ are considered equivalent if ¢’ = you for some v € G (Q)
and some u € UP(N,N). We will write S(UP(N), )% for the subcomplex of
S(UP(N), ¥)° consisting of simplices associated to the orbits of cones (g,6) x o € 2
with o C €™>0(W) for some W with dimp W < i. We will also set

[SWPN), D)™ = ISWUP(N), ) — |SUP(N), D)L
an open subset of |S(U?, X)%{|. Then we see that
[SUPN), D) )
= GI(Q)\ ((GI(A%)/UP(N) x mo(G(R)) x (€0 — €13)/R%,))

where

(R) U ) An,i)(R)°.

(G4 (8 /U7 (V)) (G (B)) x (€ — € R)) ™
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denotes the image of

) ord

(G () % m(GulR) €)™ — (G () x m(Gu®) x €)™

n

L@\ (G (A%)/UP(N, N)) x ol G(R)) x (€7 — €79 /R, )

Moreover
IS(UP(N), %)

= GI(@)\ (G (A%)/UP(N, N)) x mo(Ga(R) x ((€77)/R%,))

~ (m) (m)
HhEPfLTY&))’+(A®)Ord’X\Ggmm)(Aoo)ord’X/Up(N) Ln7(z) (@)\Ln7(z) (A)/

(RUP(N)R™ AV PIOT (MY ) L o (Zg) Lo yermn(R) (LU 1 (R) N UD)

n,(7),herm n, 3

ord

(Use the same argument as in the proof of lemma|[1.§8]) In particular
or ~ m),ord
SWUP(N), £) |, = Tt
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5.3. Toroidal compactifications.

If (U,%) € JAT then there is a smooth projective scheme AEZLU)Z and a divisor
with simple normal crossings

04T s © A,

together with an isomorphism

JUE Agsz — A - 8147(17:1(1),2
and a projection
(m) min

ﬂ-A(m),tor/Xmin . ATL,U,E — n,U
such that
(m) (m)
Ao = Anus

i 1

Xn,U — X;Si?

is a commutative pull-back square. (The set jnm) 1" was chosen so that inter alia
these properties are true.) The divisor 8An v induces a log structure My, on An Us-

If (U,X) € J&™ and (U, A) € Jtr with (U, %) > (U’,A) then there is a log
smooth map
T p(m);tor ) xtor ( nUE?MZ) (Xn,U’,A>MA)

over X", extending the map
7TA(m)/X : Af,:le) — Xn,U"

If (U',%) and (U, %) € F™™if g € GYY(A®): if U' 5 ¢ 'Ug; and if 3¢ is a

refinement of ¥’ then the map g : Aﬁlm,} — Ag:flU), extends to a log etale morphism

g (AT o M) — (AT, o M),

The collection {Aflmgz} becomes a system of schemes with right G™ (A™)-action, in-
dexed by J\™"". The maps j(UmE and 7 4 (m),tor / xmin AN T gm).cor ) xror are all G (A‘X’)-
equivariant. If (U, X) > (U', %) we will write x5y for the map 1 : AnUE —

AEL sy (See theorem 1.3.3.15 of [Lad] for the assertions of the last three paragraphs.)

Any of the (canonically quasi-isogenous) universal abelian schemes A™"/X,, 1 ex-
tend uniquely to semi-abelian schemes A% /X, ya. The quasi-isogenies between
the A" extend uniquely to quasi-isogenies between the AW, If g € G,,(A>) and
(U,A) > (U, A")g then g* AW is one of the AX. (See remarks 1.1.2.1 and 1.3.1.4
of [Lad].)

We will write 8@'14%,2 for the pre-image under 7 4(m).tor /Xmin

) of (92-X51m. We
n,U,X
also set
04 (m)
a nUE - 8An U,x aiJrlAn,U,E‘
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We will also write AnmU’Qz for the formal Completion of A(m)2 along 80A7(1m1}2 and

M ; for the log structure induced on An UE ; by Myx. There are isomorphisms

(m),A A (m) BN A
(AmU,E,i’ E,i) H (Tn,(z) hUh— 1ﬁP(m) +(A°°) S(h)o M h)o)
hePT (Ao N\GI™ (a%) /U

I

Suppose that ¢7'Ug C U’ and that Xg is a refinement of Y. Suppose also that
h W € GU™(A%) with

Then the diagram

(m)vhv/\ hg(hl)_l T(m) h N
n,(i),hUR=2NP™:F (A% 53(h)o n,(8), WU () =10 P (899), 5 (1)
IANEa) n, (i) ’ s 2(3)
( i) ; ( %
m),\ g m),\
An,U,E,'L' An,U’,E’,i

commutes, and is compatible with the log structures on each of these formal schemes.
(See theorem 1.3.3.15 of [La4].)
If U’ is a neat subgroup of G,,(A>) containing the image of U; if (U', A) € J'°*; and
if © and A are compatible, then for all h € P ( (A™) with image b’ € PJr iy (A%)
the cone decompositions ¥(h)y and A(h')g are compatible and we have a dlagram
(m)

(m),A
— A »
n, (), AUR=NP{E (499),5(h)o U,

g,/ A
n, (D), U (W) =I0PY o (A%°),A(R)o = Xoura
f min,A
X — Xn,U’,z"

n,(i),h U(h')~ 1mP;j(i) (A>)

which is commutative as a diagram of topological spaces (but not as a diagram of
locally ringed spaces). The top square is commutative as a diagram of formal schemes
and is compatible with the log structures. (Again see theorem 1.3.3.15 of [Lad].)

The pull-back of AR™ from Xy A, to T+(A) WU 10P 1 (), Ao is canonically

A

quasi-isogenous to the pull-back of G*™" from A™ () WU (W)~ 1P

"y (A%), Ao

We will write
SO )= = [SOATY s = 0 A )| = [SOA 5 — AT 5.
Then there are compatible identifications
S(OAVY) ) = S(U, )
and
S04 — 0 AlDy) = S(U. D)<
and

SOAM) )= =2 [S(U, D) =s;



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 173

and the latter is compatible with the identifications

|S<8An UZ)|*Z' o
HhEPfL@)’JF(A”)\G%m)(AOO)/U L, o, lin(Q)\
(m).+ -
(|S(8T (@) hUR= P (4%2),5(h) >| [S(0T hUh 1P (A%) S(h), E(h)o)|)

(
HheP(n(L))""(A"O)\G(m)(A‘X’)/UL Z)( )\Ln,(z)( )/
(hUR™'N P T(A®))L,, )herm(R)Jr(LS,rzz),hn(R) NUp ) Ani)(R)°
IS(U, 2)|=i.

(See theorem 1.3.3.15 of [Ladl.) If [o] € S(U, %) we will write

)

12

0 ALY s

for the corresponding closed boundary stratum of AflmU)E
Similarly if (UP(Ny, Np), %) € jém)’tor, then there is a smooth quasi-projective

(m),ord

P UP(N1,N2),5 and a divisor with simple normal crossings

scheme A

(m),ord ),ord
aAn ,UP(Ny, N2 2 - An ,UP(Ny, Ng) b))

together with an isomorphism

.(m),ord . 1(m),ord ~ (m),ord (m),ord
jUp(Nl,Ng),E N An,UP(Nl,Ng) An,Up(Nl,N2)7Z - aAn,Up(Nl,]\b%Z
and a projection
. g(m),ord ord,min
ﬂ-A(m),ord,tor/Xord,mm . .An Up(Nl N2) ) — X Up) (Nl N2)

such that
(m),ord (m),ord
A voviney T AnUn (NN s

rd ord,min
XO( UPY (N1, Na) 7 X, (UP) (N1,No)

is a commutative pull-back square. The divisor 8AnmU)p°r](\i,l Na)S induces a log structure
Ms on AfszPo(rJilfl,Ng) s
If (UP(Ny, N»), 2) € F™ and ((UP) (N1, No), A) € Tt satisfy
(UP(Ny, Na), 2) > ((UP)' (N1, N2), A)
then there is a log smooth map

. ( A(m),ord ord
WA(m),ord,tor/Xord,tor . (An,Up(Nl,NQ),E’MZ) (X (UP) (N17N2)’A7MA)

over X Or((%]?)uz Ny.Ny) €xtending the map

(m),ord ord
T p(m),ord  xord An ,UP(N1,N2) Xn,(UP)/(Nl,NQ)-
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If ((UP)/(Ny,N2), ) and (UP)(Ny,Np),E) € Ji™™ if g € GIY(A®)d; if
(UP)'(N{,Ny) D g 'UP(Ny, Ny)g; and if g is a refinement of ' then the map

g: AflmUpof,l Ny A anzgd( N1Na) extends to a log etale morphism

. (m),ord (m),ord
g- (An,UP(Nl,NQ),E’ME) — (A, ,(UPY(N1,N3), s M)

Then {An Uporj(\i,l Na), s} is a system of schemes with right Gim (A>)ord_action, indexed
by the subset of jnm) " consisting of elements of the form (U?(Ny, N3), ¥). The maps

d . .
j[(]ng o and WA(m),ord,tor/Xord,min and ﬂ-A m),ord, tor/)(ord stor Al G(m) (AOO)OI‘d eqU.lVaI‘Iant If

m),ord
(UP(Ny1, No), %) > ((UP)' (N7, N5), %), then we will denote the map 1 : An U),,(NLNQ) 5 =
m),ord
.A( (2]1,) H(N1,Na) 5 DY T (UP(Ny,No),2),(UPY (N1, N2) & )- (See theorem 7.1.4.1 of [Lad] for the
assertions of the last three paragraphs.)
Any of the (canonically prime-to-p quasi-isogenous) universal abelian schemes
Avmiv / XT‘L”{},, (V1.v,) €xtend uniquely to semi-abelian schemes AR/ Xﬁr‘Uip( Ni.Na).A- Lhe

prime-to-p quasi-isogenies between the A" extend uniquely to prime-to-p quasi-
isogenies between the AR, If g € G, (A>®)"4* and

(UP(N1, N2), A) > ((UP)' (N1, Na), A')g

then g* AW is one of the AR, (See remarks 3.4.2.8 and 5.2.1.5 of [La4l.)

We Wlll write 0 A( Upo(rf,l Np).x for the pre-image of 9;&] Orgpmjl\r,l ) under the map

ﬂ-A(m) ord, tor/Xord ,min aAELmL)Ipo(ch\lrl Ny

and set
0 4(m),ord o (m),ord B ),ord
0; An UP(N1,N2), = 0iA, ,UP(N1,N2),% 82+1-An UP(N1,N2),5"
),ord,A (m),ord

We will also write .An U (N} Na), 5 ; for the formal completion of A Un(N1 Ny along
(m),ord,A

80An Upozfl,l Np).5» and Mg ; for the log structure induced on A, 7 7y, 5, by Ms.

There are isomorphisms

(m),ord,A A ~
(Ao (1,7 m,i0 M) = HheP,E"g?;*(Am)ord’X\GS”(ADO)M“»X/UP(M)
( (m),OI‘d,h,/\ A )
n,(2), (RUPR =10 P{O (45009)) (N1, Na), 20 (h)o zerd(h)o

1T HhG(Pr(:&))’Jr(Aoo)\Gglm)(Aoo)/Up(Nl,NQ))—(PET%’"’(AOO)OM,X\Gglm)(Aoo)ord,x/Up(Nl))
(m). A M)
n,(i),hUP(Nl,Ng)h—lﬂPr(Lf’Zi))*“'(Aoo)’E(h)O7 S(h)o/

Suppose that g € G (A®) and ¢~ 'UP(Ny, N3)g C (UP)(N!, N}) and that Sg is
a refinement of X'. Suppose also that i, h' € GY™ (A%)°rdx with

hg(l')™" € P+ (A)ord,

)
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Then the diagram

(m),ord,f,A hg(h')~* 7-( ),0rd,5,A
n,(7),V,E(h)ord n,(3),V/, 5 (b )ord

(m),ord,A ),ord,A
n7Up(N1aN2)7Z>i A (UP) (N/ N/) X

commutes, where
V = (hUPR™ 0 P (A7) (Ny, No)
and
V= (WP ()7 0PI AT (N, N).

Moreover this is compatible with the log structures defined on each of the four formal
schemes. (See theorem 7.1.4.1 of [Lad].)
If [o] € S(UP(Ny, Ny), ¥) we will write

a[a} A(m),ord

n,UP(N1,N2),5

for the closure of Jj, AﬁmUp (N1,N2)

(O Al Upoécvll Ny).2) % SpecF,

v in AilmUpor]ii,l Na)x- The special fibre

is non-empty if and only if [¢] € S(UP(Ny), )4, (We remind the reader that
the first superscript °*¢ associates the ‘ordinary’ cone decomposition ¥4 to the cone
decomposition ¥, while the second superscript °¢ is the notation we are using for the
simplicial complex associated to an ‘ordinary’ cone decomposition.) We will write

(m),ord (m),ord (m),ord
(An JUP(N1,N3),5 ) An JUP(N1,N2), 5 U 8[0]An,Up(N1,N2),2-

[¢]€S(UP(N1,N2),2)—S(UP (N ),xord)ord

This only depends on %014,

If (U?)" is a neat subgroup of G,(A*") containing the image of UP?; if the pair
((UPY(Ny, N»), A) € J%: and if ¥ and A are compatible, then for all h € P ( T (A)ordx
with image 7' € B, (A*)”4* the cone decompositions ¥°(h), and Aord(h’ )o are
compatible and we ilave a diagram

(m),ord,g,A

d,A
4 (m),+ = AU
n,(0),(RUPh =LA (42002)) (N, N2 ), 50 (R)o

n,UP N1 NQ)E

1
I"CLh,/\ OI‘d/\
ﬁ(i),(h’(Up)/(h/) 1mP+()(Aoo,p))(]\[l’]\&)’Aord(hl)o = A& n,(UP)'(N1,N2),A i
d,fg ' d !
ord, ord,min, A
(i), (B (UP) () ~LAPF o (A#))(N1,N2) = AWy (N

n, (%)

which is commutative as a diagram of topological spaces (but not as a diagram of
locally ringed spaces). The top square is commutative as a diagram of formal schemes
and is compatible with the log structures. (See theorem 7.1.4.1 of [Lad].)
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The pull-back of AYY to ’Tord is canonically

(s 1P ) (A%P))(N1,N2), A0 ()

quasi-isogenous to the pull-back of GV from
ord,+,A
A n,(0), (' (UPY (W) ~INP 1 (
All this is compatible with passage to the generic fibre and our previous discussion.
(Again see theorem 7.1.4.1 of [Lad].)
If Nj > Ny > Ny, if X' is a refinement of 3 and if X°4 = (3/)°"¢ then the natural

map

Aoo:P))(N1,N2),Acrd (')

(m),ord (m),ord
An Up(N1 N/) >/ An Up(Nl NZ)E

is etale in a neighbourhood of the F,-fibre of Al Upo(ﬁ N

phism between the formal completions of these schemes along their [F,-fibres. (See
theorem 7.1.4.1(4) of [Lad].) We will denote this p-adic formal scheme

(m),ord
R, Up () more

s and induces an isomor-

and will denote its reduced subscheme

—(m),ord
An UP(N;),xord-

(In the case m = 0 we could also write %Orgp( Ny sord and xgrdUp( ) sora-) We will also
write 4 — (m)ord (mord

3An Up(Nl) sord = Ay, U (), mord — Ay U(vy)-
The family {an Upord ora } (TESD. {AimUpord siord J, TESP. {(9AnmUpo(ﬁ sord }) 18 & family of

formal schemes (resp. schemes, resp. schemes) indexed by Jimhtorord with G, (A>)erd

action. Let
m),ord

8 An UP(N) Sord

—-ord,min . m),ord
denote the pre-image of 9;X,, /7oy In aAn Ur(N),serd; and set

0~ (m),ord m),ord (m),ord
0; An Up(N),sord = O; An UP(N),xerd — di11 A, UP(N),xerd -

(m),ord

The families {0; AnmUpord sora} and {0V A, Up().zora } have actions of G, (A>)°"d. More-
over we have a decomposmon

(m),ord
aoAn UP(N) Eord —
8 T(m),ord,h
HheP  (Ao0)ord\Gy, (Aoe)erd /Up(N) 80T (R)o n,(0),(hUPR=INP S o (AP))(N)*

If g € Gnm)(Aoo)ord, if g7'UP(N)g C (UP)(N’) and if ¥°"g is a refinement of (%),
then the map
m),ord (m),ord
g: 3?An UP(N),serd 7 97 A, L(UPY/ (N7),()erd
is the coproduct of the maps

g, : azord (h)OT(m) sord.d

n,(i),(hUPh—lﬁPnf(i)(Am’p))(N) —
—(m),ord,
8zord(h)()T?’L,(’L’),(h’(U’)p(h,)71mP;:(i) (AOO,P))(N’)
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where hg = ¢'h/ with ¢’ € P:(i) (Ac)erd,
The map
gp . 91(71)701‘(1 7Eord — Ql(m)70rd R

is finite flat of degree p@m+mnlF™QA and on F,-fibres it is identified with absolute
Frobenius.
If N) > Ny > Ny, if ¥ is a refinement of ¥ and if ¢ € ¥4 = (¥/)°"d then the

natural map (
m),ord m),ord
8U]An UP(NL, NG o) A, JUP(N1,N2),%

is etale in a neighbourhood of the [F,-fibre of Jj, An Upo(f, N and so induces an

isomorphism of the formal completions of these schemes along their F,-fibres. We
will denote this p-adic formal scheme

a[a] A (m),ord

n,UP Nl) yord

and will denote its reduced subscheme
(m),ord
a[a] An UP(Ny),xerd -

For s > 0 we will write

s)g((m),ord _ oy ond
8( )Q[n,Up(Nl),EOrd = H 0[U]Q[n L
[]€S(UP (N ),xerd)ord
dimo=s
and . )
s m),ord ) ond
oA UP(N),zord = 1T Dot ALty o
[U]ES(({;(Nl)Sord)ord
The maps
s m),ord m),ord
Sp 8( an [}p(N ),erd — 8 Q[n l;p(Nl) ord

are finite ﬂat of degree p2mtmnlF":Ql-s

m),ord (m),ord

Then 8An Ur(ny)serd 18 stratified by the 9,4, Ur(Ny)zerd With [o] running over
S(UP(Ny), Eord)ord If 0 € X4 but ¢ is not contained in

(G (A%) x mo(GL™(R)) x €7)yerd
<n

d d
then G[U]An Upoivl) sera 18 irreducible. (Because 8[U]Anm(;p0(rN sord 18 @ toric variety over

F,. It is presumably also true that 8[0114” Upor]ilfl) sera 18 irreducible for any o, but

to prove it one would need an irreducibility statement about the special fibre of a
Shimura variety. In many cases such a theorem has been proved by Hida in [Hi], but
not in the full generality in which we are working here.)

We will write

d
’S(aAn Upor zord)’—z -
—(m),ord ),ord

m) ord m) m),ord
|S(aAn UP(N),xord ™ aH‘lAn ,UP(N Zord)| - |S(aAn UP(N),xord ™ 0; An ,UP(N Eord)|
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rd rd
an open subset of |S (8AnmU);O ), sord — &HAnmU)po( ny,sord) |- Then there are natural sur-

jections
),ord ordor
S(aAnmUPON) sora) = S(UP(N), ord)ord
which restrict to surjections
m),ord ),or
S(&Ai Up Eord - 87,+1An UP
This gives rise to surjections
(m),ord ord\or
[S(OA, Ui (v sora) | = [S(UP(N), 2)"| .

In the case n =i this is actually a homeomorphism

Nysera) — S(UP(N), £y,

(m ),ord

~ ord\or ~ m),ord
(SO Pty s = 2 [S(UP(N), 5074, = gimer

7:n

This is compatible with the identifications
(m),ord
|S(94, UP(N), sord )| =n -
Hhep(m))+(Aoo)ord,><\Gglm)(Aoo)ord,x/Up(N) Ln,(n)Jin(Z(p))\

n.(

<|s<aT

m),ord,+ )|
,(n),hUP(N)h~ 1ﬂP(m) +(Aoo)0rd Zord(h)

—(m),ord,+
ST, oy r o 10Ems ey, zﬁmzord(h)o)‘)

Hhepr(:r(zi)),-k(Aoo)ord X\G(m>(Aoo)ord % JUP(N) Ln (n) ( )\L (n)( )/

(AUP(N)YR= O PO (A%)) Ly oy bermn (R) T (LD 10 (R) N UL L) Ay () (R)
S(UP(N), nerdyord |

I
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5.4. Vector bundles.

We will write Z, Xmin (resp. Zox, yas r€Sp. I, AE}’;)) for the ideal sheaf in O xmin (resp.

Ox, ya> Tesp. O defining the boundary dX2 (resp. 0X,ua, resp. 8A(Umz):)

agy)
More generally we will write Zxmin xspec Ry (T€SP- ZoX,, 1,5 xSpec Ro» T€SP- L 407 xSpec Ro)

for the correspondingly defined sheaves on Xﬁ}‘ x Spec Ry (resp. X,ua X Spec Ry,
resp. Ag"z) X Spec Ry).

Lemma 5.1. Suppose that Ry is an irreducible, noetherian Q-algebra.
(1) If i > 0 then
R0, 07£)0 O am) cspee py = (0)
and
RZT((US)7(U/7E,)7*IBA§T&EXSpecRo - <0)

(2) If (U,%) > (U, %) and U is a normal subgroup of U’, then the natural maps
U/
OAg’,L,)E,XSpeC Re (W(U@),(U’:E')v*oA%@><Spec Ro)
and
U/
IaAg?’)E/ «Spec Ro — (W(Uvz)’(U’,E’):*IaAb@xSpec Ro>
are 1somorphisms.
(3) IfU' is the image in G, (A>) of U C G (A>) and if ¥ and A are compatible,
then

WA(m),tor/Xtor,*OAa(,:’L(}’z = OX’(L,U/,A :

Proof: If ¥ is U'-invariant the first two parts follow from lemmaf4.6] In the general
case we choose (U,%") > (U,X) with ¥” being U’-invariant, and apply the cases of
the lemma already proved to the pairs ((U, X"), (U’, %)) and (U, %), (U, X)).

The third part follows from lemma [4.8 O

Similarly we will write Iaxs’rg;x(nﬁlw) (resp. Iaxﬁfgp(wl,QO),A’ resp. IaA;@;(r;LN%E
for the ideal sheaf in Oxsfgg?iﬁlwz) (resp. OXTCL)TSP(NLNQ),A’ resp. O Ag,nu)bofﬁl,wﬂ,z) defin-
ing the boundary 8XZ7T3;,T;VHI ) (resp. (‘9erng( N1,N),A+ TESP. 8.»45%);0(3317 Na))- More
generally we will also write Z, xodmin | xSpec Ro (resp. IB‘XSTSP(Nl,NQ),AXSpeC Ry T€SD.

Z, AL Spec Ro) for the sheaf defined in the corresponding manner on the
n, 1:4V2)s

ord,min ord (m),ord
scheme XnyUp(NLNQ) x Spec Ry (resp. X0 (N1 M)A X Spec Ry, resp. AmUp(NhNﬂ’E X

Spec Ry). The next lemma follows from lemmas and

Lemma 5.2. Suppose that Ry is an irreducible, noetherian Z,)-algebra.
(1) If i > 0 then

Rzﬂ- O m ),0r — 0
(61, N2) ). () (V85) 20O gomond gy = (0)
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and

i p—
R e i v 200y V) )T gmiond - gpoe y = (0):

(2) If (UP(Ny,,N2), %) > ((UP) (N7, No), %) and UP is a normal subgroup of
(UP)', then the natural maps
)(U”)'(N{)

O, (m),ord — (e (Ny,No)2),(UPY (N N5 5 O ym),ord
AWEU‘;)((N/N)E’XSpeCRO ( (UP(N1,N2),2),((UP) (N1, N3),27) % AnmUPO(Nl N2)2XSpeCR0

and

L, qmy.ora )W) ()

5 = (T (N1, N2),2),((UP) (V] N3, 5),5 Ly g(m).ora xSpec Ro

n,(UP)!(N], N’>E’XSpeCRO n,UP(Ny,Ng),S

are isomorphisms.
(3) If (UP) is the image in G,(A®P) of UP C G (A>P) and if ¥ and A are
compatible, then

WA(m),ord,tor/Xord,tor7* OA(m),ord

n,UP(N1,N3),2 Xn,(UP)’(Nl,NQ),A'

The pull-back by the identity section of Q! (resp Ot ) is

Aunlv/X Aunlv/){ord

n,UP(Ny,Ny),A
a locally free sheaf, which is canonically independent of the choice of A"V (resp.
A™V) . We will denote it ©,ya (resp. er,(lijp(Nl,Ng),A)' If g € G,(A®) (resp. g €
Gn(Am)ord7X) and (U7A>g > (UlaA/> (resp. (UP<N1>N2)7A)9 = ((Up)/(N{aNé)aA,))
then there is a natural isomorphism

9 Q. — Qoya

(resp.

*QordUp) (N1, No), AT T Q?Lr%p(Nl,Ng),A)’
This gives the inverse system {€, ya} (resp. {Qn Up (N Na),a ) an action of Gy (A™)
(resp. G (A>®)°"dX). There is also a natural map

. _xord ord
Sp*Sp Qn,Up(Nl,NQA),A — Qn,UP(Nl,Ng),A'
There is a canonical identification
Mualx,o = Uy

(resp.
~ (ord )

Qord | ~
n,UP(N1,N2),A1X" n,UP(N1,N2)/*

UP(N1 No)
We will write
wya = AFAQ, A

(resp.
ord n[F: ord
Wue(Ny,N2),A = = A"l Q]Qn,UP(Nl,Ng),A)'
The pull-back of €, ya to 5" is canonically and equivari-

n,(i),hUh— 1OP+(Z)(A ),A(h)o

antly identified with the sheaf () Similarly the pull-back of

n,(3),hUR~ 1mP+ o (%), A(R)o”
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ord rd,g,A . . . .
Q Up(N1,N2),A TO 7:’ () (RUPR-10P | (A5%9)) (N1, V2), A0 () is canonically and equivariantly

identified with the sheaf Q"%

n,(3),(hUPh— lnP+( (A%:P))(Ny,Nz),A%d (h)o
and 5.2.4.38 of [Ladl.)
We will write

. (See lemmas 1.3.2.41

Enva = Ox, ualllv]])
(resp.
)
for the structure sheaf of X, ya (resp. XmUp(Nl’NQ)’A) with the G,(A>) (resp.

G (A%)) action twisted by |[v||. If g € GL(A®) (resp. g € Gn(A®)"4*) then
the maps

—ord =0
—n,UP(N1,N2),A Xn "UP(Np,No

) — —_—
g Snu,A ? S, U’ A
(resp.

x—ord —ord
9 EnUr(Ny,Np),A T = (UP)’(N{,Né),A’)

are isomorphisms.

The pull-back of =, A to the formal scheme "

n,(i),hUR— lmP+<,)(Aw),A(h)0

pull-back of the sheaf = ()hUh NP (4) from X* n()AUR- IO (45)" Similarly the

—ord rd,h/\ .
pull-back of =), vy, nyya tO 7‘o RUPh=10PE  (Ao))(N1,N2), A% () is naturally iso-

equals the

—ord,}h

morphic to the pull-back of the sheaf = from the scheme

n,(0),(hUPR=INP . (A>P))(N1,N2)
ord,f Tord,h A
n,(i),(hUPh=1NP} . (A>P))(N1,N2) J(hUPR=INPT o (A0P))(N1,N2),A0 4 (h)o

(@)
Let EFR (resp. Sgidﬁ,alnNZ A) denote the principal L, (,)-bundle on X, ;A (resp.
on XﬁrUp(Nl Na).A A) in the Zariski topology defined by setting, for W C X, ya (resp.
Xﬁrgp(Nth) ) & Zariski open, EFR (W) (resp. Egﬁﬁerﬂ,A(W)) to be the set of pairs
(&0, &1), where

o : En,U,A|W = Ow

(resp.
o : Egr,%p(Nl,Ng),MW — Ow)
and
51 . Qn,U,A — HomQ<Vn/Vn,(n)7 OW)
(resp.

& nggp(Nl,Nz),A — Hom z(Ayn /Ay (), Ow)).

can

We define the L, ,)-action on EFA (resp. ggrpd Ji/inNQ ) by

h(&, &) = (v(h)™ &, (oh™1) 0 &).

can

The inverse system {EFA} (resp. {Egrpd(ﬁinNQ A)) has an action of G,(A*) (resp.
Gn(Aoo)ord,X)_
Suppose that Ry is a Q-algebra (resp. Z,)-algebra) and that p is a representation

can

of Ly (n) on a finite, locally free Ro-module W,. We define a locally free sheaf &7 ,
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(resp. E{}r,fl(’]c\,TNQ)A’p) over X, y.a X Spec Ry (resp. Xﬁff}p(NhNQ)A x Spec Ry) by setting

A (W) (resp. Sgﬂ)d(’;\}TNQ)’Ayp(W)) to be the set of L, (»)(Ow)-equivariant maps of
Zariski sheaves of sets

Exalw — W, @g, Ow

(resp.
ord,can
8UP(N1:N2),A’W — W, ®g, Ow).

Then {&FR ,} (resp. {88201(’]‘32“]\,2) a,}) is asystem of locally free sheaves with G, (A>)-

action (resp. G,(A>)°"%*_action) over the system of schemes {X, ;A x Spec Ry}
(resp. {Xﬁfl‘}p(NLNﬂA X Spec Ry }).

Note that
can ~ Q
U,A,StdY = *4n,UA
and
can ~ =
U7A7V71 - ‘_"nﬂUvA
and
can ~
U,A ARIFQIStdY — WUA-
Similarly
gord,can ~ Qord
Up(NerQ)vAzstdv - n7Up(N17N2)7A
and
gord,can ~ —ord
Up(Nl,Ng),A,V71 - “n,UP(Nl,Ng),A
and

gord,can ~
Up(N1,N2),A,/\n[F:Q]Std\/ - Up(vaNQ)vA’

Also note that the pull-back of &R , (resp. 5[(}2(1(’](\:,21?N2)7A7p) to X, v X Spec Ry (resp.

Xﬁfgp( NiNg) X Spec Ry) is canonically identified with &y, (resp. é'gﬁ,d( NiN2), p). These
identifications are G, (A>)- (resp. G, (A>)"4*.) equivariant.
can B,A ; ;
Moreover note that the pull-back of &7 , to Tn,(z‘),hUhflmP;(i)(Axoo),A(h)o is canonically
and equivariantly identified with the sheaf gn,(i)yhUhflmPTt(i)(Aoo),A(h)pr‘Rny(n)’(”‘ Simi
ord,can rd,f,A . .
larly the pull-back of SUP(NI,NQ)AP to (O (RUPR-10PY (%)) (N1, Na), A7 (), is canoni-
cally and equivariantly identified with
ord,f
n,(8),(RUPR=IOP ) (A%P)) (N1, N2), A (h)o.plR,, () )
Set
515},127,; - IaXn,U,AgU,A,P = IaXn,U,A ® €U7A7P
and
ord,sub _ ord ~ ord
Eur(niNaap = Loxed, o EUrvi N A = Loxerd, o EU(N N2 A

Then {&FR ,} (resp. {Egrpd(’]s\}isz) ap)) is also a system of locally free sheaves with

G, (A>)-action (resp. G, (A>)"4*_action) over the systems of schemes {X, ya X
Spec Ry} (resp. {Xr‘jf(‘}p(Nl,Nz)’A X Spec Ro}).
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Lemma 5.3. (1) If g € Go(A®) (resp. Go(A®)"*) and g : Xppa — Xpvrnr
(resp. g : Xr?rgp(Nl,NQ)A - Xﬁf(%p)/(N{,Né),A/) then

* ¢can ~ can
g & A p — gU,A,p

(resp.
T E eyt ngyane — Em(vs N A
(2) Ifi >0 then
Riﬂ'(U,A) van«Eia,, = (0)
and
R'Tw.a), A 515}12;, (0).

Similarly, for i > 0 we have

R (Un (8, 32), ) (U (N5, ) 5 E s (s iy 2 = (0)
and
RIT(Un (N1, Na), )0 (NN, A wEm (o Nz . = (0)-
3 §
( 1(15% T(w,a), a0+ E5R ) = Evrary
and
(lin 7.8, @8 EFR ) = E,
and
ETyN Ny A =
(W (0 (81, N2), ) TP (N3, N2) A)((UPY (N N2, A7)+ EDm s gy ) D
and
€ O(;?? Sl(ﬂ;q N2),Ap
(11m+(UP<N1,N2>,A> U (N N2) ) (U2 (N N2, &) Ern (s gy ) D).

Proof: the first part follows easily from the corresponding facts for £, y A and Z,, y A
(resp. QZdep( N1 No)a and Eflf?]p( Ny.No).a)- The second and third parts follow from the

first part and parts |1 and [2| of lemma (resp. lemma . O
We next deduce our first main observation.

Theorem 5.4. If i >0 and U is neat then R'T xiorjxmin LEF'R , = (0).

Similarly if i > 0 and UP is neat then R'Tyord.tor jyord.min *Sgl;df\zb%) A, = (0).

Proof: The argument is the same in both cases, so we explain the argument only in
the first case. Write X, o, (resp. X,'77,) for the open and closed subset of X\, 1 ;

(resp. X o ) corresponding to 7" resp. X'

(A%),A(h) ( n,(3),hUR— lmP+ (AOO))'
(Recall that X, v s the completion of a smooth toroidal compactlﬁcatlon of the
Shimura variety Xn,U along the locally closed subspace of the boundary corresponding
to the parabolic subgroup P;(i) C G,. The formal scheme X:j g"’i/\ is the completion

n,(i),hUR—1NPT

n, (%)
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of the minimal (Baily-Borel) compactification of the same Shimura variety along the
locally closed subspace of the boundary corresponding to the same parabolic. Each
of these formal schemes is a disjoint union of sub-formal schemes indexed by certain
elements h € G,,(A>).)
We have maps of locally ringed spaces
A ~
TvE,(i),hUhflﬂPnf(i)(AOO),A(h) - Xﬁ,U,A,i,h
3 3

b min,A
— Xn,Uﬂ',h‘

n,(i),hUh= NP} oy (4)

(

(Recall that T2 00

.y (A%0), A(h)
0)
toroidal compactification. It is the quotient by a discrete group of the formal comple-
tion of a toroidal embedding over a principal homogeneous space for an abelian scheme

over a disjoint union of smaller Shimura varieties. The scheme Xi

is a formal local model for the boundary of the

7(i),hUhflﬁP:£(i) (A>)
is a disjoint union of smaller Shimura varieties, and also a locally closed subscheme
of the boundary of the minimal compactification of X, 1.)

This diagram is commutative as a diagram of topological spaces (but not of locally
ringed spaces) and the lower horizontal map is an isomorphism on the underlying
topological spaces. It suffices to show that the higher direct images from the topo-

: UJ\ 1 u
logical space Tn,(i),hUhflmP;m(Aoo),A(h) to the topological space Xn,(i),hUhflﬂP:’(i)( f

the pull-back of 55‘7‘2’ , vanishes. The theorem follows from corollary . U
We set

Ao0) ©

sub __ . sub
gU,p = ﬂ-er/Xmm,*gU,A,p
(resp.
gord,sub . ) gord,sub )
Up(]\[1 ,N2),P — WXord,tor/Xord,mln7* Up(]\[1 ,NQ),A,p

a coherent sheaf on X"} x Spec Ry (resp. X:g;?}vnl Ny X Spec Rg). (Note that we
do not expect these sheaves to be locally free in general.) These definitions are

independent of A. Note that

sub RN ~v ¢sub

and
Ermunap @ (@uen )Y ZER RO o pipagianyen-
We will let Egrpd(’;%lordﬁ (resp. Sl‘}l;fj(fvu)lord’p, resp. Eg;d(fvu)}?p) denote the pull-back of
Eo(vn. o (XD EG N o TSP Ep(iini ) 10 Xy aort (105D X s

resp. %‘gf(%n) It is independent of the choice of N’ and A.

If p is a representation of L, (,) on a finite Q-vector space, we will set

HU(X, &) = lim—y HY(X)5, &)

= lim s H (X008, E3% ).
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It is an admissible G,,(A*)-module with
Hi(Xmin, g;ub)U’ — H( 7111?51,’ g(s]l}'t)p)'
Similarly, if p is a representation of L, () on a finite free Z)-module, we will set

j'{O(‘)(';L)l"d,min7 gord,sub ® Z/prz)

P
— i 0 ord,min ord,sub r
o 11InUp,Ff,Nz H <X”’UP(N17N2)’ SUP(N11N2)’P ® Z/p Z)
li

0 ord ord,sub T
mUp,Nl,NQ,A H (XH,UP(leNz)A’gU”(leNz),A,P ®L[p'Z)
and

0(aord,min ¢ord,sub
HOGerimin gty
_ . 0/ A~ord,min ord,su
= thT"—jVH (X 0o vy € (ny).p)

TL,UP( )7:0
. . 0 ord ord,sub
= th”WA H (%n,UP(N),A7 gUp(N),A,p)

They are smooth G, (A*)°"%*_-modules with

HO(Xsrd,min’ gsrd,sub ® Z/prZ>Up(N1) _ HO(Xord,min , gord,sub ® Z/prz)

n,Up(Nl,NQ Up(Nl,Nz),p

and

ord,min ¢ord,su ord,min ord,sub
HO(:{n d, 75[) d, b)UP(N) — HO('/{TL’UP(N)?(C:UP(N),'D)'

(Use lemma ) Note that there is a G, (A>)"4*_equivariant embedding
[_I()<%$er,min7 S;)rd,sub) ®Zp Z/prZ SN HO(xrcL)rd,min’ g[())rd,sub ® Z/prz)

Finally set
Ho(xord,min7 ggrd,sub)@ _ HO(:{Ord,min’ ggrd,sub) ®Zp @]”

a smooth representation of G,,(A>)°d:x.
We record the following result from [Lad].

Lemma 5.5. If p is a representation of Ly, (n) on a finite locally free Z,)-module then

. . sub ) ~ .
there is a unique system {EUP(N17N2)7P} of OX:;%(NLNQ) torsion free coherent sheaves

with G, (A>) > _action over {X:Ln(ijlp(Nl Nay} with the following properties.

(1) {gSUL;’?Nl,Nﬂ,p} pulls back to {glsfupb(Nl,Nz)vf)(@z(p)Q} on {XTrLrjil?p(Nl,Nz)};

su rd,sub rd,min .
(2) {gUkaNl,NQ),p} pulls back to {gl(}l’(]s\thg),p} on {X;UP(N17N2)},

(3) if U? is a normal subgroup of (UP)" and if g € (UP)'(Ny, Na) then

. _x osub ~_ esub .
g . g gUp(Nl,NQ),p — gUp(leNQ)vp’

(4) if UP is a normal subgroup of (UP)" then

sub ~, sub UP)' (N1,N>).
S(Up)/(NhNQ)’p — <7TUP(N{7N2)7(UP)’(N17N2)7*EUP(N{,N2)7P>( ) (N1 2),

(5) {SISJI;}ENl,NQ),p®/\"[FIQ]Sth} = {WUP(Nl,Nz) ® glsflllf’lle,Ng),p}'
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Proof: For the definition of 5?]%]%N1,N2), , see definition 8.3.5.1 of [Lad]. For the

O amin, )—torsion freeness see corollary 8.3.5.8 of [Lad]. For the G,,(A>)°"4*_action
7, 1,4V2

see corollary 8.3.6.5 of [Lad]. For part one of the lemma see lemma 8.3.5.2 of [Lad].
For the second part see corollary 8.3.5.4 of [La4]. The third part is clear. For the
fourth part see proposition 8.3.6.9 of [Lad], and for the final part see lemma 8.3.5.10
of [Lad]. O

We will write O o) (log 00) (resp.

n U,z
sheaf Q' A e (log M) (resp. Q
U,z

{Qiﬁm) (logoo)} (resp {Ql

n,U,2

A X, ’U/’A(log o0)) as shorthand for the

Xy (log Ms/Ma)). Then the collection
n U >z
) /X (log oo)}) is a system of locally free sheaves

(for the Zariski topology) Wlth Gn ( *)-action.
There are natural differentials

d: QAW (log >0) — Qf:(}n) (log o0),

n,U,2 n,U,%

(resp. A
d: (log 00) — Qj(}n) N (log 00))

(M)
Ay Z/XH,U’,A n,U,n/*n, U’ A

making ° .., (log o0) (resp. Q° (log >0)) a complex. The tensor product

n U,s (m) /X U A .
QAT&E(Iog o) ®IaA£:22 (resp. 95 A A(log o0) ® IaA;@E) is a sub-complex.
Lemma 5.6. (1) If (U, %) > (U, A) > (U", A") then the natural morphism
QA<m> ) o/ X o (logoo) = QA<m> D /X 01 (log o0)

is an isomorphism, so we will simply write QL(m) /
n,U, 2
(2) If (U, YX) > (U, X) then

W?U’,E’),(U,E)Qz(m) (log c0) = Q! 40m) (log 00)

n, U, n u’,s!

X(log o0) for this sheaf.

and
s Ql m log oo _> Q m log 00).
T =,U%) Afl![}’z/X( g o) AT E,/X< 8.o0)

(3) If (U,%) > (U', A) then there is an ezact sequence

(O) — W(U,E),(U',A)QX%U/’A (10g OO) — le4<m) (log OO) — Q (log OO) — (0)

A(m) /X

(4) Suppose that (Uy,3q) > (Ug, X9) > (U', A), and that U’ is the image of both
Uy and Uy in G, (A>). Then the natural maps

m (log OO) — Riﬂ—A(m),tor Xtor Q m (log OO)
ALI}Q o/ X [X Aﬁll}l SR

7
R TA(m),tor/Xtor’*Q

and
log 0o L. (m
a, o x108%0) 8Ty )

— RiﬂA(m),tor/Xtor’*<Q (m) (log OO) ® I A(m )

nU1 21/ n,Up,¥1

Riﬂ-A(m),tor/Xtor,* (Q



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 187

on X, v A are tsomorphisms. We will write simply

(Riw*QJA(m)/X(log Oo))(U’,A)
and A
(R () (108 00) @ Ty p0m ) (0r,2)
for these sheaves. ’
(5) {(RiW*QJA(m)/X(lOg OO))(U’,A)} and {(Riﬂ*(QJAm)/X(log OO)®IaA<m>))(U’,A)} are

systems of coherent sheaves with G\ (A>)-action over {X, u.a}. Moreover
the maps

g g* (RiW*QQ(m)/XGOg OO))(U’,A) — (RiW*QQ(m)/X (log OO))(U”,A’)

are 1somorphisms.
(6) The el (A>)-actions on both the systems

{(RiW*Qi;(m)/X (log 00))wr.a)}
and ‘ A
{(R'7 () () (I0g 00) @ Ty aem) ) (7, }
factor through G, (A>).
(7) The pull-back of (W*th)/){(log o)) (w.a) to Ti:?i)’whflmp:(i)(AW)A(h)O is is0-
morphic to

1
W(U/,zo),(hUhflmp;(i)(Aw),A(h)o),*QTm),n,A T (log 00)
’ n,(9),U’,5q n,(i),hUh*lﬁP:[(”(AOO),A(h)O

for some U’ and Y.

Proof: This follows from the properties of log differentials for log smooth maps (see

section . For part [4) we also use lemma . For part @ we also use the discussion
of section [3.4] and a density argument. [

The next lemma follows from lemma .10l

Lemma 5.7. (1) The natural maps

(1 x (log 00)) w2 B0, , Opy - = Lyomy (108 00)

are G&™ (A>)-equivariant isomorphisms.
(2) The natural maps
(N (1.2 (108 00))07,2)) © (RO g )wrr,) — (BT (l0g 00) ) w7,
and
(N (W*Qz(m)/x(log 00))(w,a)) @ (R0 g ) w7,0) @ Lox, 0 4
— (Rlﬂ*(Qi‘(m)/x(log o0) ® IaA(m)))(U/7A)
are G, (A>)-equivariant isomorphisms.
(3) (W*Qz(m)/x (logo0))w.a) is a flat coherent Ox, , ,-module, and hence locally
free of finite rank.
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Next we record some results from [La2] and [Lad].

Lemma 5.8. (1) There are natural G,,(A>)-equivariant isomorphisms

HomF(Fm, Qn,U/,A) — (W*Q;W/Xn (log OO))(U’,A)-
(2) The cup product maps
AN (R0 g0m ) wr.8) — (RO q0m) ) 07,0)

are G, (A>)-equivariant isomorphisms.
(3) There is a unique embedding

Enura = (RlW*Q}L;(m)/X(lOg OO))(U’,A)
extending
Ean/ — (Rlﬂ*Qz(m)/X)U/.

It is G,,(A>)-equivariant.
(4) The composite maps

Hom ((W*Qz;’”)/xn
— Hom ((m.Q}, . (Iogoc))wa),
(TS 1x, 108.00))@wr.8) @ (R0 40m) (U"A))
tr

— (Rlﬂ-*OA(m) )(U’,A)

(log 00))(wr,a)s En,ur,A)

are G, (A>)-equivariant isomorphisms.
(5) The boundary maps

Qnpra — RIWA“)/K*(WZ<1>/XQ§(”,U,,A(10gOO))
~ 1

= anyU,,A(log o0) ® Hom (2, 7. As Znvr.a)

associated to the short exact sequence of part 3 of lemma gie rise to
1somorphisms

S Quura) — Q}(mU,’A(log 0) ® Z, 17 A

(6) There are G, (AP x Z,)-equivariant identifications between the pull-back of
wy from X7 to Xnua and wya.

Proof: For the first four parts see theorem 2.15 and proposition 6.9 of [La2] and
theorem 1.3.3.15 of [Lad]. For the fifth part see theorem 1.3.1.3(4) of [Lad]. For the
sixth part see propositions 2.2.1.2 and 2.2.3.1 of [Lad]. O

Corollary 5.9. There are equivariant isomorphisms EFA ks = 04

Xova (log0o). (See
section for the definition of the representation KS.)

Lemma 5.10. Suppose that U is a neat open compact subgroup of Gim (A>) with
image U’ in G, (A>). The coherent sheaf Q’”A(m) (log 00) admits a decreasing filtration

n,U,X

by local direct summands File”A(m) (log 00) with
n,U,%
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. FﬂOQT(m) (log oo) = " " om) (log 00),

n U,z n U,z
o Fil™1Qr Tim (logoo) = (0),
n U,z
e and griQ)" "o (log o0) = (WZWMOVXWQ&” o 1 (logoo)) ® Q /X(log 00).
n U,z T UZ

This filtration is G,,(A>)-equivariant.
Moreover there are representations pll,. of Ly () such that there are G,(A>)-

equivariant isomorphisms

b
R'T y(m), tor / xmin 8T QA(m) (log 00) ® ZaA("g ~ Elsj‘j g
n, U, n,U,2 Pmisr

Thus there is a spectral sequence with first page

Ei’] (c;sub = Ri+j7TA(m),tor/Xmin *(Q;(m) (log Oo) ® I A(m) )

Ul7 2nj'r ’ n,U,% n,U,2
This spectral sequence is G, (A>)-equivariant.

Proof: Using part [2 of corollary [5.6) and parts [1] and [2 of lemma[5.1], we may reduce
to the case that there is a cone decomposition A compatible with . The first

assertion now follows from part [3| of lemma |5.6]
For the second assertion, note that by lemma [5.7| we have that
(N, ,(log00)) @ (N (182 x (log 00)) 1 )
®(R WA(m) tor/Xtor *OA('m) )(U’ ) ® IBXTL,U/,A
— RlﬁA(m),tor/Xtor7* (ﬂ-z(nb),tor/Xtor Qg{n,U’,A (log OO) Qr (T‘zl) X (log OO)

nUE

n, U/ ,A

Combining this with parts I I I 4 and 5| I 5| of lemma we find representatlons pmr
such that there are G,,(A>)-equivariant 1somorphlsms

~ csub
R T A(m) o xtor 4 &T QA;mz}z(log 00) ®I@A£:,RU>E o 5U, N

7pm T

The second assertion now follows from theorem [5.41
The third assertion follows from the first two. [
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5.5. Connection to the complex theory.

Lemma 5.11. Suppose that
b= (b07 (bT,i)TGHom(F,(C)) c X* (T /C)(n)
satisfies
—2n > le + ch,l
for all 7 € Hom (F,C). Then H°(X™n &£ ) 4s q semi-simple G,,(A>)-module. If

77 P(n),b

7w is an irreducible sub-quotient of HO(Xmm,E;E‘b)b), then m is the finite part of a

cohomological, cuspidal automorphic representation of G, (A).

Proof: According to proposition 5.4.2 and lemma 5.2.3 of [Ha] and theorems 4.1.1,
5.1.1 and 5.2.12 of [La3|] we have an isomorphism

HO (Xmln gsub @HOO ®H0(quO A (R)O,Hoo ®p(n),b)

) ﬂ()b

where II runs over cuspidal automorphic representations of G, (A) taken with their
multiplicity in the space of cuspidal automorphic forms.
Thus 7 = II* for some cuspidal automorphic representation II of G, (A) with

Ho(qna Ur?,ooAn(R)()? Hoo X p(n),b) 7é (0)

It follows from theorem 2.6 of [CO| that the Harish-Chandra parameter of the infin-
itesimal character of Il equals

On — 2Qn,(n) —b.
As we have assumed that
b— Q(Qn - Qn,(n)) € X*(Tn/c)+>

we see that Il has the same infinitesimal character as piQ( Moreover

Q?’L*Qn,(n)).
proposition 4.5 of [Hal tells us that

Hom g 4, =)0 (P(ny 5 sc) 7 (0).
We deduce that
Hom U’S,OOA"(R)O <p(n)’72(gn79n,(n))7 HOO ® pb 2 Qn On (n) ) # (O)

HOWeVer p(n) —2(0u—o, ) 18 the representation of UZ A, (R)® on A" Ur’p+ Thus

(n)
Hom U9 oo An(R)0 (/\[ @]n2p QR C, Mo ® pb*2(9n*9n,(n))) 7& (O)
Proposition I1.3.1 of [BW] then tells us that
HF U ((Lie G,,(R)) ®g C, Up A (R), T @ Po—2(0n—on ) 7 (0),

and the lemma follows. [
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Corollary 5.12. Suppose that
b= (bO7 (bT,i)TEHom (F,@p)) € X*(Tn/@p)z—b)

satisfies
—2n Z bT,l + ch,l

for all 7 € Hom (F,Q,). IfII is an irreducible sub-quotient of HO(X™" £ ), then

> 7 P(n),b
there 1s a continuous representation

Ry,(IT) : Gr — GL2,(Q,)
which is de Rham above p and has the following property: Suppose that v is a prime
of F' above a rational prime q # p such that
e cither q splits in Fy,
e or F and 11 are unramified above q;
then
WD(R,(I1)| G, )™ 22 recr, (BC (Iy),| det |22,

where q 1is the rational prime below v.

Proof: By the lemma :II is the finite part of a cohomological, square integrable,
automorphic representation of G,,(A). The result now follows from corollary . U
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6. THE ORDINARY LOCUS.

We will now fairly systematically drop the subscript n, as it will be fixed throughout
this section.

6.1. P-adic automorphic forms.

Let U be a neat open compact subgroup of G,,(A®? x Z,). Zariski locally on X" we
may lift Hassey to a (non-canonical) section Hassey of w®®~1 over (an open subset

of) Xpn. Although Hasser; is non-canonical,

NpM_l

Hasse;, mod p™
is canonical, and so these glue to give a canonical element
Hassey, € HO(XP™ x Spec Z/pMZ, wi P!
Again if g € G,,(A*P x Z,) and U’ D g~ 'Ug then

gHasseyr v = Hassep v

)pM—l

).

in

We will denote by wyr(ny the line bundle on .’f‘gf (]r\“[) induced by wy»(n,n7) o1 X[I}},E?N’ Ny
and by Hasseys ey the restriction of Hasses e nvy to
rd,min T _1)pM—1
HO(%OUE(’ x Spec Z/pMZ, (w[oﬂfl(N))‘@(p DPET

N)
This is independent of N'.
If p is a representation of L, ,) on a finite free Zy,-module then, for any integer 1,
there is a natural map

0 min sub ~ 170 min sub ®i(p—1)pM—1
H (XUP(N17N2)’ 5p®(/\n[F:Q]Std\/)ip]”_l(pfl)) - H (XUP(Nl,Ng)7 Ep ® wU )
ord,min rd.su
— HO(XUP(Nl,Nz)7 5/? dsub o Z/pMZ),

which sends f to

(Flaggge,, )/ Hass€h 0o v, v

These maps are G,,(A>)°"4>*_equivariant.

Lemma 6.1. For any r the induced map
@?‘;T HO()(min gsub )

UP(N1,N2)? Y e (Ny,N,), p@(APFQStdY )ipM — 1 (p—1)
0 ord,min ord,sub M
r (X (v, vy Eom vy p © L/ L)
18 surjective.

Proof: The proof here follows standard lines. As far as we know the argument
originated in [Katzl]. For the properties of A" see section [5.1]

To simplify the formulae in this proof, for the duration of the proof we will write
U for Up(Nl,NQ).

Multiplying by a power of Hassey;y we may replace p by

p ® (An[F:Q}Sth)tpM*I(p—l)
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and r by r —t for any ¢. Thus, using the ampleness of wyy over X" we may suppose
that

(g, €50 © W) = (0)
for all 7« > 0 and 7 > 0. We may also suppose that » < 0. Then we may replace r by
0.

d,mi
Because A7 ™™

x Spec Z/p™7Z is a union of connected components of

—min,n-ord

Y = X2 x SpecZ/pM7 — X,

it suffices to replace Xgrd’mm x Spec Z/pM7Z by V.
Now we need to show that

@ HO(XP™, €50 @ wd @7 5 HO(D, 50 @ 2/pMZ),

under the assumptlon that
HY(X5™, €57 @ wif') = (0)

for all « > 0 and j > 0.
The scheme Y is relatively affine over X7 corresponding to the sheaf of algebras

(@ w?ij_l(p*l))/(HasseM,U —1,p").

Hence

(y gsub) < mln, <@ glsfu[})) X w U Ml(p_Dj) /(HaSSGM’U - 1’pM)>

and the map
P 1o, b 0 w0 ) s B, E @ 7V )
is induced by the map
éé}sju;’ ®w®j(p DA (é 5(5]“;’ ® ?pM - 1”)/(Has.seMU —1,p™)

Jj=0 Jj=0

of sheaves over A"".
Because

H'(X™, 5% @ wy”) = (0)
for all « > 0 and j > 0, we see that
HO(XP™ &0, @ wy?) @ Z/pMZ — H (5™ €5 @ wy’ @ Z/pM Z)
for all 7 > 0, and
H'(X™, &% @ wy @ Z/pMZ) = (0)
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for all 7 > 0 and 57 > 0. Thus it suffices to check that

H° <Xmm D & @ oJU TNl g Z/pMZ>/ (Hassepr i — 1)
l
. M-—-1 .
HO (2, (@52, &b o™ " @ 2/pMZ) (Hasser — 1))

is surjective. This follows using the long exact sequence in cohomology associated to
the short exact sequence

Hasse
0) = @ & owy TV ez T
h)

Doy ow” e g 7/ —
(@] 0 &Y ®wU Tebig Z/pMZ) /(Hassep v — 1) — (0)

and the vanishing
i (s @z oV o2z .
j=0

OJ

Let S denote a finite set of rational primes containing p and all rational primes ¢
which are both non-split in Fj and ramified in F'. Also choose a neat open compact
subgroup

U? = Gu(Z5) x UL C Go(A™P).
Suppose that v is a place of F' above a rational prime ¢ € S and let ¢ € Z. There
is a unique element ¢ in the Bernstein centre of G(Q,) such that

e 1 acts as 0 on any irreducible smooth representation of G,, (Q,) over C which
is not a subquotient of an unramified principal series;

e on an unramified representation II, of G,,(Q,) the eigenvalue of £ on 11,
equals trrecp, (BC (I1,),| det | ~>/%) (Frob!).

(See [BD].) Multiplying t§) by the characteristic function of G, (Z,) we obtain a
unique element 75" € ClGn(Zy)\Gn(Q,)/Gn(Z,)] such that if TI, is an unramified
representation of G, (Q,) and if T{" has eigenvalue tg,)(l_[ ) on 115" then

trrecy, (BC (IT,),| det |1 72)/2) (Frob! ) = ¢((IT,).
(See [HT].) If 0 € Aut (C) we see that o =T, (Use the fact that
“recp, (BC (I1,), | det |(1=2"/2) 2 vecp, (BC (°T1,), | det |(172/2).)

Thus
T € Q[Gn(Zg)\Gn(Qq)/Gn(Zy))-
Choose d\) € Q* such that

)T € ZGn(Z)\Gu(Qy)/Ga(Zy)).
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Suppose that ¢ € S is a rational prime. Let uy,...,u, denote the primes of F'*
above Q which split u; = w; “w; in F, and let vy, ..., v, denote the primes of F'™ above
g which do not split in F'. Then under the identification

Gu(@,) = [[ GLan(Fu) x H
=1

of section , the Hecke operator Tl(u,li) is identified with the double coset
G(Zq)aiGn(Zy),

where a; € GL,(F,,) is the diagonal matrix diag(1,...,1,w@,,), and we may take
dy) =1.

We will call a topological Zp[Gn(is)\Gn(AS)/Gn(ZS)]—algebra T of Galois type if
there is a continuous pseudo-representation (see [T])

T:G3 —T
such that
dDT (Frobl) = 6(dDTD)

v

for all v|¢g € S and all i € Z.

Let TUP(N N»),, denote the image of Z,[G Go(Z5)\G,(AS) /G (Z5)] in the endomor-
phism algebra End (H O(XL‘}}}“NI N2) ,E5™)), which is also the image in the endomor-
phism algebra End (H°(X{ly, vy E5™))-

Lemma 6.2. Fort sufficiently large ']1" 1s of Galois type.

UP(N1,N2),p@(AnFQStdY )®t
Proof: Write
pe = p @ (AMFUSEAV)®t,
It suffices to show that there is a continuous pseudo-representation
T: Gy — Toonnmgp @ Qp
which is unramified outside S and satisfies
T(Frob!) = T¥

for all v|g € S and all ¢ € Z. (Because T" will then automatically be valued in
’]Tgp( NyNa)per DY the Cebotarev density theorem. Note that if v is a prime of F split

over '™ and lying above a rational prime ¢ ¢ S, then
1
T(Frob,) = T" € T{u(ny Ny).po-)
We may then reduce to the case that p® Qp is irreducible. Let
(bo, (b)) € X*(T0/Q,) 5

denote the highest weight of p ® @p.
Suppose that ¢ satisfies the inequality

—2n > (byy —t) + (bre1 — 1).
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By lemma [5.11],
S n ~ o)
TUP(vaNQ)vpt ® Qp - @Qp
1Is

where the sum runs over irreducible admissible representations of G,,(A>°) for which
there exists an irreducible admissible representation IIg of [],.q Gn(Q,) such that

I1° ® Ilg occurs in HY(X™" x SpecQ,, £5°) and (I1° ® I1g)V"M:N2) o£ (0). Further,

P~ pt
from corollary |5.12 we deduce that there is a continuous representation

r: Gp — GLon(Tn(ny No) e © Q)
such that if v|g & S then r is unramified at v and
trr(Frob!) = T
for all + € Z. Taking T" = trr completes the proof of the lemma. [J
If
W HO (%?Jrg(r;;n7 ggrd,sub)
(resp.
W HO(xordmin - gordsub o 7 /M7y

UP(N1,N2)’ “p
is a finitely generated Z,-submodule invariant under the action of the Hecke algebra
Zy|Gu(Z7)\Gn(A%) ) Gu(Z7)],
then we will let T (]SV/)\ ,(W) (resp. T‘gf/(’\f,h N2),p(WW)) denote the image of the abstract
Hecke algebra Z,(G,,(Z°)\G,(A®)/G,(Z°)] in End z,(W). The next corollary follows

from lemmas [6.1] and
Corollary 6.3. If

ord,min ord,su
W C HY(X vy E50 © Z/pMZ)

is a finitely generated Z,-submodule invariant under the action of the Hecke algebra
Ly|Gu(ZON\Gu(A®) /G (Z7)),

ord,S . .
then Tiro(n, ny) (W) is of Galois type.

We deduce from this the next corollary.

Corollary 6.4. If
ord,min gord,su
W C H (X iy €5
is a finitely generated Z,-submodule invariant under the action of the Hecke algebra
Ll Gu(ZO\Go(A®) )G o(Z7)],

then "JI“[)]I”S(’JS(,LP(W) is of Galois type.

Finally we deduce the following proposition.
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Proposition 6.5. Suppose that p is a representation of Ly, ) over Zy. Suppose
also that 11 is an irreducible quotient of an admissible G,,(A%)"* _sub-module I1' of
H 0(%°rd’mi“,5§rd’s‘lb)@p. Then there is a continuous semi-simple representation

RP(H) : GF — GL2n<Qp)
with the following property: If 11 is unramified at a rational prime q # p (in the sense
of sectz'on and if v|q is a prime of F, then
WD(R,(ID)]ay, ) 2= recr, (BC (IL, ), | det [{27)/2).

Proof: Let S denote the set of rational primes consisting of p and the primes where

F or II ramifies. Also choose a neat open compact subgroup
U? = Go(Z5) x U?,
and integer N such that
V" ™) £ (0).

As (I')U"(N) is a finite dimensional, and hence closed, subspace of the topological
vector space HO(Xcrd:min Sord’s“b)@p preserved by Z,[G,(Z°)\G,(A%)/G,(Z°)] and,

1
as there is a Z, |G, (Z°)\Gn(A%) /G, (Z%)]-equivariant map (IT')V"™) — TIV"(V) there
is a continuous homomorphism

0+ T, (1)) — @,

which for v|q & S sends T to its eigenvalue on I197(%4) . Proposition now follows
from the above corollary and the main theorem on pseudo-representations (see [IJ).
0J

We remark that we don’t know how to prove this proposition for a general irre-
ducible subquotient of HO(X°rdmn, £214WP)5  (or indeed whether the corresponding

statement remains true).
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6.2. Interlude concerning linear algebra.

Suppose that K is an algebraic extension of Q,. For a € Q, we say that a polynomial
P(X) € K(X) has slopes < a if P(X) # 0 and every root of P(X) in K has p-adic
valuation < a. (We normalize the p-adic valuation so that p has valuation 1.) If V' is
a K-vector space and T is an endomorphism of V', then we say that V' admits slope
decompositions for T, if for each a € QQ there is a decomposition

V=V, Ve,
with the following properties:
o T preserves V<, and V5 ,;
o V., is finite dimensional;
e if P(X) € K[X] has slopes < a then the endomorphism P(7") restricts to an
automorphism of V< ;

e there is a non-zero polynomial P(X) € K[X] with slopes < a such that the
endomorphism P(7") restricts to 0 on V,.

In this case V<, and V-, are unique, and we refer to them as the slope a decomposition
of V with respect to T.

Lemma 6.6. (1) If V is finite dimensional then it always admits slope decompo-
sitions.

(2) If K is a finite extension of Q,, if V is a K-Banach space, and if T is
a completely continuous (see [Se]) endomorphism of V' then V admits slope
decompositions for T'.

(3) Suppose that L/K is an algebraic extension and that V is a K vector space
which admits slope decompositions with respect to an endomorphism T. Then
V ®k L also admits slope decompositions with respect to T.

(4) Suppose that Vi admits slope decompositions with respect to Ty ; that Va admits
a slope decomposition with respect to Ty; and that d : Vi, — V5 is a linear map
such that

doTy =1T50d.
Then for all a € Q we have
d‘/l,ga C ‘/Z,Sa

and
d‘/l,>a - ‘/2,>a-

Moreover kerd admits slope decompositions for Ty, while Imd and cokerd
admit slope decompositions for Ty. More specifically

(kerd)<, = (kerd) N'Vi <,
and
(kerd)s, = (kerd) NV} 54

and

(Im d)Sa = Vl,éa/(ker d)Sa
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and
(I d) e = Vi o/ (Ker d),
and
(cokerd)<q = Vo <o/(Imd) <,
and

(coker d)=q = Vo o/ (Im )=,

(5) Suppose that
VicVo,CcVaC....CVy

VOO—QV;.

Suppose also that T is an endomorphism of Vi such that for all © > 1
TV, C V;_4.
If for each i the space V; admits slope decompositions for i, then V., admits

slope decompositions for T .
(6) Suppose that

are vector spaces with

0) — Vi —V — Vo — (0)
15 an exact sequence of K vector spaces and that T is an endomorphism of V
that preserves Vi. If Vi and V4 both admit slope decompositions with respect
to T, then so does V. Moreover we have short exact sequences
(0) — Vi<ca — Vo — Vocu — (0)
and
(0) — ‘/1,>a — V>a — ‘/2,>a — (0)

Proof: The first and third and fourth parts are straightforward. The second part
follows from [Se].
For the fifth part one checks that V; <, is independent of 7. If we set

Voo,Sa = ‘/i,ga

for any 7, and

oo>a U‘/;>a7

then these provide the slope a decompos1t10n of V., with respect to T.

Finally we turn to the sixth part. Choose non-zero polynomials R( ) € K[X]
with slopes < a such that Pi(T)V; <, = (0), for i = 1,2. Set P(X) = Pi(X)P(X).
Also set V<, = ker P(T") and V-, = Im P(T"). We have complexes

(0) — Vise — Vou — Vouu — (0)

and

(0) — Vi<a — Vo — Voo — (0).
It suffices to show that these complexes are both short exact sequences. For then we
see that, if Q(X) € K[X] has slopes < a, then the restriction of Q(T) to V5, is an
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automorphism of V5,. Applying this to P(T"), we see that V<, NV, = (0). Moreover
V<o + V5, contains Vi and maps onto Vs, so that V =V, + V<.

To show the first complex is short exact we need only check that V; -, = V5, NV,
i.e. that V) <, NV, = (0). So suppose that v € V; <, N V5,. Then v = P(T)v" and
Py(T)v = 0. Thus P(T)*Py(T)v" = 0 so the image of v’ in V5 lies in V5 <, and so
Py(T)v" € Vi, and in fact Po(T)v' € V) <,. Finally we see that v = P (T)Py(T)v" = 0,
as desired.

To show the second complex is short exact we have only to show that V<, — V5 <,
is surjective. So suppose that v € V5 <, and suppose that v € V lifts v. Then
P(T)v € Vi 5q. Set

vV =v— (P(T)|‘7117>E)P(T)v cv+ Vi,
Then v' maps to v € V5, while
P(T)Yv" = P(T)v— P(T)v =0,
so that v € V,. O

We warn the reader that to the best of our knowledge it is not in general true that,
if V' admits a slope decomposition for 7" and Vi C V' is T-invariant, then either V; or
V/Vi admits slope decompositions for 7.
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6.3. The ordinary locus of a toroidal compactification as a dagger space.

6.3.1. Review of dagger spaces: We first review some general facts about dagger
spaces. We refer to [GK] for the basic facts.

Suppose that K/Q, is a finite extension with ring of integers Ok and residue
field k. Suppose also that /O is quasi-projective. Let Y denote the generic fibre
Y x Spec K, let Y denote the special fibre Y x Spec k and let Y denote the formal
completion of ) along Y. Let Y2 (resp. YT) denote the rigid analytic (resp. dagger)
space associated to Y. (For the latter see section 3.3 of [GK].) Thus Y and YT
share the same underlying G-topological space, and in fact the completion (Y1)’ (see
theorem 2.19 of [GK]) of YT equals Y*". Let )} denote the rigid analytic space
associated to V", its ‘generic fibre’. Then yg is identified with an admissible open
subset |Y[C Y. We will denote by V' the admissible open dagger subspace of Yt
with the same underlying topological space as ]Y7.

To a coherent sheaf F/Y one can associate a coherent sheaf F'/YT and hence
Fi / V. The functor F — FT from coherent sheaves on Y to coherent sheaves on YT
is exact.

Lemma 6.7. If Y and Y' are two quasi-projective O -schemes as described in the
previous paragraph and if f 1Y — V' is a morphism, then there is an induced map
frar— (7.

If further f : Y 5 Y
1somorphism.

and f is etale in a neighbourhood of Y then fT is an

Proof: The first part of the lemma is clear.
For the second part, let Y — P and )’ < PY. be closed embeddings. Let P’

denote the closure of )’ in IP](‘Q/II; Also let P denote the closure of Y in Py X ]P’%I;
Then f extends to a map P — P’. The second part of the lemma follows from
theorem 1.3.5 of [Bertl] applied to Y ¢ P and Y C P’. O

We will let Hfig (Y) denote the rigid cohomology of Y in the sense of Berthelot—see

for instance [LeS].

Lemma 6.8. (1) If YOk is a smooth and quasi-projective scheme, then there is
a canonical 1somorphism

Hp, (V) = H (DY, 93,0).
(2) If f: Y — Z is a morphism of smooth quasi-projective schemes over Oy then
the following diagram is commutative:

i (77 fr i (V
Hrig(Z) — Hrig<Y)
oo T
H(21,Q3) 5 HQL0).
Proof: For the first part apply theorem 5.1 of |[GK] to the closure of ) in some
projective space over Ok. For the second part choose embeddings i : Y — IP’%K and
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'+ Z < PY . Let P’ denote the closure of Z in P} and P the closure of Y in
]PAO/[K x P’ so that f extends to a map P — P’. The desired result again follows from
theorem 5.1 of [GK], because the isomorphisms of theorem 5.1 of [GK] are functorial
under morphisms of the set up in that theorem. [

[It is unclear to us whether this functoriality is supposed to be implied by the
word ‘canonical’ in the statement of theorem 5.1 of [GK]. For safety’s sake we sketch
the argument for this functoriality. More precisely if f : X} — A5 is a morphism
of proper admissible formal Spf R-schemes which takes Y7 C & to Y5 C Xy, then
we will show that the isomorphisms of theorem 5.1 of [GK] are compatible with the
maps in cohomology induced by f. For part (a) we also suppose that we are given a
map f*If*F2—>F1.

Using the notation of part (a) of theorem 5.1 of [GK], it suffices to show that the
diagram

HY(Xy, Faox,) - HY(X),Fix,)

\J \J
HY(V sl j1F3) - HUY 1[0 j3F3)
commutes. (The functoriality of parts (b) and (c) follow easily from the functoriality
of part (a).) The vertical morphisms arise from maps L; — K} of resolutions of
the sheaves Ri,Fy x, and j};]:,g respectively. To define these resolutions one needs to
choose affine covers {Y};} of Y. We may suppose these are chosen so that f carries
Y1, to Yy, for all i. Then L; and K}, are the Cech complexes with

Li = @ irnFivisl,
#J=q
and
Klg = @ jli,JFI/c'
#J=q
The maps L} — K} arise from maps

(152 Fivi s, )(U) 2 Hm F (V) — lim F (V' N U) = (G, F)O).

Here V runs over strict neighbourhoods of UN]Y;, s[x, in ]Y x[x, and V’ runs over strict
neighbourhoods of Yy s, in |Yx[x,. The first isomorphism is justified in section 2.23
of [GKJ]. The second morphism arises because, for every V, we can find a V' so that

V'nU cV.
It suffices to show that if fU; C U,, then the diagrams

(ireFopyasin,) D)z 25 (@rFipyyin ) (U)

) )
GLrw) S GhFEo

are commutative. But this is now clear.|
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Lemma 6.9. Suppose that f : X — Y is a proper morphism between Q,-schemes
of finite type and that F/X is a coherent sheaf. Denote by f1 : XT — YT the
corresponding map of dagger spaces and by F' the coherent sheaf on X1 corresponding
to F/X. Suppose also that V is an admissible open subset of Y1 and that U is its
pre-image in X'. Then

R (fMo)o(FHo) = (R £.F) v,
where (R f,F)1 denotes the coherent sheaf on YT corresponding to (R f,.F)/Y .

Proof: It suffices to check this in the case V = Y. There is a chain of isomorphisms
[(RFF)]™ = (REF)™ = RUFSF™ = (RULFH™.

The first arrow is the transitivity of dagger and rigid analytification. The second

arrow is theorem 6.5 of [K&]. The third arrow is theorem 3.5 of [GK]. Since YT is

partially proper, theorem 2.26 of |[GK] implies that there is a unique isomorphism
(R f,.F)T = R fIFT which recovers the above map after passage to rigid spaces. [J

6.3.2. The ordinary locus as a dagger space: Now we return to our Shimura and
Kuga-Sato varieties.

If U? is a neat open compact subgroup of G%m)(Aoo’p), if No > Ny > 0 and if
(UP(Ny, No), X)) € Jmhtor e will write

(m)70rd71—
AUP(Nl ,NQ),E
(resp.

(m),ord,t
a'/AlUp Nl,Nz)

resp.

(m),ord,T
a[c] ‘AUP (N1,N3),%

for [o] € S(UP(Ny,N;),X)) for the dagger space associated to AUZf)(]f,rdNQ)E (resp.

&487; )ord ).+ Tesp. 8[0.],45]": ]?,deQ) «») as described in the paragraph before lemma .
For s > 0 also write

s) p(m),ord,t o (m),ord,f
)AUP N1 N2) D H a AUp(Nl Ng) by
[U]GS(UP(NI,NQ),E)
dim [o]=s—1
and i for the finite map

S)Agjn; ordT . — aA(m),ord,T R A(m ,ord,t

Na), UP(Ni1,N2), UP(Ny,N2),5"
e st (m),ord,t (m),ord,t
0 m),ord, o m),ord,
8( )AUP(Nl,NQ),E - AUP(Nl,NQ),E
and

;(0) —
7 1A(TIL) ord,t

UP(N1,N3),%

Then the various systems of dagger spaces {A(}Zzﬁjdjk <} and {8./482 ]f,jd]\k =t and

{0 ).AUP( ](\),jd]\T,Q) } have compatible actions of G (Ae)ord,
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If Nj > N, and if ¥’ is a refinement of ¥ with 3¢ = (3/)°*¢ then the natural map
(m),ord (m),ord
‘AUP(N1 Nj), %! — 'AUP(Nl N3),%
restricts to an isomorphism

(m),ord —(m),ord
Apr(n, N33 — Ayr(Ny,N2),©

and is etale in a neighbourhood of AUWZ ]S,rdN,) sv. It follows from lemma . that

(m),ord, (m),ord,}
AUP(Nl,Né) I ‘AUP(Nl N3),%

is an isomorphism. We will denote this dagger space simply

(m),ord,t
AUp(Nl) yord*
Similarly 8.AUp ;\),rd]\k x and 9, .AU? ]f,jdjvz x and o AUn; ;rd]j, depend only on the
group UP(N;) and ¥°¢ and we will denote them OA,; m) ord, ;Ord and 8U]AUPU(\),rd ;md

and 9© AT respectively. Tf lo] & S(UP(Ny), Eord)ord then

UP(Ny),sord
(m),ord,t .
a[ }AUP(N1 yord 0.

Thus for s > 0
s) A(m ),ord z;rord _ H a[a A(m ),ord gord

[U]GS(UP(N),EOYd)Ord
dim [o]=s—1

The three projective systems of dagger spaces {A, (m), Ordgord} and {8AUmp)( ;r)dgord} and
{0 S)A Ordgord} have actions of G4™ (A™)°rd,

We will write Z{?TUP A for 91 OrdT
if A4 and ¥° are compatlble then there are maps

(m),ord, T ord,}
AUP(N Sord — X(Up) (N) Aord*

These maps are G;lm) (A>)*d-equivariant (as UP, (U?)" and N vary).
We will write Qi‘(m) orat (log 00) (resp. Qil(m)’ord,f(log 00) ® T, ymy.ora 1) for the locally

. If (UP)" contains the projection of U? and

UP(N),= UP(N),s UP(N),s
free sheaf on Al}zzﬁrd; induced by €’ ? omyord (log 00) (resp. Qit(m”ord (log 00) ®
UP(N N’), UP(N,N'),s’
Z, moa ) forany N’ > N and ¥ € T with (¥/)ord = 3. This is canonically
OAyp (NN,
independent of the choices of N" and ¥'. The systems of sheaves {Qf4 (my.ora.1 (108 00) }
UP(N) 2
and {0/ A, ora; (log 00) @ T DAL ord]‘} over {AUP OrdT} have actions of GU™ (A%)erd,
UP(N) 5
For g € G\" (AOO)Olrd the map
*Qil(m) ord,{ (1Og OO) — Qi‘(m),ord,f (log OO)
(UP)(N'), %! UP(N),=

is an isomorphism.
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(m),ord,t

We will also write Qg for the sheaf of j-forms on G(S)AUP (N)% - The system

: ),ord, t
(Q)Agjrg(zc\)z),z:

j (m),ord,’[ 3 (m) d
{QQ(S)ASZ(%@} over {O(S)AU,,(NLE} has an action of Gy, ' (A>)°™.
Furthermore if p is a representation of L, (,) on a finite dimensional Q,-vector

space, there is a locally free sheaf 55?2;,) A, (T€Sp. Els}i,}?]i,)’ A,p) OL X{}ﬁ,‘%}h A induced by

Eo(n N1y A (TESD- SIS]‘;'[EN7N,)7A,7/)) for any N’ > N and A’ € J'" with (A)od = A.
This is canonically independent of the choices of N’ and A’. The systems of sheaves
{Eéilz}t,)A,p} and {55;%12),&& over {XSZ%}TV),A} have actions of G,,(A*)°. There are
equivariant identifications

sub,t ~ ccan,f
Eninyan = Eurinan @ Iaxg;i’}v),g

. . . ord,t
where Iax{};,d('j\, . denotes the sheaf of ideals in OXE?}’L . defining 9, ) A~ For

g € G,(A>®)°d the map

. % eocan,T can,}
99 Ewryvn,ane — Eurnyan

is an isomorphism. (Because the same is true over Xys(v n/)a and hence over

T
Xipvnn.ar) ' ‘
We define H(AMordt (i(log oo) ® T) to be
lim Hi(A™ 0F  (log00) @ L., yomyer,
o Aran 5 8y (108.00) © Lo yrporas)

and H'(0®) Am-erdt Q7Y to be

. i s ,ord, j
lim H (3( )Ag‘gzj\)f%E ) Q]a(S)A(m),ord,T)

H
UP,N,© UP(N),S
and HO(XordT, £50) to be
. 0 ord, sub,f
1&“ H (XUP(N),A75UP(N),A,p>‘
UP,N,A

They are all smooth G,,(A>)°"4-modules.

Lemma 6.10. There are natural i.somorphisms

i m),ord, j
H (Agjpzﬁ),g, Qi‘(m)’ordﬁ (1og OO) & IaA(m),ord,T)

UP(N),= UP(N),%

=5 HI(AMer 0i(log 0o) @ T)U" )

and

ord, sub, ~ ord, u
HO (X0 a0 ity ap) — HO(XO, £500) 07,

Proof: Use lemmas 5.7 .3l and [6.9 O
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6.3.3. The Frobenius lift 5, and tr p: The inverse of ¢ gives maps

J ~ J
gp,*QA(m),ord,T (log OO) — QA(m),Ord,T <log OO) ®O (m),O!‘d,T7§; OA(m),ord,T

UP(N),Z UP(N),% UP(N),S UP(N),%
and .
J ~
S ,*(Q Jord, (]-Og OO) ®I (m),ord,’f) —
p‘ Ag’é)&),g a‘AUP(N),E
o (log o0) ® . T
),ord,t O (m).ord.+S (m),ord,t -
Ag}g(;\}),z gp)(}vfg P TOAL Ny 8
The maps
. (m)7ord71— (m)Yord7T
[ ] gp . AUP(N)720rd — AUP(N),ZOYd’
. (m),OI‘d,T (m),ord,]‘
e and g : a(S)“LlU’f’(N),Eord — a(S)“‘lUp(z\f),zord

are finite, flat of degrees p@mtmnlF™Q apd pEmtmnlFT:Q=s pespectively. (Use the
finite flatness of
rd

. o((m),ord (m),o
o+ Ay (), sora 7 Ry () sora

and
. a(s)g(m),ord s)q((m),ord
gp : a( )mUp(N)7Zord — a( )QlUp(N)7Eord
(see section [5.3)), together with theorems 1.7(1) and 1.12 of [GK].)

As g, : Ag;)(’]%dgord — Ag’;iﬁd’;md is finite and flat we get a trace map

tI‘ Sp : §p7*0 Jord, T — OA(m),ord,T.

(m)
Aup(n),= UP(N),S

Because 8.,4%%’]3?1’; has the same support as
(m),ord,t (m),ord,t
Ago (v, X e Almordt OAG» (v 5

this trace map restricts to a map

tre 1 Goul, (myordt — L. (m)ord .
N AP (N), 2 OAyD Ny,

(This is a consequence of the following fact: If R is a noetherian ring, if S is an
R-algebra, finite and free as an R-module, and if I and J are ideals of R and S

respectively with
VJ=VIS,

then the trace map tr g/ maps J to I. To see this we may reduce to the case I = 0.
In this case every element of .J is nilpotent and so has trace 0.)

Composing (¢r) " with tr , we get G (A%)ord > _equivariant maps

trp g (log 00) — Qi‘m)mdj(log 00).

(m),ord,t
'AUP(N),E UP(N),2

and

trF LG *(QJ m).ord (10g OO) ®I (m),ord,‘i‘) — Q] m).ord (log OO) ® I (m),ord,t .
P AT 0AYP(N), AT OAYD (N),2

We have
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This induces endomorphisms

tI‘ 'a e EIld (Hz (Ag‘zz}(\)fgilg7 Q‘;(m),ord,f (].Og OO) ® IBA(m),ord,T))

UP(N),= UP(N),=
which commute with the action of G,,(A>)%>* and satisfy

trpo o= p(n+2m)n[F+:Q}‘

We obtain an element
tr p € End (H' (A9 QJ(log 0o) ® T))
which commutes with the G,,(A>)°"%*_action and satisfies
fr o, = pmt2min(Ftal

Similarly the inverse of ¢; gives maps

can,f ~ can,t
gp’*gUp(N)vAvp EUP(N)7A7P ®Oxord,1" 7§; O ord, t

Up(N),A UP(N),A
and
sub,} ~ can,f
gp,*gUp(N),A,p ’ gUP(N),A,p ®OXord, Sy Iaxgg,d(jv) A

UP(]TV),A
Composing (¢;)~" with tr, we get GY™ (A%)ord % _equivariant maps

. can,f can,f
rF s Ennyap — Eur(nyap

and

. sub, T sub,t
trF ’ gp,*gUp(N)7A7p gUp(N)7A7p‘

We have ,
trpo §; = pn [F+;Q}'

This induces compatible endomorphisms
rd, n,
trp € End (HO(X500 o Eviin o)

and

ord, sub,
tr » € End (HO(XUP(;\[/),N gUP(ZJ\r/),A,p))

which commute with the action of G,,(A>)%* and satisfy

trpo p = an[FJr:Q}‘

We obtain an element
tr p € End (H(XT, £5%))
which commutes with the G,,(A>)°"%*_action and satisfies

trpog, = pn2[F+:Q].

We remark that tr p is closely related to the operator often denoted U,: probably
they differ simply by a scalar multiple.
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6.4. The ordinary locus of the minimal compactification as a dagger space.

6.4.1. The ordinary locus as a dagger space: Suppose that UP is a neat open compact
subgroup of G, (A>®?) and that Ny > N; > 0. We will write

ord,min,

Xuw (N, Na)
for the dagger space associated to )C'gﬁ’leiI}VQ) as described in the paragraph be-
fore lemma . Then the system of dagger spaces {X;ﬁfiﬁ”}g)} has an action of

Gn (Aoo)ord.
If UP denotes the image in G,,(A>?) of (UP)" C G (A°P) then there is a natural
map

(m),ord, ord,min,}
AUP(NLNQ)?E — X(UP)I(NLNQ)'

These maps are Gi"” (A%)*d_equivariant (as (U?), N and Ny vary).
Recall from section [5.1] that, if Nj > Ny, then the natural map

ord,min ord,min
XUP(Nl,Né) XUP(Nl,NQ)

restricts to an isomorphism
—ord,min ~ ——ord,min
XUP(Nl,Né) — Xyup(ny,N)
. . . —ord,min
and is etale in a neighbourhood of X OU,,( Ny 1t follows from lemma|6.7) that

ord,min,} ord,min,
Xu(vy,Ng) 7 Xue (v N

is an isomorphism. We will denote this dagger space simply

ord,min,}
XUP( )

The system of dagger spaces {X;ﬁﬁl)inﬁ} has an action of G,,(A>)°r,

Let €y»(n,,n,) denote the idempotent in

(@ HO(YS;)IENl,Nz)J W®(p_1)i)> / (HasseUP(Nth) —1)
i=0

. . —ord,min
which is 1 on Xy, n,) and 0 on

——min —min,n-ord —min,ord
XUP(Nl,Nz) B XU”(Nl,NQ) - XUT’(NLNQ)‘

(The existence of €yr(n,,n,) follows from the results recalled in section ) Multi-
plying the terms of ey»(n, n,) by suitable powers of Hasseys(n, n,), We may suppose

——min

that eyr(n,,n) lies in HO(X i, n,), w®@~1) for any sufficiently large a, and that

EUp(Nth)/HaSSeUp(NhNQ) € HO(YI;;IZNl,NQ),w®(p_1)(a_1)).
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Then
—ord = —min “Dai _
XUP(Nl,Ng) = Spec (@ HO(XUP(N1,N2)>W®(p b ))/(eUp(Nl,Nz) —1).
i=0

For a sufficiently large we have H'(Ag0y, NQ),w@)(P*l)a) = (0). In that case we can
lift €ye(v,,nv,) to @ non-canonical element

EUP(Ny ) c HO( (%?NI,NQV(")@@_U(I)'

Let Xé“,f?NhNQ)[l/eUp(NLNQ)] denote the locus in Xy, v, where epr(ny,ny) # 0. As
w®P=1e is ample, Xio(ny o[/ €ur (N ny)] 18 affine and so has the form

Spec Z(p) [Tl, cey Ts]/[

for some s and . It is normal and flat over Lp)-
For r € p®o let || ||, denote the norm on Z,)[11, ..., Ti] defined by

1>~ a:T]|, = sup |agl,r'™,
- %
K3

where 7 runs over Z3, and |(iy,...,is)| = i1 + ... + 1., We will write Z, (T, ..., T}),
for the completion ofTZ(p) (11, ..., Ts] with respect to || ||,. Thus Z,(T1,...,Ts); is the
p-adic completion of Z, [T}, ..., T,] and also the p-adic completion of Z,(T}, ..., 1),
for any r > 1. Set Q,(T1, ..., Ts), = Z,(T1, ..., Ts).[1/p], the completion of Q[11, ..., T}]
with respect to || ||. In the case r = 1 we will drop it from the notation. We will
write Z,(T1/r,...,Ts/r)1 for the || ||, unit-ball in Q,(11,...,T}),, i.e. for the set of

power series
E CLZTZ

i€z,

where a; € Q,, and |az|, < 11 for all 7, and |a;|p7"‘z| — 0 as |i| — oo. We will also
write

Qu(Ty, ..., T) = U Q(Ty, ..., T.),.

r>1

Let (I), denote the ideal of Z,(T1, ..., Ts), generated by I and let (I)! denote the
intersection of (I); with Z,(1Ti,...,Ts),. Then (I); is the p-adic completion of I.
Moreover

Zp(Th, ... Ts)1 /(1)1
is normal and flat over Z,, and
Xpnn = Spf Zy(Ty, ..., To)1 /(1.

Note that
Z(P)[Tla '--aTs]/(va) — ZP<T17 ---7Ts>r/<<[>r7p>
for all » > 1. Thus ((I),,p) = ((I)!,p).
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We will also write (I),.q, (resp. (I);q,) for the @, span of (I), (resp. (I);) in
Qp(T1,....,Ts),. Then

SpQp(T1, ..., Ts)1/{I)1,0, C Sp Qu(T1, ---,Ts>r/<1>;@p C SpQu(T1, ..., Ts), /{I)r,

min,an

UP(N1,Na)? the rigid analytic space associated to the
) 1,N2)

scheme X{jl,}‘(lNl Ny) X Spec Q,. Thus they are normal. Also Sp Q,(71, -~-7Ts>r/<[>;~,(@p
and

are all affinoid subdomains of X

Sp Qu(Th; -, Ts)r /()10 — SPQp(Th, -+, To)r /{I)1 g,
form an admissible open cover of Sp Qu (T4, ..., Ts)r/{I)r0,- (SP Qp(T1, .. Ts)r/{I)1q,
is the union of the connected components of Sp Q,(11, ..., T§),/(I)q, which contain a
component of Sp Q, (11, ..., Ts)1/(I)1,g,- See proposition 8 of section 9.1.4 of [BGR].)
Moreover Sp Q,(T1, ..., Ts)1/{I)1,q, is Zariski dense in Sp Q, (T, ..., Ts),/(I)rq,- In-
deed
X;}I;(Nl,Nz) N Sp QP<T17 e T5>1/<I>1
is Zariski dense in Sp Q, (11, ..., Ts), /(I )rq,, Where X5\, )+ the rigid analytic space
associated to Xyr(n, ny) X Spec Q.
If 1 <7" < r then

SpQp(T1, .. To)w [{T)1r g, C SPQu(Th, .. To)r /(I) g,
and

Sp Qp{T1, ... To)r [{D )@, © SPQp(T1, .., To)r /(I )y,
and these are strict neighbourhoods. The natural maps

ir,r’ : Qp<T17 ceey Ts)r/<]>7",@p — Qp<T17 ceey Ts)r’/<l>r’,(@p
and
i;,’rl . Qp<T1, ey T5>T/<I>;‘,Qp — Qp<T1, ey T5>7"//<'[>;“/,Qp
are completely continuous. The latter is an inclusion. Moreover
(i70) " Zp(T1s oo, To)r /(D1 = Zp(Th oo, T} /(T
Also write (I)T for the ideal of Q,(T7, ..., T5)! generated by I. Thus
(0" =JDre, = Ui,
r>1 r>1
Moreover
QP<T17 e TS>T/<[>T = h_r>n QP<T17 = TS>T/<[>T,QP = h_r>n QP<T17 e T8>r/<[>;,(@p7
r>1 r>1
and
Xord,min,’[ -9 Q <T T >T/<I>1~
UP(N7) p p\L1ly -5 Ls .
(See for instance proposition 3.3.7 of [LeS|. For the meaning of Sp in the context of
dagger algebras see section 2.11 of [GK].) Thus we have the following lemma.

Lemma 6.11. X{}féfvn)in’T is affinoid.
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Suppose that pg is a representation of L, ,) on a finite free Z,-module and let p
denote py base changed to Q,. There are G,,(A%)"d-equivariant isomorphisms

HO(Xord ,min, t Esub ot ) _> HO(Xord ST Ssub St

UP(N).p M)A )"

There are also natural G, (A”)Ord’x—equlvarlant embeddlngs
ord,min, sub ord, rmn ord ,sub
HO(XUP(N) ! &y T 1p) H(X) Ur(NY  Com(NY.00) Dz Q-
We will set

ord,min su ord,min, sub
HO(X ¢ ’T’gp b)Qp (Jb%lN HO(XU”(N) T &y T )) B, Q ’
a smooth G,,(A>)°"-module. From lemma and the first observation of the last

paragraph, we see that

0/ yord,min, sub\UP(N) __ 170 ord,min, subT
HO(X e >@p = H(X5m"" Enin )g, -

There is a G,,(A>)°"4*_equivariant embedding
HO(Xord,min,T7 g;ub) SN HO(%ord ,min gord sub)@p

7 po

The coherent sheaf 5[5]‘;'3( Ny.N),p S1Ves rise to a coherent sheaf Sls};b Ny.Ny),p O the rigid

sub,an
UP(N1,N2),

space Xg;?;}? Np)- The inverse system {&

with G,,(A>)°"-action on {X(rjl;nﬁf N2)}

,} 18 a system of coherent sheaves

6.4.2. The Frobenius lift ¢, and tr p: We have a map
Syt LT, To)1 /(1)1 — Zp(Th, -, To)1 /(D

such that

e :(T3) = (T)P mod

e and there exists an 7, € p®>° such that for all j = 1,..., s the element ¢*(T;)

is in the image of Q, (T, ..., Ts)r, /{I)r, -
Thus (5;(T;) = 17)/p € Zy(T1, ..., Ts),/(I);,, and so is the image of some element
G;(T) € Z,(Ty, ..., Ts),,. We have
o, (1) = (T;)" + pGy(Th, ..., Ts) mod (I);.

This formula then defines a map ¢ : Z,[11, ..., T;] = Z,(Th, ..., Ts),, such that

Zp[Tl,...,Ts] i Zp<T17-~~7Ts>r1
{ ) {
Zp(Ti, o T /I 2 Z(Th, s Ty )

commutes. Write G; (f) > 797 [ Choose Iy € Zq such that

PG < (V)"

for all j =1,..., s and then choose ry € (1, /1) N p? with
0 <.
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If r € [1, 75 N pY we have
[l (T5) = (T3)*[l < 1.
(Because if |i| > I, then Py, 7 |, < (1/p)||G5]]s, (/r1)0 < 1, while for |i] < Iy we

have [|pg,/T7]|, < (1/p)r' < 1.) If r € (1,ro] N p® and H € Z,[T1, ..., Ty] we deduce
that
oy H = H(TP)|, < r~P[[H|».

(We only need check this on monomials. Hence we only need check that if it is true
for H; and H, then it is also true for HyH,. For this one uses the formula

< (HyH) — (HyHy)(T7) = (3 Hy — H\(T7)) (o5 Hz — Ha(T7))+
(spHy — Hy(TP))Ho(TP) + (6p Hy — Ho(T7))H1(T7).)
Hence, if 7 € (1,79] Np@ and H € Z,[T1, ..., Ts] we deduce that
g H || = [|H [0,
and so ¢; extends to an isometric homomorphism
G P Lp(T1 )17, T /7P )y — L (T0 7, ., T 7)1
Modulo p this map reduces to the Frobenius, which is finite and so
Syt LTy )17, T J1P) 0 — Zp(Th [y T /1)

is finite. (See section 6.3.2 of [BGR].) Thus we get an isometric, finite homomorphism
between normal rings

o QT To)ew /(D)o g, — Qu(Th, -, Ta)e /(D)) g,
such that the diagram

*

QT s Tohon /(D) 2 Qu(Th, o T}/ (D),

{ I
Qu(Ty, ., T /)T =2 Qu(Ty, ..., T /(D)
{ I
Qu{T1, o Tt /(Drg,  —2 Qp(Th, s T/,
commutes.
The map

S SPQu(Th, o, Te)r /{110, — SPQp(T1; s T)rr /(I )10 g,
is compatible with the map

. min,an min,an
Sp XUP(Nl,Ng) ’ XUP(Nl,NQ—l)‘

This latter map is finite, and away from the boundary is flat of degree p™*F"@ . Thus
the pre-image of Sp Q,(T1, ..., Ts)r» /(I)}5 g, has the form Sp B where B is a normal,
finite Q, (11, ..., Ts)r /(I )10 o, algebra, and we have a factorization

& QpThy eee, Tohyo /T g, — B — Qu(Th, ooy To)r [TV
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For m a maximal ideal of Qy(T1, ..., Ts),»/(I),» g, corresponding to a point of the
intersection X775y, n,y NSP Qp(T1, ..., Ti)1/(I)1 we see that

Bjm = (Qp(Th, ... Toh /(D)) /sym = (Qp(T1, .., Ta)o /(D)) Sy

Thus for a Zariski dense set of maximal ideals m € Sp Qu(11, ..., Ts)» /(I);0 g, the
map

B — @p<T17 "'7T8>T/<[>;,Qp

becomes an isomorphism modulo m. Hence for any minimal prime g of the ring
Qp(Th,s s Ts)yw /(1)1 g, We have

BKJ/@ = (QP<T17 e Ts)r/<l>;,(@p)@/@-

(Choose bases over A, /. Then this map being an isomorphism is equivalent to some
matrix having full rank. For m in a dense Zariski open set these bases reduce to bases
modulo m. So modulo a Zariski dense set of m this matrix has full rank, so it has
full rank.) As B is normal and Q,(T1, ..., ). /(I); o, is finite over B, we see that

B =Qu(Th, ... Ts)r /(1)) q,»
le.
S 'SP Qu(Th, . To)rw /(D g, = SPQu(TH, .0, Ta)o /L)y,
The sheaf SISJ‘EZ N1.N),p induces a coherent sheaf Els};kz’;{,lm on Xl g

e(ny) » Which does not
depend on Ns. It equals the push forward from any Xgi,c;’];r,l) A of the sheaf gsubt
71-

UP(N1),p°
The inverse system {5;;}2 ) p} is a system of coherent sheaves with G,,(A>)°-action

on {X;}ﬁﬁl)ﬂ} The map

. sub,f sub,T
trp: gp,*SUP(N),A,p gUP(N)yAvp

ord,t .
over A,y o induces a map

b, b,
trp: gp’*glsfl;’(fif)m — glsfl;(;/),p

over Xéﬁ}r\gi)n T This map does not depend on the choice of A and is G, (A™)ord:*-
equivariant. It satisfies

tI‘F o gp — pTL2[F+:@}‘
It induces a map

ord,min, sub,
tI‘F - End (HO(XUP(N) T7 gUP(]i.[),p))

also satisfying
trpog = pnz[FJr;@}.
We again remark that tr p is closely related to the operator often denoted U,—
probably they differ simply by a scalar multiple.
The isomorphisms
0 ord,min,f esub,} ~ 0 ord, T sub,t
H (XUP(N) ’SUP(N),p> — H (XUP(N),A78UP(N),A,p)



214 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

are tr p-equivariant. Moreover the space H°(Axordmint, S;“b)@p inherits an endomor-
phism tr , which commutes with G,,(A>)"%* and satisfies tr g o g, = pr Q)

The sheaf Sfﬁ,}z;? Ny, Testricted to the space Sp Q, (11, ..., Ts)r/ (1)} g, corresponds
to a finitely generated module E, over the ring Q,(13, ..., Ts),/(I), q,, Which is nat-

urally a Banach module. If 7/ < r then
E.,=FE, QT Tobe /1), g 1 (Qu(T1, ..., Ts>r//<[>;~/,<@p)-

Then the map F, — E,., which we will also denote z';’r/, is completely continuous.
The map tr ¢ extends to a continuous Q,(T1, ..., Ts)» /(I)}s g, linear map

t,: ET — Eq«p
for r € [1,75] N pL. We set
E' = JE,
r>1

so that

o 0 ord,min,f esub,f
E'=H (XUP(NI) ’gUp(Nl)m)'

!
rP.r

We have that tr p|g, = t.. As t, is continuous and i
see that

is completely continuous we

trp: Er — Er
and that this map is completely continuous. Thus each E, admits slope decomposi-
tions for tr r and hence by lemma so does ET and BT ® Q,.
If a € Q we thus have a well defined, finite dimensional subspace
0 ord,min, esub,} 0 ord,min,f esub,} ray
H( Xy Euniny p)a,<a © H(Xniny T Euninyp) @, Qp-
(Defined with respect to tr r.) We set

0 d,min,} by_ 1 0/ pord,min,T esub,T B
HE(xeremmt, g >Qp,§a__,1(1]rpr}NH (Ao (w) 7€UP(N),p)@p,gaa

so that there are G,,(A>)°"%*_equivariant embeddings

HO(Xord,min,T gsub)i C HO(Xord,min,T7gfs)ub>@p SN HO(%ord,min gord,sub)i

7P QP,SCL > 7 po QP'

We have proved the following lemma. (The referee suggests, in politer terms, that
we have made a mountain out of a mole hill in proving this lemma and lemma [6.11]
The referee is probably correct. We are not very practiced at these sorts of arguments.
Neither lemma will come as any surprise to experts.)

Lemma 6.12. H(xordmint gob)o _ is an admissible G, (A™)" " -module.
<

Combining this with corollary we obtain the following result.

Corollary 6.13. Suppose that p is a representation of Ly ) over Q, that a € Q and
that 11 is an irreducible G, (A>)" > _subguotient of

HO(Xord,min,T gsub)i

»~p 7Qp,<a’
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Then there is a continuous semi-simple representation

Ry,(II) : Gp — GL3,(Q,)

with the following property: If I1 is unramified at a rational prime q # p (in the sense
of sectz’on and if v|q is a prime of F, then

WD(R, (D)6, )™ = recy, (BC (I1,), | det [ 7/2).

We will next explain the consequences of these results for sheaves of differentials

on Agz)(’;\),fj’\z),z. But we first need to record a piece of commutative algebra.

Lemma 6.14. Suppose that A — B — C are reduced noetherian rings, with B a
finite flat A module of rank rg and C' a finite flat A-module of rank rc. Suppose also
that the total ring of fractions of C' is finite flat over the total ring of fractions of B.
Then rglrc and

(TC/TB)U"B/A =trog: B — A

Proof: 1t suffices to check this after passing to total rings of fractions (i.e. localiza-
tions at the set of non-zero divisors). In this case B is free over A and C is free over
B, so the lemma is clear. [

Proposition 6.15. There are representations pll . of Ly, ) over Q with the follow-

ing property. If (UP(N),X) € F\™ and if (UPY denotes the image of UP in
G, (AP), then there is a spectral sequence with first page

B = B Sy, i) =

it (Agzzj%dg, Qi‘;}”;)(ﬁ)dg (log o0) ® I&Ag";)(ﬁr)‘,’gy
These spectral sequences are equivariant for the action of G,(A>®)"d.  The map
tr » on the H”j(A%)(}%C}g, Qf“%iﬁ(}g(log 00) ®I@A§}Z)(}‘\’f)‘fg) s compatible with the map
e e on the HOXGs €00 ) e )-

Proof: Let 7 denote the map Ag’;)(ff)dg — X((E‘i’)r,rgijg’;. Lemmas [5.10| and [6.9| tell us
d,min,

that there is a spectral sequence of coherent sheaves on A, (V) with first page

'a j b:T i+7 s
El] - (c;su id = R ]ﬂ- Q r 10 o0 ® I m),ord,t ).
LT Cwry v e + AEJZ?’;&)C,‘S( 800) & Loagsi)

The first assertion follows from lemma and proposition 3.1 of [GK] (which tell
us that
Hk(xord,min,T’ ES??:T) _ (O)

Prmi,s

for k> 0).
For the last assertion we may replace . by a refinement and so reduce to the case
that there is a A with ((U?)",A) € Jf°v°d and ((UP)(N),A) < (UP(N),X). (Use
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lemma ) To avoid confusion we will write ¢, 4 or ¢, » depending on whether ¢, is

(m),ord,T ord,
Ur(n),zerd O Xup) () aora-

(m),ord,T ¢ * (m),ord,T v (m),ord,f
Aoy o = SpacAun (v o — A () ora-

acting on A We will also factorize g, 4 as

Write 7’ for the map
U (m),ord,t ord,t
T AU‘”(N),EOrd — X(UP)/(N),AOTd
and 7" for the map
/. (m),ord,t ord,t
T G Ay sora = Xy vy pora-

) d: 3 j
The sheaf Sgé?j on X((;p;( ), ord 18 R'7! F;, where

'F:j = Q;ord,T (log OO) ® Q;_(:ZL),ord,T ord,t (log oo)

(UP) (N),acrd up (). serd/ Y upy vy, aora

To prove the last sentence of the lemma it suffices to show that the diagrams

gvav*(‘Fj ® (W/)*IaXord‘T ) "F] ®O ord,t ) * X IaXord,T
(UP)!(N),Acrd X upy (n),a0rd (UP)/(N),A0rd
§p7,47*(f'j QL. (myorai ) — Fi Q0 () oras  so* 5 Lo gemrordt
0A . Amerdt S5 4 ToA .
UP(N),xor UP(N),ZOTd UP(N),x=0r
and
1®pnm[F:Q]tr
Fj ®Oxord¢ < IaXord,T/ . — Fj ®Oxord,f IaXord,f/ .
(Up)’(N),Aord (UP)/(N),Acr (Up)’(N),Aord (UP)/(N),A0r
1®tr
5 B0 (myorat 5. Ly qtro-orast 5 5 B0 (my.orat Ly qtrmororast

UP(N),zord UP(N),zord

Up(N)yzord Up(N)’Zord

commute. In the first diagram the upper horizontal map is the composite

.Fjj ®OX0rdyT * IaXord,T

5S,
(UP)/(N),a0rd p (UP)!(N),Acrd

— \Ij* ‘I/*.F " *I ord,
(U*F;) @ (") OXTLT

— UL, ((DUF;) @ (O (7)) T, pora i

(UP)’(N),Aord
/
— gp7A7*((§;7‘A.F]) ® (7T )*I(’)X(o[y;,)'r“]v) aord

D, A
> s (F5 © (1) Ty yorart :
(Up)/(N)’Aord
and the lower horizontal map is
~ *
Fi ®0A(m),ord,T Spi A IaA(m)vOFdﬂT = §p7A7*((§p7AE) ® Ia_A(m)’Ord’T )

UP(N),Eord Up(N)yzord Up(N),Eord
*

gp,A
7 SpAx (‘FJ ® IaAg’;iﬁgdgord ).

We see that the first square tautologically commutes. The second square commutes
because the two maps

pnm[F:Q]tr . \I]*O g(m)ord g — OA(m),ord,T
*p, X yp (), zord UP(N),sord
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and

P* tr
V0. oot = a0 jmomat = O yemonai

p,X‘AUp(N)’Eord Up(N%Eord Up(N)yzord

are equal. This in turn follows from lemma [6.14] O

Corollary 6.16. For all i and s the vector space H"(Ag;)(}%dg, Q:(m)yor“(log o0) ®
’ UP(N),s

IaA(m),ord,T) admits slope decompositions for tr p.
UP(N),®

We write
HY(AM-rdt O3(log 00) @ Ty gmyordt)<a

— o ; (m),ord,T
= hm_)UP7N7Z Hz(AUp(N),E 5 Qi\g}g)(ﬁr)dg (log OO) ® IaAgjm),ord,T)<a.

P(N),%

The next corollary now follows from the proposition and lemma [6.6]

Corollary 6.17. For any a € Q there is a G (A®) X _equivariant spectral sequence
with first page E77 :

HO(xordmind, €49 ) <o = H™ (A, 05 1) a1 (l0g 00) @ Ty gcm) ot ) <artmnfrsq)-
Combining this with corollary we obtain the following corollary.
Corollary 6.18. Suppose that 11 is an irreducible G, (A>)°"4* -subquotient of
A 05 (log 00) ® Ty gomyentt )< B, B,

for some a € Q. Then there is a continuous semi-simple representation

RP(H) : GF — GL2n<Qp)

with the following property: If 11 is unramified at a rational prime q # p (in the sense
of section and if v|q is a prime of F, then
WD(R,(ID)]ay, ) 2= recr, (BC (IL, ), | det [{27)/2).
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6.5. Rigid cohomology.

Our main object of study will be the groups
—(m),ord i m ord
_o(Apr(nyz) = H (»A( T Q2% (m).0ra (108 00) @ Ly y(monat )

UP(N),= UP(N),%

where (UP(N),X) € Flmhtorord “ripie can be thought of as a sort of rigid cohomology

of Z(Urzz}%?z with compact supports towards the toroidal boundary, but not towards the

non- ordinary locus. It seems plausible to us that this can be intrinsically attached to

ord ord . . .
the pair AUP GAUP . Hence our notation. However we will not prove this, so

the reader is cautloned that our notation is nothing more than a short-hand, and the

group H'_ B(ZE}Z@‘;TZ) must be assumed to depend on the pair Ag’; OrdT D 8AUP( Icf)dg

We will also set - -
oA ) = lim H. 5(Aye(n)s)-
UP.N,S

It has a smooth action of G,,(A*)°. The maps

tr g : 6 (log 00) — QA(m ora.t (10g 00)

(m),ord,t
A UP(N),=

UP(N),s

induce endomorphisms

i —(m)ord
tr p € End ( c—B(AUP(N),E))

which commute with the action of G,,(A>)"%* and satisfy

tr g o S = p(n+2m)n[F+:Q}'

Lemma 6.19. There are natural isomorphisms

7 —(m),ord ~ 3 —(m),ord\ rrp
e—o(Apr(nys) — He_p(A YyUran),

Proof: Use lemmas and [6.9 O

We will compute the group Hgia(Zg’;zﬁfz) in two ways. The first way will be

in terms of p-adic cusp forms and will allow us to attach Galois representations to

irreducible G, (A>)°%*_sub-quotients of H. é,a(z(m)’ord) ®g, Q,. The second way will

be geometrical, in terms of the stratification of the boundary. In this second approach

the cohomology of the locally symmetric spaces associated to LS?EZMH will appear.
Here is our first calculation.

Lemma 6.20. The vector spaces Héfa(Agﬁz;r)dz) admit slope decompositions for tr p.

If moreover we set

i —(m),ord . i —(m),ord
e—o(A )<a = lﬂl Hc—a(AUP(N),E)Sav
UP,N,2

then there is a G, (A>)"* _spectral sequence with first page
By = HI(AM 03 (log 00) @ Ty yomenai)<a = HEHA™ )<,
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Proof: This follows from lemma [6.6], corollary and the spectral sequence

g ) . ord i (m),ord
B = HY(AG N Y ) na g (10800) @ Ty rat) = L5 (A vy 5)-

UP(N) = UP(N),=

O
And here is our second calculation.

Lemma 6.21. There are G, (A>)"S* —equivariant spectral sequences with first page

ord

i m) ord i (m),
E1] = oY) A ) Hc+<]9(AUP )2)

rlg(

Moreover the action of Frobenius on the leﬂ hand side is compatible with the action
of 5, on the right hand side.

Proof: By lemmas and the group H' a(ﬁén;)(}(\),rfz) is isomorphic to the hyper-
cohomology of the double complex

7 (m),OI‘d,T ‘(S) s
B A0 8 570 g

and so there is a spectral sequence with first page

Bl = (0D AT )= Hi_o(Anrs).

P (m),ord,t
Ur( a(J)AU PNy .5

However, by lemma and the quasi-projectivity of 9\ .AU”;z ;;r)dz, we see that there
are G\ (A>)°rd_equivariant isomorphisms

7 m),ord ord
H (a(])A(Up y Qa(])A(m) ord T) rlg(a(J A N) E)?

UP(N),=

and that under this identification ¢, corresponds to Frobenius (because ¢, equals
Frobenius on the special fibre). O

Corollary 6.22. Hg_a(z(m)(;\),r)d ) is finite dimensional. Moreover
i —(m),ord i —(m),ord
c—a(AUP(N),z) = c—a(AUP(N),Z‘)Sw

for some a, and so

i m) ord i m) ord
0—8 U Hc 8 )Sa'
acQ

Proof: The first assertion follows from the lemma and theorem 3.1 of [Bert2]. The

second assertion follows because tr pog, = prnt2m)FTQ) gn( g0 by the first part tr g

must be an automorphism of Hg’_a(Zgﬁiﬁg‘fE).D

Combining this with corollary and lemma we obtain the following corol-
lary.
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Corollary 6.23. Suppose that 11 is an irreducible G,,(A>)°"4* -subquotient of
—(m),ord =~
é—a(A ) ®Qp Qp'

Then there is a continuous semi-simple representation
R,(Il) : Gr — GL2y(Q))

with the following property: If I1 is unramified at a rational prime q # p (in the sense
of section and if v|q is a prime of F. Then

WD(R, (1), )" = recr, (BC (I1,), | det (! ~*777).

Corollary 6.24. The eigenvalues of 5, on Héia(z(m),ord

some w € Zso (depending on the eigenvalue). We will write

i —(m),ord
WO c—0 (A )@

P

)@p are Weil p*-numbers for

for the subspace of Hg_a(z(m)’ord)@p spanned by generalized eigenspaces of <, with

eigenvalue a p°- Weil number.
For i > 0 there is a G,,(A®)*™-equivariant isomorphism

lim H* (|S(8AUP
UPN®

),ord (m),ord

DLT,) 5 WoH A ™) |

(For i =0 there is still a surjection.)

Proof: By theorem 2.2 of |Ch], the eigenvalues of the Frobenius endomorphism

on Hfig(ﬁ Aﬁ}Z Ordz) are all Weil p*-numbers for some w € Z>; (depending on the

eigenvalue). The ﬁrst part of the corollary follows.
It follows moreover that WoH!_ Q(A(UTQ Or)d )g, is the cohomology of the complex

(m ord — i m),ord —=
s HO QAT Q) — HO (0 A T T,) — .
However by proposition 8.2.15 of [LeS]
i m),ord ~ AT (0DA 77;) ord xS ecFp)
Hr01g<8( AUp N) 3 Q ) on oren.= v )
and so the cohomology of the above complex becomes
—(m),ord (m),ord = .
ker(Hgg(AUP(N)Zv@p> — HO(|S((EL§le(N)E)| Qp)) in degree 0
HO(lS(ﬁAUp(N)Z)l @ )/Im rlg(AUP(N),E7 ) in degree 1
H(S(0A s, Q) in degree i > 1.

The last part of the corollary follows. U

The discussion at the end of section [5.3|shows that there are G, (A>)**-equivariant
open embeddings

‘I(m),ord |S(8A m) ord )|
Thus the following corollary follows by applying lemma and corollary [1.6]
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Corollary 6.25. Fori > 0,

i (a(m)ord o T g G (A®P) i (m) T 2
HInt({Z*n 7@ ) Ind P?’(L’:r(l 4 (Aw,p)HInt(T(n) ’ p) ’
is a Gp(A>®)°" subquotient of WOHif}?(AEZ )’Ord)@p.

Combining this proposition with corollary (and using lemma we deduce
the following consequence.

Corollary 6.26. Suppose that i > 0 and that m is an irreducible L, () 1in(A>)-

subquotient of ant(‘fgg),@p). Then there is a continuous semi-simple representation

Rp(’ﬂ') : GF — GLQn(@p)

with the following property: Suppose that q # p is a rational prime which either splits
in Fy or is unramified in F. Suppose further that w is unramified at all primes of F
above q. If v|q is a prime of F, then

Ry () |3y . Zrecp, (] det |(1=/2) @ vecp,, (me,| det (L /2) Cep .

Combining this With corollary [1.9] we obtain the following result.

Corollary 6.27. Suppose that n > 1, that p is an irreducible algebraic representation
of Ly n)1in o0 a finite dimensional C-vector space, and that  is a cuspidal automor-
phic representatzon of L) in(A) so that mo has the same infinitesimal character
as p¥. Then, for all sufficiently large integers N, there is a continuous, semi-simple
representation
R,,(m,N): Gp — GL2,(Q,)

with the following property: Suppose that q # p is a rational prime which either splits
in Fy or is unramified in F'. Suppose further that m is unramified at all primes of F
above q. If v|q is a prime of F, then

Rp l(’/T N) F S = Z_lreCFv (7-(-1}‘ det ‘1()1_”)/2) @ (Z recs,, (ﬂ_fv det | (1-n /2))\/’66111)_2”_2]\[.

Proof: Take

Ry.(m,N) = R,(: " (7| det ||V)) @ V.

p

OJ
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7. GALOIS REPRESENTATIONS.

In order to improve upon corollary it is necessary to apply some simple group
theory. To this end, let " be a topological group and let § be a dense set of elements
of I'. Let k be an algebraically closed, topological field of characteristic 0 and let
d € Z~y.

Let

il — k~
be a continuous homomorphism such that p(f) has infinite order for all f € §. For
feglet S} and 5? be two d-element multisets of elements of k*. Let M be an
infinite subset of Z. For m € M let

Pm T —> GLoy(k)

be a continuous semi-simple representation such that for every f € § the multiset of
roots of the characteristic polynomial of p,,(f) equals

EFILEIu(f)™.

Suppose that M’ is a finite subset of M. Let G denote the Zariski closure in
Gum X GL3Y of the image of
1o P om.

meM’
It is a, possibly disconnected, reductive group. There is a natural continuous homo-
morphism
prm = X H Pm 2 T — Grp (k).
meM’
Note that pre(F) is Zariski dense in G . We will use p for the character of Gy
which is projection to G,,,. For m € M’ we will let

Rm : GM/ — GLgd
denote the projection to the factor indexed by m.

Lemma 7.1. For every g € Gy (k) there are two d-element multisets E; and ZZ of
elements of k* such that for every m € M’ the multiset of roots of the characteristic
polynomial of R,,(g) equals

=) I S2u(g)™

Proof: Tt suffices to show that the subset of k% x G L)Y (k) consisting of elements
(t, (9m)merr) such that there are d-element multisets 3! and 32 of elements of k*
such that for all m € M’ the multiset of roots of the characteristic polynomial of g,,
equals X IT1X2%t™, is Zariski closed. Let Polyy denote the space of monic polynomials
of degree 2d. Tt even suffices to show that the subset X of k* x Pol}f (k) consisting of
elements (¢, (P,,)mear ) such that there are d-element multisets ¥! and X2 of elements
of k such that for all m € M’ the multiset of roots of P,, equals X! 11 X2t™, is Zariski
closed.
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There is a natural finite map

7 Aff?Y — Poly,
() — TL(T —ai)
If
(om) € Sé\;,,
where Syq denotes the symmetric group on 2d letters, define V) to be the set of
(t, (am.i)) € G x (AFFZ)M

such that, for all m, m’ € M’ we have

Am,omi = Am! o, i

ift=1,..,d and
75m’7m

Am,omi = Om/ 0,

ifi=d+1,..,2d. Then V|, is closed in G,, x (Aff*)™’. Moreover
X= U axm™V.,..
(Jm)ESé\C/lll

The lemma now follows from the finiteness of 1 x 7M. O

Corollary 7.2. If ) # M’ C M" are finite subsets of M then Gm — Gap.

Proof: Suppose that ¢ is in the kernel of the natural map
GMN —» GM/.

Then for all m € M” the only eigenvalue of R,,(g) is 1. Thus g must be unipotent.
However ker(G ¢ — Garr) is reductive and so must be trivial. [J

Thus we can write G for Gy without danger of confusion.

Corollary 7.3. For every g € G(k) there are two d-element multisets E; and 23 of
elements of k> such that for every m € M the multiset of roots of the characteristic
polynomial of R,,(g) equals
1 2 m
3, X u(g)™.
Moreover if u(g) has infinite order then the multisets E; and E; are unique.

Proof: Choose non-empty finite subsets
MicM,C..CcM
with -
M =M.
i=1

For each i we can find two d-element multisets X} ; and X2 ; of elements of * such
that for every m € M the multiset of roots of the characteristic polynomial of R,,(g)
equals

g LTS5 1(g)™.
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Let m; € M/ and let ¥ denote the set of eigenvalues of R,,,(g). Then, for every i,
the multiset ¥} ; consists of elements of ¥ and the multiset X2 ; consists of elements
of Xu(g)~™. Thus there are only finitely many possibilities for the pair of multisets

(X5,%2,) as i varies. Hence some such pair (X}, X2) occurs infinitely often. This

pair satisfies the requirements of the corollary.
For uniqueness suppose that Z;’/ and Zg” is another such pair of multisets. Choose
m € M with u(g)™ # o/ for any «, § € E; I 23 IT E;” 11 ZZ”. Then the equality
By I Xgu(g)™ = Xy Xg u(g)™
implies that E;” = Z; and Zf]” = Ef]. OJ
The connected component Z(G)° of the centre of G is a torus.

Lemma 7.4. The character p is non-trivial on Z(G)°.

Proof: If i were trivial on Z(G°)? then it would be trivial on G° (because G°/Z(G°)°
is semi-simple), and so p would have finite order, a contradiction. Thus p|z oy is
non-trivial.

The space

X'(Z(G°)°) @2 Q
is a representation of the finite group G/G° and we can decompose
X*(2(G")") @z Q= (X*(Z(G)") 22 Q) @Y
where Y is a Q[G/G°]-module with
YIS = (0).
But
plzcop € XH(Z(G°)") c X*(Z(G)°) @2, Q

is non-trivial, and so fi|z (o is non-trivial. O

For m € M let X, denote the 2d-element multiset of characters of Z(G)" which
occur in R, (taken with their multiplicity). If g € G then we will write 9)(g),, for the
2d-element multiset of pairs (, a), where  is a character of Z(G)° and a is a root of
the characteristic polynomial of g acting on the y eigenspace of Z(G)? in R,,. (The
pair (x,a) occurs with the same multiplicity as a has as a root of the characteristic

polynomial of g acting on the y-eigenspace of R,,.)
IfY C V(9)m and if Y € X*(G) then we will set

D = {(xv,ab(9)) = (x,a) € D}
We warn the reader that this depends on g and not just on the set 2).

Lemma 7.5. Suppose that T/k is a torus and that X is a finite set of non-trivial
characters of T. Let A be a finite subset of k*. Then we can find t € T'(k) such that
X(t) # a forall x € X and a € A.
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Proof: Let (, ) denote the usual perfect pairing
XNT) x X (T) — Z.
We can find v € X,(T) such that (x,v) # 0 for all y € X. Thus we are reduced to
the case T' = G,,, in which case we may take ¢ to be any element of £* that does not
lie in the divisible hull of the subgroup H of k* generated by A. (For example we

can take t to be a rational prime such that all elements of a finite set of generators
of HNQ* are units at ¢.) O

Corollary 7.6. Suppose that T/k is a torus and that X is a finite set of characters
of T. Then we can find t € T'(k) such that if x # X' lie in X then

x(t) # X' (t).
Lemma 7.7. If m,m/,m"” € M, then we can decompose

@(g)m - @(g)%,m’,m” nl @(g)%,m’,m”

into two d-element multisets, such that

/

Q'j(g>m’ = @(g>in,m’,m” Il S‘D(g)il,m’,m“:um -
and

1

Qj(g)m// = Q:j(g)in,m’,m” H Q‘)(g)?n,m’7m////6m —m‘
If W= % x /X' for all x, X' € %, then the equation

D(9)rm = V(P i LD gt ™ "
uniquely determines this decomposition.

Proof: Choose t € Z(G)°(k) such that ax(t) # a'x'(t) for (x,a) # (X', d’) with
(X, @), (X', @) € D(9)m UD(@)mt™ "™ UD(@mtt™ ™ UD(g)r UD ().
(Note that it suffices to choose t € Z(G)°(k) such that for

(x,a), (X', @) € D()m UD(@)mt™ " UD(@)mt™ ™™ UD (@) UD (),
with x # x’ we have (x/x')(t) # a'/a.) We can decompose

Qj(g)m = @(g)rln,m’,m” nl @(g)gn,m’,m”

into two d-element multisets, such that
{ax(®) = (x;a) € V(D mm i} = St

and
{ax(t): (x,a) € V()2 mrit ™} = 2.
Then
{ax(t): (x,a) € D(@)m} = ,
{ax(t) = (x;a) € D(9) e} L {ax(t) : (x,a) € D(9)2, s e it™ "}
and

{ax(®) = (x,a) € D(g)m} = )
{ax(t) : (x;a) € D(9) e} T {ax(t) = (x,a) € D(9)2, s e tt™ ™}
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It follows that

’

QJ(g)W’ = @(g)}n,m’,m” nl 2)(9)2m,m',m“ﬂm -
and

"

Q.J(g)m” = 2)(9>71n,m’,m” nl @(g)gl,m’,m”:um -
If =™ £ x/x’ for all x, x’ € ¥,, then
@(g)in,m’,m” = Q:)(.g)m N @(g)mU

so the uniqueness assertion is clear. [J

Corollary 7.8. If m € M, then we can uniquely decompose

D(9m =D(9)r, UD(9),

into two d-element multisets, such that for all m' € M we have

V() = D(9)m LD (g)71™ ™.
Proof: Choose m’ such that ™™ # x/x' for all x, X' € X,,. Then we see that for
all m”, m" € M we have
E2’)(g>71n,m/,m” = Ez'j(g>71n,m/,m/”
and
@(g)?n,m’,m” - @(g)?n,m’,m”"
Then we can simply take 2(g)%, = D(g)! O

7
m,m/ m’*

Corollary 7.9. For all m,m’ € M we have
V(9 =D

and

V(9)or = V(g)mn™ ™.
Proof: It is immediate from the previous corollary that 9)(g) and 2(g)2,p™ ™

m

have the properties that uniquely characterize 9)(g)., and 9(g)?,. O

m

Corollary 7.10. For all g € G and m € M and for 1 = 1,2 we have
Y1)y, ={(x, 1) : 3a, (x,a) € V(g);,.}-

Proof: Tt is again immediate that {(x,1) : 3Ja,(x,a) € YD(g)L} and {(x,1) :
Ja, (x,a) € D(g)2,} have the properties that uniquely characterize 2)(1)! and 9)(1)2,.
0J

We set
X, ={x: (1) e9),}
Note that
X, _xl
and that
X2, = X2
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Corollary 7.11. For all but finitely many m € M the multisets X! and X2, are
disjoint.

Let M’ denote the set of m € M such that X}, and X2, are disjoint. Then we see
that for m € M’ we have

V(9 = {(x.a) € D(9)m: x € X}, }-
Moreover for m € M’ we may decompose
R, =R, ® R?,

where R}, is the sum of the x-eigenspaces of Z(G)° for x € X},. We sce that the
multiset of roots of the characteristic polynomial of R! (g) equals

{a: (x,a) € D(9)n}
Thus R}, is independent of m € M’ as is R? u~™. Denote these representations of
G by r and rg, so that
Ry &1y @ rop™
for all m € M’. From corollary (applied to M) we see that if g € G and u(g)
has infinite order then X} is the multiset of roots of the characteristic polynomial of
r*(g). Thus we have proved the following result.

Proposition 7.12. Keep the notation and assumptions of the first two paragraphs
of this section. Then there are continuous semi-simple representations

p' T — GLg(k)
fori=1,2 such that for all f € § the multiset of roots of the characteristic polynomial
of p'(f) equals &;.
This proposition allows us to deduce our main theorem from corollary [6.27]

Theorem 7.13. Suppose that 7 is a cuspidal automorphic representation of G L, (Ar)
such that o, has the same infinitesimal character as an algebraic representation of
RS(SGL,L. Then there is a continuous semi-simple representation

rpa(m) : Gp — GLn(@p)

with the following property: Suppose that q # p is a rational prime which either splits
in Fy or is unramified in F. Suppose further that w is unramified at all primes of F
above q. If v|q is a prime of F, then

Tp(T) EV;Z = Z_II'GCFU(’]T,U| det |£}1—n)/2)_

Proof: We may suppose that n > 1, as in the case n = 1 the result is well known.
Let S denote the set of rational primes above which F' or 7 ramifies together with
p; and let Gpg denote the Galois group over F' of the maximal extension of F
unramified outside S. Apply proposition m toI' = Gpg, and k = @p, and
po=€, 2, and M consisting of all sufficiently large integers, and p,, = R,,(m,m)
(as in theorem [6.27)), and F the set of Frobenius elements at primes not above
S, and &, equal to the multiset of roots of the characteristic polynomial of
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1 rec, (,| det |7(Jl_n)/ *)(Frob,), and Efion, €qual to the multiset of roots of the char-
det |7 (Frobz). O

acteristic polynomial of 1™ 'recp., (e, s

Corollary 7.14. Suppose that E is a totally real or CM field and that 7 is a cuspidal
automorphic representation such that w., has the same infinitesimal character as
an algebraic representation of RSSGLn. Then there is a continuous semi-simple
representation

Tpa(m) : Gg — GL,(Q,)

such that, if ¢ # p is a rational prime above which m is unramified and if v|q is a
prime of E, then r,,(m) is unramified at v and

TP,Z(W)|5}ZSU = 2_1recEv (7rv| det |7()1_”)/2).

Proof: This can be deduced from theorem by using lemma 1 of [So]. (This is
the same argument used in the proof of theorem VII.1.9 of [HT].) O
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APPENDIX A. GUIDE TO NOTATION

As the paper contains a lot of different notations, we will informally summarize
some of the principal notations in this section. We hope that this will help the reader.
Formal definitions will be given in the main body of the paper.

A.1. Shimura varieties.

We fix a totally real field F'*, an imaginary quadratic field Fy and let F' denote their
composite. We also fix a prime p which splits in Fj.

We will consider a quasi-split unitary similitude group G,,/Q defined with respect
to (the trace of) the skew-hermitian form on V,, = F?"

<5L‘, y)n =tr F/Q(txjncy)

where J, is an anti-diagonal matrix with 1’s in the first n rows and —1’s in the last
n rows. The similitude factor v : G,, — G,,. (See section [L.1}) For U C G,(A™)
a neat open compact subgroup we have a corresponding Shimura variety X, ; and
over it a universal abelian scheme A™", which is unique up to unique quasi-isogeny.
The system {X, s} has an action of G, (A*). (See section [3.1])

We will also consider the group

G = G,, x RS{Hom (G, G2").

It has a (left) action of RS&GLm. (See section ) For U C G,(qm)(Aoo) a neat
open compact subgroup we have the corresponding Kuga-Sato variety Aﬁf}} which is
smooth and projective over X, v, where U’ denotes the projection of U. The system
of schemes {Aq(lm[;} has a right action of G (A%) and a left action of GL,,(F), which
don’t commute. (See section [3.2])

We will also need to consider integral models of these varieties over Z,), but only

for certain level structures at p. To define these level structures we give G,, the
integral structure coming from the (self-dual) lattice A, = (Dz')" @ O% C F*. We

give G%m) a compatible integral structure so that

G(Z) = Gu(Z) x ((DE')" @ OF)™.
We will only consider integral models for Shimura varieties with level UP(Ny, Ns),
where Ny > N; > 0 are integers and U? is a neat open compact subgroup of G,,(A>?)
or GY™ (AP, Here UP(Ny, N3) = UP x U,(Ny, Na), where Uy (N1, Ny), C Go(Z,) is
the subgroup of matrices of the form

1, mod p™ | *
0 mod p™*? ‘ 1,, mod p™ )’

or UP(Ny, Np) = UP X U,(Ny, Ng)%m) where U,(Ny, Ng)%m) C G,(lm)(Zp) is the subgroup
of matrices of the form

11, mod p™ | * <
0 mod p™? ‘ 1,, mod p™ 0 mod p™ /-
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(See section [L.1])

We will consider a certain integral model X? g,,( NNy OF Xnuw(ny,vg)- (See section

) Although its generic fibre is all of X, yo(n;,n2), 1ts special fibre consists only of
points parameterising ordinary abelian schemes with a level structure with respect
to which the distinguished sub-group scheme of order p™2lF*@" is connected. Thus

for example if NJ > N, then Xsrgp( NN anUp( N1, Na) is not finite, because we

are only including some of the possible U?( Ny, N})-level structures extending a given
UP(Ny, No)-level structure. We denote the universal abelian scheme over X P (N1, Na)

by A" It is uniquely defined up to prime-to-p quasi-isogeny. The action of the
whole group G,(A*) on {X, y} does not extend to an action on {X;rgp(NLNQ)}
However the action of a sub-semigroup

Gn(A)™ = G (A®7) x 6> Y (Z,)

does extend. Here P;(n) denotes the subgroup of G,, consisting of elements of the

form
* *
O’ﬂ Xn *

(over Q this defines a maximal parabolic subgroup) and g, denotes the element

p‘lln 0
0 1, /-

We write G,,(A>)*4* for the maximal subgroup of the semi-group G, (A>)d. We
will also write

UP(Ny) = UP(Ny, Na) N G (A%)
which is independent of Ns. (See section [1.2])

The formal completion of X" Up (N1,Na) along its F)-fibre only depends on UP(N;) =
UP(Ny, No) N G, (A®)" 4% and so we Will denote it %ffgp Ny)- We will also denote

its reduced subscheme Yﬁp( ~y)- The systems {%zrgp Ny} and {Yff%p 1y} also have

actions of G, (A>)°. (See section )

We will also consider a certain integral model A(mUpOT, o) of AnmU)p N1 N2)- Note
that .An Upor;\i, ) is smooth and projective over Xm(Up) {(N1N2) where (UP)" denotes

the image of U? in G,,(A>?). The system of schemes {AflmUpof,l )} has an action of
the semi-group

GUM(A®)rd = GIM(A%P) x 62 PUSH(Z,) € GUM(A™),

where P( + denotes the subgroup of G Consisting of elements of the form

(o) ()
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We also write Gng)(A ) '4 X for the maximal Sllng‘OUp of the semi- Gng)( oo)ord
and group A
U! (N]) = Up(N],N ) N Gglm)(goo)ord,x.
m)

It also has an action of GL,,(Op,). The formal completion of A;Up (V1N
[F,-fibre depends only on UP(N;), so we will denote it Qlfsz);o(rjil). We will also denote
its special fibre ZflflU);()(ﬁl). (See sections and )

We will write L, ) for the subgroup of P;(n) consisting of matrices of the form

* O’I’an
OTLX’H * ’

We let Std denote the representation of L, ) over Z which sends the above matrix
to the lower left n x n-block in RS;F GL, C GLypq- In fact

v x Std : Ly ) — Gy, x RSYFGL,,.

We will let T}, denote the subgroup of GG,, consisting of diagonal matrices and B,, the
subgroup of upper triangular matrices. The isomorphism v x Std allows us to identify
T, with G,, x RS;F G7, and hence we get an isomorphism

X1, >ze @z
T€Hom (F,Q)

We will denote a typical element of this group (bg, (b;;)). The set X *(Tn)z;) C X*(T,)

of positive elements of X*(7},) with respect to the subgroup B,NL,, (») is characterized
by

) along its

b‘r,l Z bT,Q 2 2 b‘r,n
for all 7. The set X *(Tn)&) C X*(T,) of positive elements with respect to B, is
further characterized by
bT,l + ch,l S 0

for all 7. Over Q we can decompose

Std= @5 std,,

T:F—Q
where Std, : L, () — GL,. There is a representation
KS : Lm(n) — GL[F+:Q]n2
over Z, such that over Q
KS~v® b Std! ® Std,.
7€Hom (F,Q)/{1,c}

(See section [1.2])

If Ry is an irreducible noetherian Q-algebra and p is a representation of Ly, () on a
locally free Rp-module then we may associate a locally free sheaf &y ,/ X, 7 X Spec Ry
(in the Zariski topology). As examples we have the following.
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o Eysiav = Qnu, the pull-back by the identity section of the sheaf of relative
differentials Q! Anniv )X,

® Eypniraigigy = A" ol Q]QH,U = wu-

[ ] gU,KS = Q-lxn,U/Q'

The system of sheaves {Ey,,} has an action of G,(A*). (See section [3.4])
Similarly if Ry is an irreducible noetherian Z,)-algebra and p is a representa-
tion of Ly, ) on a locally free Ry-module then we may associate a locally free sheaf
ord

8{}29(]\,17N2)7P/Xn,Up(N17N2) X Spec Ry (in the Zariski topology). As examples we have
the following.

Sord

Up N1,N2) StdY —

of relative differentials Q! A/ ord

Qgr?]p (N1, Na)? the pull-back by the identity section of the sheaf

n,UP(Nq, N2)
o~ An[F:Q](ord __,,ord
. 5UP(N1,N2)MF:@1smv N o (N1 N2y = WU (Ny M)

® Eur(Ny,Ny) KS = Qlora :
(N1, N2), XU (g, NQ)/Z(p)

The system of sheaves {Eyr(n,,n,),»} has an action of G, (A>)%*. (See section )

The scheme X,y has a canonical compactification X,Ti}l called the minimal or
Baily-Borel compactification with boundary X™n. Tt is a normal projective scheme
over Q. The line bundle wy extends (umquely, 1f n>1or F* # Q) to an ample
line bundle wy on X7, However we can not expect the vector bundles £y, to all
extend to vector bundles on X;Ln}}l x Spec Ry. All these systems of spaces and the line
bundles wy have compatible actions of G,,(A™). (See section [p.1}) We can describe
the scheme OX '} more precisely, but this will require considerably more notation,
so we will come back to this in the next section.

. . . ord,min :
We can also define a normal quasi-projective scheme X’ UP(Ny,Ng) OVer ZLpy with a
ord,min
closed subscheme 0X WU (N1, N) Such that
Xord Xord ,min axord,min
n,UP Nl N2 nUp(Nl,NQ) n,UP(Nl,NQ)

is a dense open sub-scheme. The scheme Xorgpr?]l\r,l ) 18 not proper—informally
speaking it is missing points in characteristic p. Its generic fibre is identified with

mln . . . Ord . . .
X, Up(N1.N2) and there is a unique line bundle WETp(Ny,N,) OVET it which restricts to

ord ord min ord,min
cuUp(Nl Ny) 01 b2 U0 (N1, Na) and to wyr (N, ,N,) o0 X)) Up (N1, Na) . We will write X"/ UP(N1,Na)

for the formal completion of X Org;a‘; ) along its F-fibre X Zr?];fl N Na)- Schemes

0X ng;n 1]1\],1 N,) are defined similarly. All these systems of (formal) schemes have com-

patible actions of G,,(A*)*d. The system of line bundles {w(‘}r,fi Ny} has an action

of G,,(A>®)rd*_ (See section ) Again we will describe the schemes 82\??;;?}\2 o)
more precisely in the next section.

If U C G,(A>? x Z,) then we can define a normal scheme X™® which is projective
and flat over Z, with generic fibre ng}}‘, together with an extension of wy to an
ample line bundle on Xf}g}‘, which we will also denote wy. These systems of schemes
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and line bundles have compatible actions of G, (A>®? x Z,). There are G,,(A>)°d*-

ord,min min . ., —~>min
X Ub(NiNe) Xty - We will write Xy for the

F,-fibre of A77. There is a canonical section

equivariant open embeddings

0 /~min ®p—1
Hassey € H (X, 7, wi” ).

—min,n-ord

These sections are invariant under the action of G, (A>? x Z,). We write X, ;

. —ord,min .
for the vanishing locus of Hassey. Then X, ;7»(n, n,) i an open and closed sub-scheme

of Yii,r}p(Nth) - 72?;11(}3?]\,2). They are equal if N; = Ny = 0. (See section )
To certain additional data A, with (U, A) in a certain partially ordered set J ",

which we will describe more carefully in the next section, one can associate a smooth
projective scheme X, ya/Q and a simple normal crossings divisor

8AXVn,U,A C Xn,U,A

such that
Xn,U = Xn,U,A — (3Xn7U,A.

We write (X, .a, Ma) for the log-scheme associated to (X, ya, 0X, pa). There is a
natural map X, ya — X7} which is the identity of X,, 7 and sends 0.X,, ya to OX}.
The universal abelian scheme A" /X, ;; extends uniquely to a semi-abelian scheme
A" /X, ua. The system of schemes {X, ya} has an action of G,,(A>) via log
etale maps. Similarly to certain additional data X, with (U, X) in a certain partially
ordered set J\™"" which we will describe more carefully in the next section, one
can associate a smooth projective scheme AS@’E /Q and a simple normal crossings

divisor aAfﬁ}x C ASZTLU),E such that

A(mU) - A7(17,TLU),E - 3147(;”1},2‘

n,

We write (A(m)7E,M2) for the log-scheme associated to <A7(17,HU),278A7(;?(J),2>- If (U,X%)

n,

and (U’, A) are compatible in a suitable sense, then there is a natural log smooth

map Af:g,z — Xnu.a- (See sections and ) More details on the structure of
the boundary will be given in the next section.

If Ry is an irreducible noetherian Q-algebra and p is a representation of L,, ,,) on
a locally free Rop-module then we may associate a locally free sheaf &7 , /Xnua X
Spec Ry (in the Zariski topology) such that

can
ETA pl X 1rxSpec Ry = EUp-

As examples we have the following.

° 58?Z’Stdv = O, v, the pull-back by the identity section of the sheaf of relative
. . 1
differentials €2, s XA
o EM gy = AUQ, pa = wya is naturally identified with the pull-back

min

of wy from X7
can ~ 1
i 5U,A,Ks =

Xou, ,(logoo), the sheaf of differentials with log poles along the
boundary.



234 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

We will write

ESUI,IZ,p - (C]?Z,p ® IaXn,U,A?
where Zyy,, ,, , denotes the ideal sheaf of the boundary. Tt is again a locally free sheaf.
We will also write ESUb for the coherent sheaf on X™ which is the push-forward of
5(8]‘7‘27 , from X, ya. (Thls is independent of the ch01ce of A.) The systems of sheaves
{&FR 1 {EFR ), and {EFD} have actions of G, (A™). (See section )

We will write QA(m)(log oo) for the sheaf of differentials on Agnz) with log poles
U,x

along 8AUE, and Q;(m) (log 0o) for its it exterior power.
U,z

Similarly to certain additional data A, with (UP(Ny, Na), A) € Jt°", one can asso-
ciate a smooth quasi-projective scheme Xsr{}p (N1,Na), A/Qand a snnple relatwe normal
crossings divisor

ord ord
OXGo(Ny Ny C XU (o Vo),

such that
d d d
Xr?,rUP(Nl,NQ) = Xs,rUP(Nl,Ng) aX’r(L)rUp(Nl N2),A-
The Q-fibre is identified with X, (v, ny),a. We write (XSYSP(NI N2) A,./\/lA) for the
log-scheme associated to (X;L’rgp(Nl Na) A,@Xsr{}p(]\h Na) A). There is a natural map
Xorg,,(Nl NajA Xsrg,,?]‘\? Ny Which equals the identity of X;L”“Uip(Nl and sends
8X;L’fUp( NiNa)a G0 OX, Org;?;vnl Np)- T'he universal abelian scheme Auniv / Xsrgp( NyN) €X

tends uniquely to a semi-abelian scheme A" / XﬁrUp (N1,N2).A . The system of schemes
{XﬁrUp(Nl Nay,a) has an action of G, (A>)rd. Also to certain additional data X,

with (UP(Ny, Ny), X)) € JIAT one can associate a smooth quasi-projective scheme
AyU);O(r;\i,l’ No).S /Z and a simple normal crossings divisor

(m),ord ),ord
aAn ,UP(Ny, N2) 3 - An ,UP(Ny, NQ) b))
such that (
m),ord _ 4(m),ord rd

An Upo(Nl NQ) An UpoNl NQ) 3 aAn UpoNl,NQ) PN
The Q-fibre is identified with An Ur(NaNy)x- We write (A;mUpo?\i,l Ny M) for the
log-scheme associated to (AflmUpo?\j,l No), AflmUpo?\j, Ny)x)- 1 the pairs (UP(Ny, N»), X)
and ((UP)' (N7, N3),A) are compatlble in a sultable sense, then there is a natural

m),ord or .
log smooth map ./47(1 Un(NLNe) s X (‘%]p) (NN (See sections and ) More
details on the structure of the boundary will be given in the next section.

Similarly if Ry is an irreducible noetherian Z,)-algebra and p is a representa-

tion of L, ) on a locally free Ryp-module then we may associate a locally free sheaf

glf}rdeCVTNQ A /Xgrgp (N1.N»),a X Spec Ro (in the Zariski topology) such that

gord can | gord
Up(Nl,Nz Xn UP(Ny,No )XSPECRO uUr Nl,NQ) P

and the pull-back to the Q-fibre is identified with 85?}% NuNa)A - As examples we have
the following.
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d, ~ . . .
° 6;2(;?N2)7A75tdv s nggp(leNﬂ’A, the pull-back by the identity section of the
1

sheaf of relative differentials €2 .,/ yora )
/ n,UP(N1,N3),A

ord,can ~ An[F:Q]ord __,ord : : _
® En (N A aniFIggay B Ur(i,Va)a = Whp(ay )4 18 naturally iden
Xord,min

n,UP(N1,N2)*

(log o), the sheaf of differentials with log poles

tified with the pull-back of w(‘}r;i( Ny Ny from

ord,can ~ Ol
o gUP(Nl,NQ),A,KS = Qo

n,UP(N1,Ng),A
along the boundary.

We will write

ord,sub __ eord,can
gUp(vaNQ)vAvp - gUp(NLNQ)»AM’ ® Iaxﬁfﬁle,NQ),A’
where Zj yord denotes the ideal sheaf of the boundary. It is again a locally free

n,UP(N1,N3),A

. . ord,sub ord,min . .
sheaf. We will also write 5U,,( N1 N2).p for the coherent sheaf on &7, (N1 N2) which is the
ord,sub

push-forward of EUP( N1N2) A from X, yr(n,,Ny),a- (This is independent of the choice

ord,can ord,sub ord,sub
of A.) The systems of sheaves {SUP(NLNﬁvp}’ {EUP(N17N2)7AW}, and {SUP(NLNQ)W}

have actions of G,,(A%)°"4> . (See section [5.4])

The formal completion of X;;fgp( N1 Na)A along its special fibre depends only on

UP(Ny) and A°4, a subset of the data contained in A, which we will describe in more

detail in the next section. Thus we will denote this completion %Zf%p( Ny),Aord and

. —>ord . . .
its reduced sub-scheme X, ;7p(n,) aera. The latter contains a simple normal crossings

—ord —ord —ord

.. —>ord
divisor 90X, 7o(ny) aera such that X, ypn,) aora — 0X,, yoiny) pera = X po(nyy- The
systems of these (formal) schemes have an action of G,,(A*)°™4. The map

. aord ord
Sp 1 X Up(ny), a0 T X n(vy) Ao

"0 and the induced map on reduced sub-schemes is ab-

solute Frobenius. Similarly the formal completion of AilmU);,o(ﬁl No).S along its special

fibre depends only on UP(N;) and ¥4, a subset of the data contained in A, which we
will describe in more detail in the next section. Thus we will denote this completion

is finite flat of degree p”

. — ,ord . .
Qlfﬁj);,o(r]‘\ihmord, and its reduced sub-scheme ALmU)po( Ny),zerd- The latter contains a sim-
. . » — 5 d 3 s d A ; d
ple normal crossings divisor 8A;T7n[])p()(rjvl)7zord such that AfinU)po(er),Eord - 8A£lin[])p()(r]\,1)7zord =

ZX“U);,O(%). The systems of these (formal) schemes have an action of G (A>)ord, The

map

. o((m),ord (m),ord
Sp - an,UP(Nl),ZOTd ’ Q(n,UP(Nl),EOYd

is finite flat of degree p(®+2mnlF":Q gand the induced map on reduced sub-schemes is

absolute Frobenius. (See section [5.3])
We will write XZI}I,IH’T and XLC A and Ag?Z)’T for the dagger spaces in the sense of

[GK] associated to X1, /Q, and X, 17.a/Q, and AX”U)Z/QP. We will write X0t

(UP)!(N1)
(m),ord,t min, {

ord,
and X(UP)]:(Nl),Aord and ‘AUP(Nl),Eord for the sub-dagger spaces of X(Up),(NLNQ) and



236 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

X(TU,,),(Nl No).A and Agﬁ N1 N2), S corresponding to the admissible opens in the cor-

responding rigid spaces which are the generic fibres of %OrdUn%n( wyy and xord o (UP) (V1) Aord

and an UPOT, ) sora Tespectively. These depend only on (UP)(Ny), A4, UP(N;) and

yord If UP maps to (UP) then the spaces X((Eg)T,(N)Aord and AUP(]?[rd ;md are the

pre—images 1I1 XZ.UP)/(NLNQ) A a‘nd AUP Nl NQ) b Of

ord,min, min,}
Xwryvy © X ey n)-

Similarly we define closed sub-dagger spaces XMt and X, OrdT b(n).aera and

(UP)'(Ny)
8A(m yord, Tzord (See sections and [6.4])

Xord min

The systems of dagger spaces {7y, ’T} and {X“;‘;d;{,) Aora ) and {.A yord f

Up(]\[1 Eord

have actions of G, (A®) and G, (A=) and G (A®)od respectively, which re-
spect the boundaries. If g € G, (A“)Ord or G(A®)d or GI™(A®)r respectively,
then X} ord mm and X Aora and A (m.ordf - are the pre-images of Xy ordmin 014

ordm add oy ord VPY(N])
)((‘;ﬁ;[ (1), Avord and AEZLP)OE?VT) sv.ora Under
93 X000~ X4 N+ val 00)
and
g: X\T/P(Nl,Nz)A - XZVP)'(Ni7N2+va1p(y<g>)>’A’
and
9 AN w2 AT N 00

provided that either val,(v(g)) = 0 or Ny + val,(v(g)) > 0. (See sections and
64)

We will write EcanT Ao

on XUP(N No).A assomated to 551?N17N2)7A7p. It does not depend on N5 or A. We define

for the restriction to X OTCET Ny), Aord of the locally free sheaf

5[3]? }\L[) pora, similarly. The systems of sheaves {551?;,1 perd o} and {Slsﬁ,b ]J\r,l) Aord,p}
have actions of G, (A®)°. If g € G,,(A>)°¢ then the map

* ocan,} can,}

5 P I(N{)’A/,ord — SUp(Nl) Aord

is an isomorphism. We have maps, which we will denote tr p:

(gp can,f letr §p can,t
Scan 5 & O ora &
P(N1),A0rd P(Ny),Acrd p PO ord Sy Yaordt P(Ny),Acrd
» v, Xy inpyaerd T UP(Ny) a0 P,
and
b T (s can,} 1®tr <;0 sub T
5511 a, g ’ & « L 5ord 5
or p ord (@] rd, Sy HX " of ord
N1),A UP(N1),A ;P(LI)MM o BN ), a0t Ni),A
where Z) ora.t C O porar denotes the ideal sheaf of the boundary. (See
Up(]\]l)’Aord Up(N )Aord

section [6.3])
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We will also write 5SUb’T ), for the restriction to X Om} it of the locally free sheaf
on X 51;?13 N associated to Ets}i,b N1.Ny),p- 1t does not depend on Ny. It can be identified
with the push-forward from X OTCET Ny),Aord TO X, Ozfi ]Ivn Lt of Ecan’T ). Ao . The system of
sheaves {8;‘;?’]{[1) ,} has an action of G (A®). Moreover the map

. b, b, T
tI‘F * Sp,x g[SJL;(Nl Aord p g[S]l; (Ny),A0md p
pushes forward to a map
X sub, T sub,t
tr e Gy N1)p — & N1),p

which does not depend on A9, (See section [6.4])

We will denote by 2 " mord.t (log 0o) the sheaf on A Ord Tzord associated to the
Aup () zord
sheaf Qix(’") (logoo). It is independent of Ny and . Also let T, ooz
n,UP(N1,N3),= UP(Np),sord

denote the ideal sheaf in O om)erd t defining dAmMIerdt e systems of sheaves

d
Up(Nl) sord UP(N Eor

{Qi\(m)’“d** (log )} and {Q o ord (log00) ® T, ,emy.erai  } both have actions of

UP(Np),xord UP(Nl) sord UP(N;),zord
G (A®)r T g € GY™(A)°d then the map
g9 QA<m),ord,f (log o) — Q_A(m),ord,‘r (log o0)
(UP)/(N1),x/-0rd UP(N;),sord

is an isomorphism. We have maps, which we will denote tr p:

gp’ QA(m),ord 1 (log OO)

UP(Ny), sord
(G I
> Q (m),ord,f (log OO) ®O (m),ord, OA(m) ord,t
Lot UP(Ny),zord UP(N1)7gord UP(Nyp),xord
Ktr p .
’ Qf4<m>,ord,1 (log 00)
UP(Nl)ygord
and A
Sp,x (Q:lA(m),ord,T (log OO) ®RT HA(m)ord. 1 )
UP(Nl),ZOrd UP(Nq), sord
(G I
Q (m),ord,} (log OO) ®o A(m)ord t Sp L g A ordyt
Lot UP(Ny),zord UP(Nl) sord UP(Nyp),zord
Rtr p .
Q;(m),ord,‘j‘ (log OO) X IaA(m),ord,T

UP (N ),zord UP(Np),xerd

(See sections[6.3])
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A.2. The boundary.

Unfortunately to describe the boundaries of our various compactifications requires
significantly more notation. We remind the reader of our convention that, if U C G
are groups and G — H is a homomorphism, we will sometimes also use U to denote
the image of U in H, where from the context it is clear that we need a subgroup of
H.

We will first consider the boundary of X,T}}l For i =0,...,n let Prf(i) denote the

subgroup of G,, consisting of matrices of the form

k k k
02(n—i)xi * *
Oixi | Oix2m—i) | *

and let L, ;) denote the subgroup consisting of block diagonal matrices. Then L, ;) =
Ly, (i) 1in X L (i) herm, Where Ly, ) 1in = RSSF GL; is the set of matrices of the form

* 0 0
0| Lo |0
0 0 h

with h € RS;F GL;, and where Ly, ;) heem = Gr—; is the set of matrices of the form

v(g)l; | 0] 0
0 gl 0
0 01

with g € G,,—;. (See section [1.2])
For U C L, ;(A>) a neat open compact subgroup we set

+ —
Xn)(i)zU o H Xn7i7hUh_lan,(i),herm(AOO)'
hELn,(i),lin(Aoo)/U

This is locally of finite type, but not of finite type over Q. We refer to it as a
generalized Shimura variety. It has a left action of L, () 1n(Q) = GL;(F) such that
§ € Ly (i)in(Q) acts via the coproduct of the identity maps

ani,hUhflany(i)ﬂherm(Aw) ani,éhUh*16*10Ln’(i)7herm(A°°) .

The inverse system {X;(i) ¢} has a commuting right action of Ly (;(A>) such that
9 = (Gtins Gherm) € Lin (5(A™) acts via the coproduct of the maps

Gherm - Xn—zphUirlmL,L,(i),herm(AOO) — ani,hgrngl?nlh—lﬂLny(i),hcrm(A‘X’)
if V O g 1Ug. We further define
i _ +
Xn,(i),U - L”v(i)vlin(Q)\Xn,(i),U'

The inverse system {Xi’(i)’U} has a right action of L, (;(A>). (See section )



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 239
With these definitions we can describe the boundary of X} min - There is a family of

closed sub-schemes

n = 00X D X = 0XNF D XN D D Ot X =10
which are preserved by the action of G, (A>). We set

X = DX — O X

which is smooth over Q of dimension (n — ) [F*: Q] and write X™"" for the formal
completion of X2 along 97 X"}, We can describe 9 X7} as

b
H X n,(i),hUR— 1OP+()(A°°)

hePt NGy (A) /U

(A
(@)
If g € G,(A®) and if g7'Ug C V then the map

20X X

is the coproduct of the maps

i i
g:X n,(i),hUR=INP ) (A) — X n (i)W VRSTINPT o (A%)
where hg = ¢'h’ with ¢’ € P, ;(A>). (See section [5.1})

We write
Up(Nl)n,(i),lin == ker<Ln,(i),lin(Zp) - Ln,(i),lin(Z/pNIZ)) C Ln,(i),lin(Aoo)
and
Up(N1, No)n o =0, (Nl) lin X U, (N1, Na)pi C Ln,(i)(@p);

and if U? is a neat open compact subgroup of Ly, (i) 1in(A*P) or L, ;y(A®P) we will
write

Up(Nl) = Up X Up(Nl)n,(i),lin-
or
UP(NI’ NQ) =UP x Up(Nl, Ng)n’(z)
Moreover we write

Lu i)3in(A®) = Ly, 1) 1in (AP X Z,)

and
Ly ) (A>)rd = Ln,(i),lin(Aoo)ord X Gp_i(A>)ord
and
L iy (A)" 7 = Ly (i) 1im (A%)7 5 Gy (M%)
(See section [1.2])
We set

ord,+ H Xord
n (7') UP(N1 N2) (hUph 1an (i), herm(A ))(vaNQ)'
h€ Ly, (i) 1in (A%°) 07X /UP(N1)

It has a left action of L, ;) 1in(Zp)) = GLi(Op,p)) such that § € L, ;) 1in(Zp)) acts
via the coproduct of the 1dent1ty maps

ord
X i,(hUPh—1NL,, .(i),herm (A%P)) (N1,N2) } Xn i,(ShUPh=15-1NL,, .(i),herm (A%P)) (N1,N2) *
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The inverse system {X;rz) Ur(Ny.N,)) Das a commuting right action of Ly, ;) (Aoe)ord
such that ¢ = (Giin, Gherm) € Lin (i )(A“)Ord acts via the coproduct of the maps

. . ord
gherm : Xnil’(hUphilmL”v(i%herm (Aw’p))(Nl’Nﬂ Xn*i’(hglinvpgl;nlhilany(i),herm (Aoo,p))(NLNz’)

if VP(N{, N3) D g~ 'UP(Ny, Ny)g. We further define

ord,f ord +
X, n,(i),UP(N1,N2) — = Ly, hn(Z(p))\X ),UP(Ny,Na)

ord b

SUp(NiNy) ) DS a Tight action of Ly, (i) (A®)rd. (See section

The inverse system {X;

i)

There is a family of closed sub-schemes

ord,min ord,min ord,min _ ord,min ord,min
&, UP(Nl N2) — aOXn UP(Ny,N: D aan UP(Nl N2) aXn UP(Ny,N. 3 82Xn UP(Nl N2) >

ord, min
.. D 6n+1Xn Up(N1 NQ) — @

which are preserved by the action of G,,(A%)rd. We set

0 ord, min _ ord,min ord,min
9 X n UP(N1 =0; Xn UP(N1 Na) 8Z+1X UP(N1 No)

which is smooth over Z,) of relative dimension (n — ¢)?[F'" : Q]. We can describe it
as

ord,f
HhePn (i (A)OrdXN\Gy (A)0rd X JUP(N1) “Ty (4 i),(RUPh=INP ) (A%P))(N1,N2)

b
HHhX (0),hUP(N1,N2)h=1NPF ) (A%)’
where the second coproduct runs over

h € (P o (AN\GR(A%) /U (N1, Na) — Pl (A) " N\G L (A%) [UP(NY)).
The action of G, (A>) can be described as in the case of 9P X7 (See section )

We will now turn to the boundary of X,, y A and AflmU)E The former is the special

case of the latter in which m = 0, so we will discuss only the case of A;TU),Z and allow
the reader to specialize to the case m = 0. We will first describe more precisely what
is the data encoded in .

If X is an F-vector space we let Hermy denote the space of symmetric Q-bilinear
forms

(, ): XxX—Q
such that
(az,y) = (z, ay)
forz,y € X and a € F. If W C V,, is an isotropic F-subspace we set
¢™(W) = (Hermy, yo @ Hom p(F™, W)) ®g R.

If V,, iy denotes the subspace of V,, with the last 2n — 4 entries zero then (’:(m)(Vm(i))

can be identified with Z (NX'(?))(R), where Z (NTET'ZZ.))) is the subgroup of G consisting
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of matrices of the following shape:

1; 0 * B
0| lom-p | O [ | O
0 0 1; 0

If W C W then V,,/W+ — V, /(W')+ and so
cM(W') — ™ (W),
If v € G (Q) then there is a natural map
7 W) = €M (W),

We define €™->0(1W) (resp. €™:20(1W)) to be the set of pairs (( , ), f) such that
(, ) is positive definite (positive semi—deﬁnite) on (V,,/ WL) ®g R, and set

ey = | e ) C M=oy,
w'cw
Alternatively ¢™0(W) can be described as the set of (( , ), f) € €™:=9(¥) such
that the kernel (i.e. radical) of ( , ) is defined over Q. We then define a topological

space €™ by
¢lm) — (U Q:(m),>0(W)> /
w

where ~ is the equivalence relation generated by the identifications of €(™)=0(117")
with its image in €™>"0(W) whenever W’ C W. Thus as a set

etm — [T etm>0
w

The space €™ has a continuous action of G{™ (Q) and of RZ,, the latter acting
by scalar multiples on each €™0(W). The natural projections €™0(W) —
¢@:-0(1W) give rise to a projection €™ — ¢ = ¢ (See section )

By a U-admissible cone decomposition S of G&™ (A®) x (G (R)) x €™ we shall
mean a set of closed subsets o C G (A®) x mo(G,(R)) x €™ such that

(1) each o is contained in {(g,d)} x €™0(1) for some isotropic subspace W C
V, and some (g,d) € Gslm)(Aoo) x mo(Gr(R)) and is the set of Rs¢-linear
combinations of a finite set of elements of Hermy, . x W™;

2) no o € ¥ contains a complete line through the origin in any (g, ) x €™ (W);
3) if o € 3 then any face of o also lies in ¥;
4) if 0,0’ € ¥ then either o N o’ —@oraﬂa is a face of o and o;
5) GU(A) x 10(Go(R)) X € =,y 0

6) E( 1s) invariant by the diagonal action of G( (Q) on GI™(A®) x 75(Gn(R)) X

¢,

(7) ¥ is invariant by the right action of U on G (A®) x (G, (R)) x €™ (acting
only on the first factor);

(
(
(
(
(
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(8) Gv(@m)((@)\Z/U is a finite set;
(9) if o € T lies in GI™(A®) x mo(Gn(R)) x em-O(y, o)) and if h € P 77(11))
then ho € ¥;
(10) if o € 3 lies in GV (A®) x m(Go(R)) x €m0V, ) if v € GI(Q), if

uweUandif h € PX'(?) (A) satisfy

(A),

o N yhou N (GI™(A®) x (G (R)) x €™=0(V, ) # 0

then v € P ))(@)
)

(Here we let Gim ( act on GY™ (A®) x 75(Gn(R)) x €™ via multiplication on
the first two factors. The restriction of this action to G%m)(Q) does not coincide
with the standard action of G\/™ (Q), which we are using.) We call ¥ an admissible

cone decomposition if it is U-admissible for some U. The group G4™ (A>) acts on
admissible cone decompositions. We call ¥’ a refinement of ¥ if every element of ¥ is
a union of elements of ¥'. We write (U, %) > (U, %) if U’ C U and ¥’ is a refinement
of X. We say that ¥ is compatible with A, an admissible cone decomposition of
Gn(A%®) x mo(GL(R)) x €, if the projection of each element of ¥ is contained in
an element of A. We write (U,X) > (V;A) if U maps to V and X is compatible

m),tor

with A. For each m there is a cofinal collection 7, of pairs (U, %) of a neat
open compact subgroup U C G (A*) and a U-admissible cone decomposition X
of GI™ (A®) x (G, (R)) x €™ with various natural properties, some of which are
listed in section . In particular it is preserved by the action of G4 (A>). (See

section [5.2])

We define (G%m)(AOO) x mo(Gr(R)) x €™)ord to be the subset of (g,d,z) such
that for some W we have z € €™ (W) and W ® Q, = g,(Vyn) ® Q). It is
invariant under the left action of G{™(Q), under the right action of G\ (A%)ord
and under the action of RZ,. (See section ) For UP(N) C G4 (A>)erd > hy g
UP(N)-admissible cone decomposition of (G,(mm) (A®) x 75(Gn(R)) x €m)ord we mean
a collection ¥ of closed subsets o C (GY”(A®) x 7(Gp(R)) x €m)ord gatisfying
analogous properties to those listed in the previous paragraph. Notions of ‘refinement’

and ‘compatibility’ are defined just as in the previous paragraph. In the same manner
we also define a partial ordering on pairs (UP(N), X). If ¥ is a UP(Ny, N2)-admissible
cone decomposition of GY”(A®) x mo(Gn(R)) x €™ then the collection X of
elements of ¥ which are contained in (G4™ (A%) X 7(Gp(R)) x €m))ord ig o UP(N,)-
admissible cone decomposition of (G%m) (A®) x m(Gp(R)) x €™)ord For each m we
define J\™""" {6 be the set of (UP(Ny), 2, where (UP(Ny, N»), %) € Ji™" for
some Ny and X. It has various natural properties listed in section [5.2] In particular
it is preserved by the action of G (A%)°rd, (See section )

As was already mentioned, to each (U, X)) € Jim-er
jective variety AS?U)’E /X together with a simple normal crossings divisor 8145172’2 C

we can associate a smooth pro-
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Agﬂz such that
(m m m
An,U),z - aAfw,U),E = A;U)

and 8A7(Z?U)72 is the reduced pre-image of OXyry. We write aiA%;,z for the reduced
pre-image of 0; X}'};
NANY s = BAT) s — B AT

The irreducible components of 8A( Ux are in bijection with the one dimensional

cones in GY™ (Q)\X/U. A collection of such irreducible components have a non-
empty intersection if and only if there is a cone ¢ € ¥ such that the given irreducible
omponents correspond to the one dimensional faces of o. In that case we write

s }Ag v, for this intersection. We introduce the smlph(:lal complex S ((9An v, 2) whose

vertices are the irreducible components of oA™ UE and whose simplices correspond
to collections of such irreducible components Wlth non-zero intersection. Then the
topological realization |S (aAime)Eﬂ of § (0A£TU)7Z) can be identified with

G QNG (A%) /U x mo(Ga(R)) x (€™ = {0})/R,).
Moreover

[SOATD )| — ISOAT 5 — 0. A7)
is identified with
G QNG (A%) /U x mo(Ga(R)) x €77 /R%),

where

¢ = ) em=0aw) et

dim W=n
is a dense open subset. Moreover GY™ (Q)\(GY™ (A=) /U x m(Gn(R)) x €7 /R%,)
can be identified with
m (A)/
(mi) lin(R) N U??,oo)‘An,(n) (R)Oa

n,(

(m)
HheP“””(Aoo)\G(”)(AoowUL m(Q >\Ln
(hUh~ mP(’" (A%)) Ly () nerm (R)F (L

where U __ is a certain maximal connected compact subgroup of G,(R) defined in
section and A, () denotes the maximal split torus in the centre of L, (). (See

section [5.3})

Similarly to each (UP(Ny, N2),¥) € J™' we can associate a smooth quasi-

projective variety AXnU);,O&?,h N2),= / Xﬁrgp“fﬁ Ny)

divisor

together with a simple normal crossings

(m),ord ),ord
ATLUP N1N2 2 - ATLUP NINQ)E

such that

(m),ord — A (m),ord _ 4(m),ord
TL,UP(N:[,NQ)72 nUP Nl,NQ),E - n,Up(Nl,NQ)
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and 9.A"ord s is the reduced pre-image of OX ordmin We will also write

TLUPN N) nUP(NlN)
0;A m[;po(ﬁ ). for the reduced pre-image of 0; X;rgp‘?]l\? ) and set
0 4(m),ord . (m),ord ),ord
0, 'An JUP(N1,N2),8 a"An JUP(N1,N2),2= a“rl'An JUP(N{,N3),5

The irreducible components of 8A( Upor;\i,l Np)x are in bijection with the one dimen-

sional cones in GY™(Q)\S/UP(Ny, Na). A collection of such irreducible components
have a non-empty intersection if and only if there is a cone o € ¥ such that the given
irreducible components correspond to the one dimensional faces of o. In that case

we write 8[U]An Upor;\i,l Np)» for this intersection. The F-fibre of g, AnmU)po(ﬁl N ﬁ is
5.3))

non-empty if and only if G (@)JU contains an element of ¥°'. (See section
(m),ord

We let A nur(Ny), e denote the Fp-fibre of Am[}po(ﬁl Np)xp- It is independent of

Ny > Ny and ¥ inducing X°'. Similarly we define 9 A mU);,O(f] sora and 0; A mU)po(ﬁl yord
and, if o € X also 8[U]AnmU)por;\ifl sora- 1f 0 meets G (A>®) x mo(GL(R)) x ¢ then

8[0]1451%)1)()&31),2“(1 is irreducible. (It probably is in all cases, but we don’t know that.)

We also define
m),ord —(m),ord
o) An UP(Ny),xord = H o) nUP (Ny),zerd
dimo=s
where the disjoint union is over s-dimensional cones o € Yord taken up to equiv-
alence, where two cones are considered equivalent if they have the same image in
G;m)(@)\E/ UP(Ny, N3). We have an identification of the topological spaces associ-
ated to the simplicial complex recording the intersections of the irreducible compo-
nents of the boundary:
—-(m),ord (m),ord —(m),ord
|S(8An UP(Ny) zord)| - |S(8An JUP(Ny),xord — 0 An UP(Ny) zord>|
with

(m) (m)
HhePr(LT) (%0 x Z)\GU™ (A% )ord X /UP(N) L, )(Q)\an(n) (A)/
(RUP(N)B™ 0 P (A2 5 Z) L e (R) (L4 5 (R) 1 U ) A, ) ()
(See section [5.3]) We write
Tty = L0 (@NLY () /V L ) e (R) (L0 1 (R) N US o) A () (R),

an (S1)"mFQU bundle over a locally symmetric space associated to Ly (4)1im. With
this notation

(m),ord (m),ord ),ord
S04, UP(NY), zord)| - |S(8An UP(Ny), zord( 9 An UP(Nl) sora )| =

m
HhEP,E’,’ZZLs*(Awx@)\G%”l%Am)ord’X/Up(N) (n), (AU (NDR—I PO (AP x 2,)

(See section [1.4])
),ord

We also deﬁne 2A m(;po(ﬁ sra t0 be the formal completion of .A( Ub(NaN) 5 long its

F,-fibre. It is independent of Ny > N; and ¥ inducing »ord - We similarly define



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 245
( rd rd ),ord ( rd
8anmUp° gora and 82[n Upo zord and 8U]anmUp° Ny mera and 0 s)anmUpo (V). 5ord- (See
section ) We will write 3[(7]./4” Upozég sora and 0 S)An Upord T) sora for the tube over
the corresponding schemes in characteristic p inside the dagger spaces associated to
8[0]147(1 U)p )5 and 0© AilmUp (N1 N2) 5 Again this is independent of Ny and 3. (See
section )

We write Afszz . for the formal completion of A" UE along 3014” s~ There is an

explicit description of An,U,E,i’ but it will require considerable extra notation, which
we oW explain (See section [5.3])
The group P ™ is the subgroup of GI" consisting of elements of the form

* * * *
02(n4)xz‘ * * *
Oixi | Oix2(n—i) | * *

It is the semi-direct product of the subgroup N (m ()) consisting of elements of the form

Li| o« [\ [

0 [ Loy | * | | %

0 0 \ 1; 0
by Ln W = = Ly, (i) ,herm X LSZ%)JW where ngz),nn is the subgroup consisting of elements
of the form

* 0 0 0

0] oy |0 | { O

0 0 * *
Thus

N *
0| % %
001, 0
Then
and

(See section [1.2})
For U C L (AO") a neat open compact subgroup we set

(m),+ _
Xnv(i)aU o H Xn_ivhUh71an,(i),herm(Aoo)'

heL{™), (%) /U
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It has a left action of L (i), llrl(Q) = GL;(F) x Hom r(F™, F') and the inverse system

X™FY has a commuting right action of L™ (A=). These actions are defined
n,(1),U n,()
exactly similarly to those on X +(. . We have

= L) i (Q\X)

:
X n,(i)

n,(1),U

7

(See section [4.1])

If U is a neat open compact subgroup of (P, m) +/Z(N )))(A%) we set
At H A(H‘m)

n,(i),U n—i,AUR=1NGTT™ (Aoe)

heLl™) . (A%)/U

,(2),lin

The scheme Afl has a left action of Ln (2) 1in(Q) such that 0 € L("Ez) i (Q) acts via
the co-product of the maps

0: A(Hm) (i+m) — A(Hm) (i+m) = A(Hm) (i+m)
n—i,hUL=ING, ™ (A>) n—i,0hUR=167ING, " (A%°) n—i,6(hUR—ING (A*))

n—

The system of schemes {A } has a commuting right action of the quotient group
(Bt /2N ) (A%)

such that if g € (P(m /Z( ))(A"O) maps to g € L
the coproduct of the maps

(A>) then g acts by

z) lin
hgg 1h 1. A(H‘m) _ s A(H‘m)
lin n—i,hUh=1nG 1T (A%) n—i,hgiin Vi h=1NGUHT (A%e)”

(See section [4.2])

IfUisa neat open compact subgroup of PTE%))’+(A°°) we define ST(L”ZB)JrU to be the

torus over X' (m

( U with co-character group constant over
ani,hﬁh—lﬁLny(i)’hem(A°°) - X+(z)
(where U denotes the image of U in LS@) (A>)) and identified with

hUR™' N Z(N)(Q),

In fact we define

Yo = H SpecQ
RE€Ly, (iy,1in(A>) /U
50 that S(m)j—z is already defined over Yn+() The torus S has a left action of
Lf:z),lin(@) such that § € L' (Z) iy sends
(m),+ (m)+
n’(i)’U’Xnﬂ.‘hUh_lan,(i),herm(A‘X’) - S” (¥, U‘ani,éhUh—l6—10Ln,(i),herm(A°°)

via the morphism induced by the map on co-character groups

WUR™ N Z(NT)(Q) — shUR™'67' N Z(NI7))(Q)
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given by conjugation by §. The system of tori {SS?Z))E also has a right action of
B rgm (A%) such that g € P, m) +(Aoo) mapping to gin € Lflm) (A>) sends

,(%),lin

(m) + y glm)t
X . _ S ; X _
| n—i,hUh lan,(i),herm(Aoo) n’(l)’U| n_i’hglinvglinlhilmL”v(i%herm(AOO)

via the morphism induced by the map on co-character groups

hUR™ N Z(NIE)Q) — hginVgph™ 0 Z(NI)(@)

by conjugation by hging 'h~t. (See section )
If (U,%) e T then we define a partial fan (in the sense of section Y(h)o

in X, (5"t

AU P (1 )) as follows. Over

ani,h/(hUh—lmPﬁg)’*(Aoo))h/,—lan,m,hcrm(Aw)
we take the cones
o C (WUR 0PI (A N Z(NIP)(Q)) @2 R = € (V)
such that
{(Wh, )} xoceX

and o N €M->0(V,, ) is non-empty. It is preserved by the action of L ”E)) 1in(Q). (See
section |5.2) . ) This, in the sense of section 4.4 E/ls an ‘admissible cone decomposition’

(m),+
Of X (S ()hUh 1nP(77(1))+(Aoo)

elements of ¥(h)o.
If U is a neat open compact subgroup of P(m)’+(A°°) we deﬁne an S, (m)’+ y-torsor

)70, We write X(h), for the fan consisting of all faces of

T, l) U/A + . It has an action of L 1in(@). The system {T U} has a Commutlng
action of Pn Q) T(A>). (See section ) There is a torus embeddlng

(m),+ (m),+
Toow =T, 6 vsm,

over ASY(LE)JE] corresponding to E(h)o. We write

m)+
= s T, RORASION

—_~—

for the closed subset of the boundary corresponding to X(h)y C 3(h),, and let

m),+,A
T iy sy,
denote the completion of 7™ __ along ag(h)OT“”” — . (See sections 2.3 and
: n,(2),U,%(h)o . n,(2),U,%(h)o ()t -
) The L " (i).1in(Q) action extends to Tn P and O, T, (v and Tn . Uz(h)o
The quotlents

m), m m),+
aE(h)oTn, z')),uU = Li,(g)(@)\aE(h)oTy(L, z‘)),U
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and . o (
m 7u7/\ _ m
T s = Ly Q@\T ) T,
make sense. Sometimes it will be Convenient to take the quotient in two stages. Thus
we set

0 (h)oTnfnz)):h = Hom ¢ (F™, Fi)\ax(h)oTr(L,n(li))y,Jlr]

and (m),f )
m), +,/\ m z m + N
T, i) vy, = Hom p(F™, F )\T S(h)o-
These still carry an action of L, ;1(Q). If (U, %) > (V, A), then there is also a natural
L, ;) (Q)-equivariant map

(m),5+,A (m),+
Tn,(z‘),U,E( o 7 T, (z)VA( Yo

The inverse systems {T(m hUAﬁ .} and {0 h)OT(m U} as U and ¥ vary has an action
5)

of P (Aoo) (See section .
Then we have an identification

(m)A - _ H T e
n,U,S,i n,(2),RUR=1NP (450) B (R)o”
heP{ T (aeN\G™ (A=) /U

where the term indexed by h is exactly the open and closed sub-formal scheme whose

b 0 y min

underlying topological space is the pre-image of X (i) U1 (1) C X0

These identifications are compatible with the action of G, (m) (A*>) and the maps
Aq(‘z,n(}:E,i — An,V",A i X/\VA B X'rrzng'lz/\‘

(See section [5.3])

There is a snnllar description for the formal completion of AnmU)po(ﬁl No),S along
d d,A
aOAnmU;”;Vl Np).5» Which we will denote An U;”}Vh No). i

(A%®)ordx denote L ™ (AP x Z,). We write

We let L) (A)erd = L% o)

(4),lin n,(4),lin

(Mmﬁhfwmﬂﬁm@)ﬁﬂwm@m%»

It ur c L™ (A>°P) we write UP(N) = U? x U] (N) We also define

('L ),lin”

(m ),ord,+
)) i), UP(N) — H Spec Zy),

L%mwwwwm

n, z) lin

which has a left action of L! ()hn(Z(p)). The inverse system {;)}(W(LZ Oéff } has a

commuting right action of L( lln(A“’)Ord We set

(m), rd,b (m (m),ord,+
yn,(i),OUP(N) =L, hn(Z(p))\y )OUp N)

(See section [4.1])
We set

L,(ZZ) (A=) = Ln,(i),herm(Aoo)ord X L(mz

n,(

(Aoo)ord

),lin
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and

LE:EQ) (AOO)Ord,X = Ln ,(3), herm(Aoo)ord XX L(m)

) hn(Aoo)ord X

We set
Up(N1, No)0) = Up(N1, Na)uei x Up(Ny)\

and, if U? C Lflnzz)(Aoo’p), then we set UP(Ny, Ny) = UP x U, (Nl,Ng)( . We define

),lin?

(m),ord,+ o ord
Xn (7’) Up(Nl N2) H X (hUph 1an (4), herm(Aoo P))(N1,N2)7
hEL(m) (Aoo)ord,X/Up(Nl)

n,(2),lin

which has a left action of L( iiin(Zp). The inverse system {&, m),ord, +

m has a
na(l)vUp(vaNQ)}
commuting right action of L("Ei) (A>)ord We set

X( m),ord,f

)
w(iyur(ny = L

m),ord,+
n,(i),lin(Z(p )\X(

+(8),UP(N)*

(See section [4.1])

Further we set P (AOO)Ord to be PV (A%?) x L) (A%) N (Z,) and
Pém (A)ordx £ he P (A"O P) x L(m) (A)rd XN (”(?) (Z,). Moreover we define

Up(Ny, Ng)(nz to be the subgroup of P( Q) (Zp) consisting of matrices of the form

* * * * *
0 * * * *

0] =0modp™ | =1,_; mod p™ | = 0 mod p™ = (0 mod p™
0 0 0 = 1, mod p™ = 0 mod p™

If U? C P(m)’+(A°°p) (resp. (PYST/Z(NUT)) (A7) we define UP(Ny, Ny) to be
Ur x U, (Nl,NQ); Wt (resp. UP x U, (Nl,N2)<"g>) [(Z(NY)(Z,))). Tf UP is a neat
DT Z(NU)(A%P) we define

A(m),ord,-i— o H A(z—i—m),ord

n,(1),UP(N1,N2) — n—i,(hUPh=1NGUTT™ (A%0.p)) (N1, N2)
heLl")

(3),lin

open compact subgroup of (Pém

(Aoo)ord X/Up(Nl)
which has a left action of L\ (Z hn(Z (). The system of schemes {A(m OEC:,J;VI )} has
a commuting right action of P (A‘X’)Ord /(Z ( )(Am’p X Zy)). (See section )

If UP is a neat open compact subgroup of P(m) +(A°° P) we define S n&) Oé(i;r) to
m),ord,+

be the torus over y 00PN with co-character group over the SpecZ,) indexed by
he LU | (A)ord /Up( ) identified with
hUPh™ Z(N(TZ.)))(Z@)).

The torus S m) 0;3, ~ hasa left action of L 0, hn(Z(p)). The system of tori {S(m )Olﬁ(+ Y

also has a rlght actlon of P ( F(Ae)erd, (See section )
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If (UP(N),X) € gimrtered and hoe GIM (A>)°rd X then we define a partial fan

. (m),ord,+ .
Y(h)o in X, (Sn O (hUh- 1mP‘m’)+(Awm))(N)) as follows. Over the Spec Z,) corresponding

n,(i

™) (A)ordx /UP(N) we take the cones

(
n,(4),lin

o C (W(RUPh™ N P (AP) R 0 Z(N (>))(Z(p))) ®zR =™ (V, i)

toh' € L

such that
{(Wh,1)} xoceX

and oNE™->0(V,, ;1) is non-empty. It is preserved by the action of L(sz) 1in(Zpy). (See
section |5.2) . ) This, in the sense of section 1s an ‘admissible cone decomposition’ of

X, (§mrtord " )70, We write E(h) for the fan consisting of all faces
n,(3), (WUPh=IN P (4202))(N)

of elements of 3(h)o.

If UP is a neat open compact subgroup of Pé (AP we define an S(m)oﬁ&l)

),ord,+ m),ord
torsor T )UP(NI NQ)/A;,(E),UPZVLNQ)' It has an actlon of Ln (2) iin(Zp)). The system

{7;7(1»)73;1&17 Noy )t h::is a commuting action of Pm(i)’ (A%)°rd. (See section ) There
is a torus embedding

T(m) ,ord,+ (m),ord,+
m(@.UP(NLN2) 7 (5),0P (N1 Na ), S(R),

over .Ailm ngi,;;v Ny corresponding to X(h)o. We write

(m),ord,+ o (m),+
Ot T giyoe(vive) = 00T o o s vy (k)

for the closed subset of the boundary corresponding to X(h)y C g]?h/)o, and let

(m),ord,+,A
n,(2),UP(N1,N2),5(h)o

),ord,+ (m),ord,+
n, (i ) UP(N1,N2),E(h), along az(h)OT (6),UP(N1,N2), 5(h), (See

sections and ) The LS@) in(Zp)) action extends to g (m)erd,+

e ( (i), UP (N N2) Sy
m),+ m),ord,+,A .
Osmyo T ()00 vy No) B0 T 3 (N1 o) () L RE quotients

(m),ord,f 1 (m) m) ord,+
8E(h)o7:z,(i),Up(N1,N2) - Ln,( ( )\aE(h n,(i),UP(N1,N2)

denote the completion of 7 m

and
(m),ord,g,A _ r(m ),ord,+,A
7:1 ’L) U;D Nl,NQ) Z(h)o - LTL ( )\T UP Nl,NQ) E(h)o
make sense. Sometimes it will be convenient to take the quotient in two stages. Thus
we set

m),ord,j+ m),ord,+
az(h 7;1( (i),UP(N1,N2) — Hom OF(OF (p)> OF P)>\82(h Jo ((l; UP(N1,N2)

and

(m),ord,+,A o m i (m),ord,+,A
7;’ ), UP(N1,N2),S(h)o Hom OF(OF,(p)v OF,(p))\n,(i),UP(Nl,Ng),Z(h)o'
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),ord,f,A
),UP(N1,N2),% (h)o}
and {Ox ) W;) Zr,fl Jh\,l )} as UP(Ni, N2) and ¥ vary have actions of P, m) +(A°°)°rd

(See sectlon )

Then we have an identification

These still carry an action of L, ;(Z)). The inverse systems {T

(m),ord,A
4 An Up(Nl NQ) pINS
H (m),+ oo )ord, X (m) oco)ord, X P T(m ~ ,u " 1 (m) + oo, ord
heP, " (A%) \Gr 7 (A>) JUP(N1) " (i),(hUPR=1NP™ 0T (A%:P)) (N1,N2), 50 (h)o

H Hhe(P,i’j}ﬁ;*(Aw)\G&m) (Aoo)/wuvl,Nzn—(P;f'(‘Zﬁ(Aoo)ord’x \G{™ (A0)ord:x JUP(N))
(), A

n,(i),hUP (N1 ,Na)h~ lﬂP("Z) F(A%) D(h)o’

where the term indexed by h is exactly the open and closed sub-formal scheme whose
underlying topological space is the pre-image of
ord,f

n,(8),(RUPR=LOPYELF (A%09)) (N1, N2)

or
b 0 q-ord,min
X n,(i),AUP (N1, Na)h =10 Pt (400 C 95X, U (N1, V)
These identifications are compatible with the action of Gy, (m) (A>)ord and the maps

(m),ord,A ),ord,A ord,A ord,min,A
An,Up(Nl,Nz),E,Z An ,VP(N1,N2),A Xn VP(Nl N2),A Xn VP(N1 Na),i*

(See section [5.3])
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ApPPENDIX B. COMPARISON WITH [Lad]

This appendix is meant to be a guide to the notation system in [Lad] (and in the
earlier works [Lall, [La2l La3]). While we will not cover everything, we will highlight
the key definitions and results used in this paper so that, it is hoped, the reader can
understand the references more easily. We will adopt the notation and conventions
introduced in [Lall Notation and Conventions], which might be quite different from
the ones introduced in this paper. (We will explain the differences when necessary.)

B.1. Shimura varieties as PEL moduli in characteristic zero. In [Lal] and

[Lad] the symbols Z(1) are used to denote ker(exp : C — C*). In those papers,

unlike this paper, Tate twists just mean tensor products with powers of Z(1) as a Z-

module, with no attached Galois actions at all. Let us fix the choice of a square-root

v/—1 in C, which defines an isomorphism 27v/—1 : Z = Z(1) = ker(exp : C — C*).
Consider the integral PEL datum

((97*7 L7 <'7 '>7h0) = (OF7C7AH727TV _1< ) >n7h0)
in the sense of definition 1.1.1.1 of [Lad], where hq is the R-algebra homomorphism
ho : C— End@®ZR(L Rz R)
o Z1 Idn —ZQ\I/n

z=2z21+V—1z— (Zqun zlldn)
with U,, being the n x n-matrix with 1’s on the anti-diagonal and 0’s elsewhere (see
section [1.1). Note that the technical condition 1.4.3.10 in [Lal] or condition 1.2.1.1
in [Lad] are satisfied.

The group functor G of definition 1.1.1.3 of [Lad] is just our G,,, and v has the same
meaning in this paper and in [La4]. The reflex field Fy defined by (L ®zR, (-, -}, ho)
(see section 1.2.5 of [Lall) is just Q, and Sy = Spec Fy = Spec Q.

For each open compact subgroup ‘H of G(Z), [Lad] defines a moduli problem

My

over Sp = SpecQ (parameterising isomorphism classes of abelian schemes with ad-
ditional PEL structures) as in the beginning of section 1.1.2 of [Lad], which is rep-
resentable by a smooth quasi-projective scheme over Spec@Q when H is neat. As
explained in remark 1.1.2.1 in [Lad], the definition of My, only depends on the ratio-
nal PEL datum (O®7Q, %, L&7Q, (-, - )®zQ, hy), and hence can be extended to the
cases of all open compact subgroups H of G(A*), up to replacing L with any lattice
in L ®z Q stabilized by H (and replacing (-, -) with a suitable QZ,-multiple of the
induced pairing). By proposition 1.4.3.4 in [Lall, this moduli problem is canonically
isomorphic to the
Xn,U

in this paper when U = # is contained in G(Z) (see section [3.1.1). (The condition
on Lie algebras in this paper is equivalent to the determinantal condition in [Kol
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and [Lal].) The collection {My}4 indexed by neat open compact subgroups H of
G(A>) can be G(A™)-equivariantly identified with {X,, v} (with U = H), because
the (Hecke) actions of G(A*) on them are defined by twisting level structures on
quasi-isogeny classes in the same way (see remark 1.4.3.11 of [Lal]). (Later we will
not repeat the explanation on such canonical isomorphisms between moduli of iso-
morphism classes and of quasi-isogeny classes. Also, we will tacitly assume that all
Hecke actions to be introduced are compatible with previously introduced ones under
canonical morphisms.)

B.2. Filtrations. Consider any filtration V= {V_;}; on L ®z Q = F?" such that
(O) =V_3gCV_oCV_, :Vi_2 C Vg :L®ZQ,

which is symplectic in the sense of definition 1.2.6.8 in [Lal] (or definition 1.2.1.2(4)
in [Lad4]). By lemma A.4.3 in [La5|, up to the action of G(Q), we may assume that
there exists an integer 0 < i < n such that

0)=V_3CV,=V,4 CV_ = an(i) CVo=L®zQ,

which we call the i-th standard symplectic filtration, and write V.= V® . The stabilizer
of V@ is then the parabolic subgroup P;f(i) (Q) of G,(Q).

We will need to consider filtrations Z = {Z_;}, on L ®z Z such that
(O) :Z,3 CZ,Q C Z,1 :ZJ__Z CZOZL®ZZ,

which is fully symplectic admissible as in definition 5.2.7.1 in [Lal] or definition 1.2.1.4
in [Lad]. If 0 <i <n and g € G(A®), then we can define such a filtration %9 by
209 = (g71 (v, @g A®)) N (L ®7 Z),
for each j. Since we are not in the so-called type D case, by the proof of proposition
A.5.9 of [Laf], any fully symplectic admissible filtration arises as Z(9) for some i and
some ¢g. In fact, using the Iwasawa decomposition, we may suppose that g € G(Z).
For each j, let Gr® ; := Z_;/Z_;_; as usual. Then (-, -) canonically induces a perfect
pairing
(-, )_1:Gr% x Gr%, — Z(1).

Let us temporarily fix such a Z = 2049 with ¢ € G(Z) and fix an open compact
subgroup H C G(Z). In [Lad], the following groups are defined for Z-algebras R
along with open compact subgroups (see definitions 1.2.1.9, 1.2.1.10, and 1.2.1.11 in
[Lad]):

(1) Pz(R) :=={g9 € G(R) : g(z) =2} = g7 ' P ;,(R)g. We set Hp, :=H Py (Z).

(2) Gj4(R) is set equal to the subgroup of GLo(Gr?,®;R) x GLo(Grj®;R)
consisting of elements respecting the pairing Gr*, x Gry — Z(l) induced by
(+,-). This group comes isomorphically from g~'L, ;)in(R)g. There is a
natural surjective map (v~! Gr?,, Grf) : Pz(R) — Gj,(R) corresponding to
P;(i)(R) —» Ly, (i)1in(R). We denote the kernel by Py(R) = g~ P, ;(R)g. We

A

set Hp, := H N PL(Z), Hay, = Hp, /Hu,, and Hay, = Hp,/Hp,.
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' g,7) € GLog,r(Gr?%, ®,R) x G(R) :

(3) Cha(R) == {<§x,g)y>_1 ATV
morphically from gfany(i),herm(R)g. Then there is a natural surjective map
Gr”, : Pz(R) — G z(R) corresponding to PJU)(R) —» Ly, (1) herm (R). We de-
note the kernel Zz(R) = (g7 Ly, i) in(R)g) X (¢7 "Ny i) (R)g). We set Hy, =
H N Zy(Z) and Ha,, = He,/Hz,.

(4) Uz(R) is the subgroup of Pz(R) consisting of elements g such that Gr?(g) =
Idgz o, - Thus Uz(R) = g7' N, ) (R)g. We set Hu, := H N Uy(Z).

(5) Uzz(R) is the subgroup of Pz(R) consisting of elements g which induce
IdZ,1®ZR and Id(ZO®ZR)/(272®ZR) on Z,1 ®Z R and (ZO ®z R)/(Z,Q ®Z R), re-
spectively. Thus we have Usz(R) = ¢~ 'Z(N, ) (R)g = Herm™(R) —
Homog, r(Grf @, R, Gr”, ®;R). We set Hy,, :=H N U27z(Z).

(6) Urz(B) = Ua(R)/Usa(R) = (9 N (B)9)/ (g Z(Ny)(R)g), which is
isomorphic to Hom SL(R) We set Hu, , := Hu,/Hu,,-

(7) Giz(R) := Zz(R)/Uz(R). This maps isomorphically to Gj,(R), but [Lad]
chooses to distinguish it as a subgroup rather than a quotient of Pz(R)/Uz(R).
We set Hg, , 1= Hz,/Hu,, which may differ from Hc .

(8) GJ,z(R) := P;(R)/Uz(R). This maps isomorphically to Gpz(R), but [Lad]
chooses to distinguish it as a subgroup rather than a quotient of Pz(R)/Uz(R).
We set HG'h,z := Hp; /Hu,, which may differ from Hg, ,.

(9) Giz(R) := P,(R)/Uyz(R). It is isomorphic to GS)_Z(R) We set Hey, =
,HPQ /HUZ,Z'

For each open compact subgroup H = U of G(Z), as g varies in G(A*), the

}, which comes iso-

‘H-orbits Zgi’g) of Z(9) are parameterised by the double coset space
Pyon (ANG(A®)/H = B ) (A®)\Ga(A%)/U.
(See, for example, section [5.1])

B.3. Cusp labels. Given any fully symplectic admissible filtration Z, we define a
torus argument to be a rigidification ® = (X,Y, ¢, v_2,¢g) on the top and bottom
graded pieces (see definition 5.4.1.3 in [Lal] or definition 1.2.1.5 in [Lad]):

(1) X and Y are locally free O-modules, and ¢ : Y — X is an isomorphism of
O-modules. R R

(2) ¢_5 : Gr*, = Homgz(X,Z(1)) and ¢y : Grf = Y ®z Z are isomorphisms of
O ®7 Z-modules such that the pairing (-, - )a0 : Gr?, x GrZ — Z(1) induced
by (-, -) is the pull-back of the pairing

(-, Ve : Homy (X @7 Z,Z(1)) x (Y ®z2Z) — Z(1)

defined by (z,y)s = z(é(y)).

(For a general integral PEL datum, the first condition should be weakened to ¢ being
injective with finite cokernel, but in our setting the second condition then forces it
to be an isomorphism.) We say that two torus arguments ® = (X,Y, ¢, v 2, ¢0)
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and ' = (X" Y', ¢, ¢ ,, ) are equivalent if there exists a pair of isomorphisms

(vx : X' = X, vy 1 Y S5 Y') of O-lattices matching all other data. For 0 < i < n we
have a torus argument

o0 .= (0L, 0%, 1d, (2rv/—1)¥,1d", 1d)

for Z(:1) where W, is (as before) the i x i-matrix with 1’s on the anti-diagonal and
0’s elsewhere (see section [1.1)).

Ifd = (X,Y, 0,0 _2,¢0) is a torus argument for Z and g € Pz(A>), then we obtain a
torus argument @ = (X©@ Y©® ¢®@ o9 ,9D) for 79 induced by g : Gr¢ 'Z — Gr?
(see section 1.2.3 of [Lad] for more details). We shall write (9 = ($())(9),

Consider triples of the form (Z, ®, ), where Z is a filtration as in the previous sec-
tion, where ® is a torus argument as above, and where ¢ : Gr* = Gr*, ® Gr* |, ® Grf —
L®y;7Zis an O @y Z- equivariant splitting. The group G(Z ) acts naturally on such
triples, and hence we can consider their H-orbits of the form (Zy, ®3,dy), for each
open compact subgroup H of G(Z) We consider two such orbits (Zz, Py, d%) and
(Zy, D4, 0,) equivalent if Zy, = 77, and if there exist representatives ® and ¢’ of ¢y
and @7, respectively, which are equivalent. (Note that no compatibility condition
is imposed on dy and 0%,.) We call the equivalence classes [(Zy, Py, dy)], or simply
(D4, 0%)], the cusp labels for My,.

For each (Z, @, §) as above, and any Z-algebra R, we define G 4(R) = GLog,r(Y ®z
R), which admits a canonical map to Gj,(R ®z Z) induced by ®. When R is a Z-
algebra, we have Gj4(R) = G ,(R). When R = Q, we have G 4(Q) — G ,(A>),
and we define

F‘:I)H = 7‘[(;272 N G;@(Q),

A

a congruence subgroup of Gj 4(Z) = Gj,(Z) N G} 4(Q) depending only on &4 (see
definition 1.2.2.3 of [Lad] for an equivalent definition).

The map that sends g € G(A%) to [(Z29, ®9 6,,)] (for any 6) sets up a bijection
between the double coset space

(Gl (Q) X Pyany (AX)N\G(A®) /H,

and cusp labels [(Zy, @y, d%)] such that Grl has rank i over O ®7 Z. This identifies
the set of cusp labels of the form [(Z %9)7 Dy, 03,)] with

G 00 (Q\G) 56 (AOO)/(QHQ_I)G;ZM) .

This last double coset space is the index set of
i _
Y gUginpy (a) T 11 SpecQ
Lo, (6 1in @\ L, (3,10 (A%°) /(U g™ 1mPn (l)( )

in this paper (see section [4.1f), with U = H.



256 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE
B.4. Minimal compactifications in characteristic zero. For each neat open
compact subgroup H = U, there is a normal projective scheme
min min
MH = ApU
containing My = X,, 7 as an open dense subscheme (see theorem 1.3.1.5 of [Lad]).
The minimal compactification M3™ admits a stratification by locally closed sub-

schemes
M3" = H Zi(@3,6)) = H H Z[(cpgjghaﬂ)}

[(P,69)] i=0 g
where [(Py, d%)] runs over cusp labels for My, and g runs over the double quotient
(Glgan (Q) X Pl (A%))N\G(A>) /H (see theorem 1.3.1.5(4) of [Lad]). If H = U this

induces
0 ymin __ )
0 Xnt = HZ[@%"“’),M)]'
9
The decomposition
0 yvmin __ f
0; Xny = H Xn,(i),gUg—lmP;m(Aoo)
gep,:,(” (AN\GR(A>)/U
(see section corresponds to
i — :
n,(i),gUg NPT ) (A%) — 11 21 530
hELn,(i),lin(Q)\Ln,(i),lin(Aoo)/(gUgilmPI(i) (Aoo))
Each Zs,, 4, is the quotient M%7 of
Dy~
My = MHGZZ
by I's,,, which is isomorphic to My, ., where Hg, , ¢ is the image of Hp,N(G] 4(Q) X
P7(A)) in Gpz(A™) (see lemmas 1.3.2.1 and 1.3.2.5 of [Lad]). Here My, and
h,zZ

MHG“@ are moduli problems analogously defined by some integral PEL datum

(O, %, L%, (-, -)%, hZ) associated with a representative Z of Zy (see definition 1.2.1.15
and lemmas 1.3.2.1 and 1.3.2.5 of [Lad]). If we let U, (resp. U, y;,,) denote the image of

gUg ' NP (A%) in Ly, (;y(A%) (resp. Ly (i) un(A™)), then under the identifications

b _
Xn,(i),U;, = Lm(i)ylin(@)\xi(i),ug

= Ly )1 (Q)\ H X U1nGa_s(8)) U,
R€L,, (3,1in(A%)/(UgNLy, (3,110 (A%))
= I1 (L (010 (Q) N AU inh™ N KXo (050G i(8))
heLn,(i),lin (Q)\Ln,(i),lin(Aoo)/Ugl;,lin
of section [4.1]
(Dg_i[hg)

e the term Xnv(i)yUémGnii(Aoo) indexed by h is identified with M, *
e the group Ly, (i)1in(Q) N hU, inh ! is identified with Ly cino;
’ H
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e and the term
(Ln,(i) lin(@) M hU;hn )\X ) UsNGr—i(A>)

z(:hg)

is identified with M} Zn
Similarly, under the identification

+ — )

on= 1 Yoo e
heLn (1) 1m(A%) /U7

(3,hg)

the term X, (5)v;nG, ;(a=) indexed by h is identified with M, 2% These identifica-
tions are all Hecke equlvarlant

B.5. Toroidal compactifications of Shimura varieties in characteristic zero.
For each representative (Zy, ®3,, 09 ) of a cusp label [(Z3, Py, 03 )] for My, there is a
torsor

Dy
C<I>H,6H - MH

of an abelian scheme

grp Dy
C3 Brybr My,

(see lemma 1.3.2.7 and propositions 1.3.2.12 and 1.3.2.14 of [Lad]). The abelian
scheme CgP s = over M3 is Q*-isogenous (i.e. quasi-isogenous) to Home (X, B)
(where B is the pull-back of the universal abelian scheme over M3}*). We obtain
an isomorphic abelian scheme torsor if we replace (Zy, ®;,0%) with another repre-
sentative (but its universal property, which we have not described here, depends on

this choice of representative).
If U; again denotes gUg N PTT(Z.) (A*>), then the map

+ _ (%)
A n,(4),Uy HhGL (i),1in (A>) /U An—i,thg‘lh‘lﬂPn,m(A“’)
1
+ _ .
n,(z),Ué - HhELn’(i)ylin(Aoo)/Ué Xnv(l)7U§mPn,(i) (Aoo)

in this paper (see sections and with U = H is identified with
HhELn,(i),lin(Am)/Ué Cﬁ)gi’hg),dﬂ

+ |
‘1>§§’hg>

HheL =) /U My,

These maps are Pyiiq(A>)/U, 7.0 (A>)-equivariant. (See proposition 1.3.2.24 of
[Ladl.) (Since our pairing (-, -) is perfect, the universal property of Cs,, 5,, in propo-
sition 1.3.2.14 of [Lad] can be simplified by suppressing the dual objects. This uni-
versal property then agrees with that of An i hgUg—Th=11P o) (A) in section of this
paper.)

For each representative (Zz, P, d%) of a cusp label [(Zy, Py, d3)] for My, there is
a torsor

,(1), hn

Sy b0 7 Cq’?-ulsﬂ



258 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

under the pull-back of a split torus
Eg

H
over Spec Z with character group

Sa
(see lemma 1.3.2.25 and proposition 1.3.2.31 of [Lad]). We obtain an isomorphic
torus torsor if we replace (Z3, Py, d3) with another representative, but its universal
property depends on this choice of representative. For a fixed (Z, ®, §), the morphisms

H

Eaydn — Coyon
are P, (A™)-equivariant. (See proposition 1.3.2.45 of [La4].)

When Hy,, = G(Z>U2,z — U,2(Z) and when @ is represented by some ® =
(X,Y,0,0_2,00) (where ¢ : Y < X must be an isomorphism, as explained above),
the group Sg,, is the group S(Y)™ in the notation of this paper (see section
For more general H, we set Sg, = S(Y)™" (see section 1.2.2 of [Lad]), and then Se,,
is the unique lattice in Sg, ®7Q such that Ss,, /Ss, = Sg, /Ss,, = U27Z(Z)/HU2’Z (see
proposition 1.3.2.31 of [Lad]), where the superscript ¥ denotes the dual of Z-modules.
Then (Se,, )i can be identified with the space of hermitian forms over ¥ ® R, and
we define Pg, (resp. P+H) to be the subset of (Se,,); corresponding to positive
semi-definite hermitian forms with rational radicals (resp. positive definite hermitian
forms). When Zy, = Z,(:L’g) for some g € G(A™), we have Y ®7 Q = F"; and the sets
Se,, ®z Q and P are the sets S(F") and Herm7, respectively, in thls paper (see

sections and (1

The torus
+ +
Sn,(i),U;, — Yn,(i),U;

in this paper (see section with U = H is identified with

H Eq)’(;i,hg),aﬂ — H SpecQ.

R€L,, (iy1in(A%) /Uy h€L,, (i1 (A%) /Uy
*( Q-+ + =0 +
Moreover, the sheaves X*(5," U/) (S, U,)]R , and X, (S U/)R are identified
with
+
H S(I),(}iyhg)v H P(I),(}ihg) 9 and H P‘i)(z hg)
H
h€ Ly, (4)1in(A>) /Uy h€L, (4),1in(A)/U} h€L,, (4)1in(A>)/U}

respectively. The Si(i) 1, -torsor

g

. B (i)
T ( ) U/ - HhEL (2), lm )/Uél] Tn_ivthgilhilmPn,(i)(Aoo)

: 5

n o i
A n,(7), U/ - HhEL 54 )hn(Aoo /Ul An i,hgUg=1h~ 1ﬂP (1>(Aoo)

is identified with
HheLn,(i),lin(Am)/Ug/) :‘Pg.i[hg) Ny

HhGLn,(i),lin(A"O)/Ué C@%’hg),éa‘
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These maps are Py.q) (A™)-equivariant.
Consider any compatible collection

Y= {E‘l’ﬁ}[(qmﬁﬂ)}

of admissible projective smooth rational polyhedral cone decompositions for My,
where each Yg,, is a I'p,-admissible projective smooth rational polyhedral cone de-
composition of Py, , as in definitions 1.2.2.13 and 1.2.2.14 of [Lad]. (Note that in
[Lad] rational polyhedral cones are open cones, whereas in this paper they are closed
cones.) FEach such ¥ considered in [Lad] induces a pair

(U, A)

in Jt°r (with U = H) in section [5.2| of this paper, because, in order to define (U, A)
as in section [5.2] it suffices to define the admissible cone decomposition A(g)y for
X, (ST =Y, for each g € G(A™>), which can be taken to be the pull-

n,(i),gUg—lﬂP;(w(Aoo))
back of the subcollection {¥g,, }j(@;,5,) of X indexed by the cusp labels [(®y, 6%)]
with underlying Z3 equal to Zgi’g). In fact, J'°" is exactly the set of such induced
pairs (as U = H varies).
Each ¥4, defines an affine toroidal embedding

Sy 0 T P00 T S0,00, 5y, U Eayi(0) = | | =P3,03,0
0€8py, 0€X®,,

over Cy,, 5,,. Rather confusingly =g, 5, (¢) (in the notation of [Lad]) is what in this
paper we would have denoted Z4,, 5,,0; and Zs,, 5,,,» is what in this paper we would
have denoted 054,555, - The formal completion of Z¢,, s, 5,,, along the union of
the o-strata Zg,, 5, for all o € Yg,, such that o N P;ﬁﬂ # () is denoted

Xoyon = %‘19%5%2@%'
(See (1.3.2.34), (1.3.2.35), (1.3.2.36), and lemma 1.3.2.41 of [Lad]). The schemes
+ +
Lo v a@e = An;

of this paper (see section are identified with

H Egliho) g, H Cpliho) g,

h€Ly, ()1 (A>) /Uy h€Ly (i1 (A>®) /U

Moreover, 77" is identified with

TL,(@),U!),A(Q)O
H xq>,(;i,hg) 767{
heLn,(i),lin(Aw)/U!]
and T is identified with

n,(i),Ué,A(g)o
1T (Xgina 5,/ Tggina) = T Xen60/Tas),
heLn,(i),lin(Q)\Ln,(i),lin (Aoo)/U!/; [((I)'H#sﬂ)}
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where the second disjoint union runs over all cusp labels [(Py, 0%)] with underlying
Zy equal to Z (Agaln U=H.)
For each palr (7—[, Y)) as above, we have a smooth projective scheme

g
containing My as an open dense subscheme, called a toroidal compactification of My
(see theorems 1.3.1.3 and 1.3.1.10 of [Lad]). This is the

Xn,U,A

in this paper (see section [p.3)), with U = H and with (U, A) € J°" induced by ¥ as
above. This identification is compatible with the actions of G(A>) on the collections
{M%':}2.m) (see proposition 1.3.1.15 of [Lad]) and {X, ua}w,a)-

The toroidal compactification Mtof admits a stratification by locally closed sub-

schemes
Mis = ] Ziewone
[(P3,094,0)]

(see theorem 1.3.1.3(2) of [Lad]) indexed by equivalence classes [(®,dy,0)] as in
definition 1.2.2.10 of [Lad]. Without repeating the definition in detail, let us just
note that the equivalence classes [(®y;, 03, 0)] with the same underlying cusp label
(P4, 0%)] can be identified with the 'y, -orbits of the cones o € Y4, such that
onN P+ # (). Each stratum Z((®4,,6:,0)] 18 canonically isomorphic to Zg,, s, ., and
the formal completion of Mtor along the union of the strata Zs,, s,.-) labeled by
equivalence classes [(@H,éy, )] with the same underlying cusp label [(®y,d%)] is
canonically isomorphic to X¢,, 5, /s,

When U = H, and when (U,A) € J'" is induced by ¥ as above, the formal
completion of Mtor along the union of all strata Zjs,,s,.0) labeled by equivalence

classes [(Py, 0x, )] with underlying Zy equal to Zgi’g) for some g € G(A™) is
X”/l\UAl = H n, 1) gUg—lﬁPJr (A>),A(g H H <I>(l hg) On /F@(l hg))

where the indices g and h run over P:L:(i) (A“)\Gn(AOO) /U and

L, (i) 1in(Q)\ L, (i1 (A%) /(gUg ™" N B (A%)),

respectively, in this paper (see section .
These identifications are all Hecke equivariant (see proposition 1.3.2.45 of [Ladl).

B.6. Kuga families in characteristic zero. Consider any O-lattice (). Define G
to be the subgroup of automorphisms of L & ) which preserve L, act trivially on
the quotient (L & Q)/L and preserve, up to scalar multiples, the pairing (-, -) on L.
Restriction to L gives a surjective homomorphism G — G, and we denote the kernel
U. This homomorphism is naturally split. (Compare with definition 1.2.4.3 of [La4].)
IfQ=0p then G =G and [AJ Hom ;"“. If H is any open compact subgroup of
G(2), then H denotes 7 N U(Z), and Hg denotes ?Q/?:ZG
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To each neat open compact subgroup H of CA}(A) with image H = He in G(i),
[Lad] attached a genemlzzed Kuga family N — My,. (See definition 1.3.3.4 of [Lad].)
If Q) =0p and U = 7—[ then it is the scheme denoted AnU in this paper. The

generalized Kuga family attached to 'HG X HG is denoted N8P — My, and is a Kuga
family as in definition 1.3.3.3 of [Lad]. It is an abelian scheme Q*-isogenous to the
m-fold fiber product of the universal abelian scheme over My when @) = OF. The
generalized Kuga family N — My is a torsor for N8 — My,.

To study these schemes and their compactifications [Lad] realizes them, in a non-
canonical way, inside the boundary of a larger Shimura variety. Concretely, as in
section 1.2.4 of [Lad], to define such generalized Kuga families, we start with an
O-lattice @Q; consider

Q_s := Homp(Q, Diff(;}zu))) and Qg :=Q
(where Diﬂ%}Z denotes the inverse different), with the natural perfect pairing
(+s )@ Q2 x Qo — Z(1)
induced by the trace pairing; and set
L:i=Q,®LaQ,
with the (self-dual) pairing
(-,-Y":LxL—7Z(1)
defined by

<({L'_2, x_1, CCO): (y—27 Y-1, ?JO))NZ <ZL’_2, y0>Q + <‘T—17 y—2> - <y—27 xO)Q
for x o5,y o € Q_o, x_1,y_1 € L, and x¢,yp € Q9. We shall fix the choice of
Q=0p
in what follows, since this is all we need in this paper. Then the above L and
(-, )" can be identified with the A1, and { , Yin @ Aan X Appin — Z in this
paper (see sections and [B.1]), up to reversing the ordering of the coordinates of
?_2 = (D1ff(_9 sz(1))™ and dividing by 27v/—1. Then there is a natural choice of
ho : C — End@®ZR(L ®z R) extending ho : C — Endog,r(L ®z R) (see section 1.2.4
of [Lad]) which makes
(O, %, L, (-, )" ho)

an integral PEL datum as in definition 1.1.1.1 of [Lad], which defines a group functor
G and a PEL moduli problem M for each open compact subgroup H of G( ) as in
the case of G and My, in section |B.1] - We shall always denote the analogues of objects
for (O, *, L, (-, ) hg) with a tilde ~, without explicitly introducing them.

By the definition of (L (-, V), there is a fully symplectic admissible filtration Z
on L ®7 Z induced by

0CQR2CR2PLCQrDLBQ=
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Let X := Homp (Q - g,Diff(B}Z( )) and Y := Qo. The pairing (. )0 :Q2xQy—
Z(1) induces a canonical 1som0rphlsm ng Y 5 X, and there are canomcal isomor-

phisms ¢_o : Gr? 2, = HomZ(X ®z Z,Z(1)) and 3 : Gro 3 Y @z Z (of O ®g 2~
modules). These data define a torus argument

&) = ()/Z }7 57@ 27&0)
for Z (see definition 5.4.1.3 in [Lal] or definition 1.2.1.5 i in [La4]) Let & be the obvious

splitting of Z induced by the equality Q_ 2B LD Q)=

Then we can define algebraic groups PZ7 Uz7 U27Z7 Ul,za Glz, G;Z,

Gl,f’ Gh,f’
and G;{z" By definition, we have canonical isomorphisms
~Y / ~Y >
G,z = Gh,’i =GRz Z

and

G= 61,“2' and U= 612.

For each open compact subgroup H of G(Z), we define

(See definition 1.2.4.4 of [La4].)
Given any neat open compact H C G(Z), we can always find some neat H C G(Z)
such that H = Hg as above and
Hs, /g, = H, , > Ho
(cf. condition 1.2.4.7 of [Lad]). In this case the abelian scheme torsor
- G ~7
C‘iﬁﬁ’g — MﬁH = My_{‘

depends only on H (but not on the auxiliary choice of ’;fl) and equals the above

generalized Kuga family N — My attached to H.
We can explicitly compare some of the above groups with the related groups defined
in our paper (see sections and , as follows:

(1) G 5(R) = G, 3(R) = G(R) = Gu(R).
2) Gyz(R) = G;4(R) = GL,,(Op ®z R).

(2)

(3) P3(R) = GL(Op @7 R) x GV (R) = (GLn (O @7 R) x Gy(R)) x NS™(R).
(4) Uz(R) = N\™(R).

(5) Upz(R) = Z(N{™)(R) = Herm™)(R).

(6) U(R) = U, 3(R) = Hom " (R).

(7) P4(R) = GV (R) = G,(R) x N (R).

(8) G(R) = G,3(R) = G (R) = G,(R) x Hom ™ (R).
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(9) P3(R)/U3(R) = GL(Op @z R) x Gy (R).

B.7. Toroidal compactlﬁcatlons of Kuga families in characteristic zero. Let
us fix the choice of some (Z, Z,® 5) as above. Then there is a bijection between the
fully symplectic admissible filtrations Z of L ®7 7 such that

OC2_2C2_2C2_1CE_1CE®ZZ

and the fully symplectic admissible filtrations Z of L ®, 7 such that Z o=17 4 /2_2.
(The notation * will always mean some objects related to such a filtration Z.) When
z = 720 we have Z = Z(i+mD),

For each Z as above, and for each Z-algebra R, we define the following quotients
of subgroups of @(R) (see definition 1.2.4.53 of [Lad]):

(1) Py(R) = (P4(R) NPy(R))/U,5(R), so that Pyems (R) = PO (R).
(2) P4(R) := P4(R)/Upg(R), s0 that P, (R) = P71 (R).

(3) Up(R) := z( )/Uyz(R), s0 that Uguimn (R) = N0 (R).

(4) Uy 5(R) = U, 5(R)/Uy5(R), so that

Uy z4mn (R) = Z(N))(R) = Herm ™™ (R) /Herm ™ (R).

(5) Uy 3(R) := Uy(R)/Uy5(R) = U, 5(R), so that
) = N0 (R)/Z(N1))(R) = Hom |

(6) Gpz(R) == éhz<R> d G
( R)

" (R).

#(R) = G} 4(R), so that G, z(R) = G ,(R) =
= Loy (R). o
) = (Zs ( )ﬂ P’( )/U ( ) and G (R) = P;(R)/PL(R), so that
GZ,Z(R) = @lz(R) and Gz Z(i+m, 1)(R) = L%),nn(R)-

(8) Guz(R) = Py(R)/Uy(R) = Gy 4(R), s0 that Gy zeimn (R) = G1V(R).
Hence it makes sense to define ﬁﬁz = (7—752 N ﬁﬁ’i)/ﬁﬁﬁ etc when H = ﬁ@, so that
we have ﬁlsz — Hp, etc. |

If g e ﬁ»’i(A"O) then Z(+79) depends only on the image § of § in (A}(A), SO we
(4,9

will denote it 209 . This sets up a bijection between the H-orbits Z ZUrma) — 70:9) of

z(+m9) = 70.9) and the double coset space

Py (AXN\G(A®) /H,

N (i+
n n—

U17Z(i+m,1) (

which equals
PUT (AXN\GI (A%) /U

in this paper (see, for example, section , with U = H.
By taklng graded pleces with respect to ﬁltratlons induced by 0 C Z_o C Z_ 2 C
1 C L Q7 Z there is also a bijection between the torus arguments d =

7,C7Z
( Y/ gg Y_2, o) for 7 which induce ® and the torus arguments ® = (X, Y, ¢, p_a, ¥0)
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for the filtration Z corresponding to Z. If we set H = Hc,, then this bijection is com-
patible with the formation of the H-orbits of ® and the H-orbits of the corresponding
®, which induces bijections among the following three sets (see lemmas 1.2.4.15 and
1.2.4.16 of [Lad]):

(1) The cusp labels [(Z;, éﬁ, 5ﬁ)] for MH such that the stratum Z;4 s , of Mmln

(25735
is contained in the closure of Z[@N P
A~ HTH v
(2) The H-orbits of equivalence classes of (Z P (5) where Z and ® are - compatible
Wlchandq)mthesensethatOCZ s CZ o C7Z 4 cCZ 1 CL@ZZand
that & induces ® as above, which we denote by (2, <I>H,(5H)] and call it a

cusp label (at level H) for (L, (-, ), ho,Z) (see definition 1.2.4.17 of [Lad]).
(3) The cusp labels [(ZH, Dy, 0%)] for My,.

The stratum Z[(é H)] = M “a , the finite étale cover M *r — M ‘A , the abelian scheme

~¢,~

torsor C’;I; 5, M7, and the abelian scheme C'-gfp~ — M Jad depend (up to canon-

207
ical isomorphism) only on the H-orbit of (Z,®, J) (see lemma 1.3.2.50 of [Lad]), and
hence we shall denote them by

M

P 5 ~ 5
MZF — MZE, Cy s = MA and CEPL - MR

A
H’ 0n (5

respectively. For a fixed (Z, i) 5) the morphisms

are equivariant with R R R
G12(A%) = G 5(A%) = G 5(A)
(see propositions 1.3.2.24 and 1.3.2.55 of [Lad]).
For each [(Z,®,0)] as above, and any Z-algebra R, we define é’ 4(I1) to be the

subgroup of GLpg, R(Y ®z R) of elements stablhzlng the kernel of Y — Y and
inducing Idy, which admits a canonical map to G 5 (R®z Z) induced by ®. When R is
a Z-algebra, we have Gg,é(R) = G ;(R). When R = Q, we have G;Vé((@) — G’ 5 (A%,
and we define

= 7:26;;’2 N @Eq)(@),
a congruence subgroup of @’ $(Z) = @’ (Z) N é’ 4(Q) depending only on Cfﬁ (see
definition 1.2.4.21 of [La4] for an equ1valent deﬁmtlon)
If g e P’Z(AOO) then the equivalence class of (Z(m@ Gitmd) (5) depends only on
the image § of § in G(A®). We will denote it (Z2(:9, & “7), 9). The map

G (259, 84D §,)

sets up a bijection between the double coset space

(G} 40 (Q) X Pl (A®)\G(A®)/H.
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ﬁ,SA)] such that Zg = i%’/g\) for some § € G(A™).

ol 05)] to Zg can be identified with the canonical

and the set of cusp labels [(Uﬁ

The forgetful map sending [(Zﬁ
map

~

(G0 (@) X Pon) (A)NGA)/H = Py (AN G(A) /A
whose fiber above the double coset of g € G(AOO) can be identified with
G, g QNG 560 (A%)/(FHT ey

1, 5 (1, 1)
This last double coset space is the index set of

y = H SpecQ

n,(1),gUg~1NPEL T (4%2)
LU0 i @NLLT 1 (8%°)/(qUg = P (49))

in this paper (see section , with g =g and U = H.
If U = H is any neat open compact subgroup of G{™ (AOO) =G(A®),ifg=7g €
G (A®) = G(A®), and if Uy =gUg™' N P(m (A*>), then the maps

Aﬁz)JrU;, = Hheﬂ”?z) (A=) /UL :T::U/h 1mP7(L77(L) (A%)
\) 1
Xn?(li)’er; - HheL”’E i (A%) /U Xn—ahUéh*lmPf:’gg) (A%)
1
XY(LT)Z))ZHU;
in this paper (see sections and are identified with
HheL(";)) i (A) /U Cé%’”’g),sﬁ

M A
HheL“”(’) (A=) /U M

1
yerom

n,(2),lin

H
@\L | (as) U

n,(2),lin

For each representative (Z, i)ﬁ, gﬁ) of a cusp label [(Zg, &)ﬁ, Sﬁ)] as above, there
Is a torsor

b5, 7 Co s,
under the pull-back of a split torus
Eé@
over Spec Z with character group
S&)ﬁ = ker(Sci — 85 )
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(which only depends on ’)ngz; see definition 1.2.4.29 and proposition 1.3.2.56 of [La4]).

We obtain an isomorphic torus torsor if we replace (Zﬁ, éﬁ, Sﬁ) with another repre-
sentative, but its universal property depends on this choice of representative.
For a fixed (Z,®,0), the collection {Eigﬁg }ﬁ?’z admits an action of PL(A*) such

that the morphisms

are equivariant with
P (47) = G 5(A%)

(see proposition 1.3.2.67 of [Ladl).

When Hg = @(Z)ﬁ” = GQZ(Z) and when (fﬁ is represented by some ¢ =

()u( Y, b, 3o, @o) (where ¢ :Y < X must be an isomorphism, as explamed above),
which admits a surjection Y — Y with kernel Y an O- lattice, the group S _ is the

group ker(S(Y)™ — S(Y)TF) in the notation of this paper (see section . For
more general H, we write Sy = ker(S(Y)™ — S(Y)'"), and Sg_, is the unique
lattice in §ci>1 ®z Q such that §i’g/§<§1 = §4Y)1//S\éﬁ = 62,2(2)/7:262,2 (see proposition
1.3.2.56 of [Lad]). Then (S _ )HVQ is a quotient of the space of hermitian forms over

Y ®z R, Wthh also admits a prOJeCtIOD to the space of hermitian forms over Y ®z R.
We define P (resp PJr ) to be the subset of (S )]R consisting of images of positive
’H

semi-definite hermman forms with rational radlcals (resp. positive definite hermitian
forms) over Y @z R (see (1.2.4.33) and (1.2.4.34) of [Lad]), which can be identified
with the subset consisting of preimages of positive semi-definite hermitian forms with
rational radicals (resp. positive definite hermitian forms) over ¥ @z R.

The torus

(m),+ (m),+
Sn,( DU, v n,(0),U}

in this paper (see section with U = H is identified with

H E&)%,hg) — H SpecQ.

(A%)/U} heLl™, . (A%)/U}

(m)
hEL n,(i),lin

1,(4),lin

Moreover, the sheaves X*(Sfl (Z)) ), X*(S£TE§EI)§O> and X, (S (B)E,)IEO are identified
’ 7 k) ) g 7
with

~ ~ .
H Sé%’,hg), P@(th)a and H Pi)(i,hg)
A

(A=) /U heL(™) . (A%)/U! heL™) . (A%)/U!

(m)
hEL ,(2),lin ,(4),lin

,(2),lin
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respectively. The ST(Z'EZ))JFU, -torsor
g

n,(i),U HheL( " 1 (%) /Uf n—ihgUg=1h=1nP{"7) (A%®)
Am),+ . " (7'+m)
n,(i),U}) HheL< i (%) /U n—ihgUg=th=1nP{"7) ()

is identified with

yerom

n,(2),lin

HheL<m

These maps are Py, (A®)-equivariant (see proposition 1.3.2.67 of [Lad]).
Consider any compatible collection

Y= {Eéﬁ}[(égﬁﬁ)}

of admissible projective smooth rational polyhedral cone decompositions, where each
Zéﬁ isa F@ﬁ—admissible projective smooth rational polyhedral cone decomposition of

A~

Pciﬁv as in lemma 1.2.4.42 of [Lad]. (We caution the reader that the definition there is

rather ad hoc.) The set of pairs k = (H, i) with Hg C H is denoted K% the subset
of K+J;{ consisting of Kk = (H E) with HG = H is denoted KQH; and the subset of

K, consisting of x = — (H,%) with He = H and H = H x HG is denoted Kg »
(see definitions 1.2.4.11 and 1.2.4.44 of [Lad]). For any given compatible collection
> of admissible projective smooth rational polyhedral cone decompositions for My,
and for ? = (), +, or ++, the subset of K7QH consisting of kK = (’;Q, f]) such that 3 is
compatible with ¥ in the sense that each p € iéﬁ is mapped into some o € g, (see
condition 1.2.4.49 and definition 1.2.4.50 of [Lad]) is denoted K¢, 5 5. This notion of
compatibility agrees with the one in this paper (see section .
Each such x = (#,3) in K%, induces a pair

(U, %)

in g{mhter (with U = ﬁ) in section of this paper, because, in order to define
(U, %) as in section [5.2] it suffices to define the admissible cone decomposition 3(g)o

oo Sglishe) 5
(A%) /UL <1>“’5H

Cyino 5 -
(i (8)/0; 8 b

(m),+ -0 (m) ¢ g oo :
for X, (S B 1mP(m)+(A°°))R , for each g € G} (A>), which can be taken to be
the pull-back of the subcollection {Z }((i) y of 5 indexed by the cusp labels

> 7—7
[(@H, 5H)] with underlying Z; equal to Z @9) for some § in G(A*>) corresponding to
g € GV (A®) = G(A®). In fact, J'™" o is exactly the set of such induced pairs
(as U = H varies). (It is hard to explicitly describe the set Jimter

because they are induced by auxiliary choices of compatible collections 3 for |\7Iﬁ.
Nevertheless, this is unnecessary for our purposes.)

when m > 0,
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Each ié defines an affine toroidal embedding
Zbpdy T Sepdy T E‘i’ﬁvsﬁviéﬁ N U S5 (P) = L Zbgdnh
,er(1>7q ﬁEE(i,ﬁ
over a&)A 5.- The formal completion of é _s 5 along the union of the p-strata
HH ’H’ H <I>ﬁ
Ei’ﬁ,&g,ﬁf orall pe Zéﬁ such that p N Pgﬁ () is denoted
budn x‘fﬁvgﬁv%ﬁ
(see (1.3.2.62), (1.3.2.63), (1.3.2.64), and (1.3.2.66) of [Lad]). The schemes
(m),+ (m),+
Tn,(i),U;,Z( o A, u;

of this paper (see section are identified with

H Glish )S — H Ov(i,hg)g.

[I]>I

) r ( # #
heLgLWEz) hn(Aoo)/U{? hGLanz) lln(Aoo)/U!/]
A .. . .
Moreover, T("Z)) _5, S(g)o 18 identified with

Xyomo 5
H q>’;z 976727

RELL 1in(A)/U}
and T,()%0 ) is identified with
H (xé%hg)jﬁ/ré%hg)) = VH (%é@gﬁ/réﬁ),
heL{) 1 @NLLT), L (A) /Uy [(®7.07)]

where the second disjoint union is over cusp labels with underlying ZA equal to Z( 9)

for a fixed g in G(AOO) corresponding to g € GI (A®) = G(A®). (Again H = U.)
For each k = (H,3) € K%, we have a smooth projective scheme
N:cior
containing N (of section , which we will henceforth write as N,, to emphasize the
dependence on H) as an open dense subscheme, called a toroidal compactification
of N, (see theorem 1.3.3.15 of [Lad]). When U = 7, and when (U, %) € ™" is
induced by k = (7—[ E) as above, the toroidal compactification
N, < N
is the
AEL U= An Us
in this paper (see section . Such toroidal compactifications and the identifications

between them are compatible with the actions of G(A®) = G (A>) (see theorem
1.3.3.15(4) of [Lad]).



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 269

The toroidal compactification Nf_fr admits a stratification by locally closed sub-
schemes
tor __ 7 ..
NS = I Ze,s,m

(see theorem 1.3.3.15(1) of [Lad]) indexed by equivalence classes [(éﬁ,gﬁ,ﬁ)] as
in lemma 1.2.4.42 of [Lad]. Without repeating the definition in detail, let us just
note that the equivalence classes [(®4,05,p)] with the same underlying cusp label

<i>A,5A can be identified with the Iy -orbits of the cones p € I _ such that
#o 07 b b

>

pnN f’; # (). Each stratum 2[@% 59 is canonically isomorphic to = S and
i HOH N
the formal completion of N along the union of the strata Z[(@ﬁﬁﬁ,ﬁ)] labeled by
equivalence classes [(éﬁ,gﬁ,ﬁ)] with the same underlying cusp label [(éﬁ,gﬁ)] is
canonically isomorphic to Xg_ 5 / Ly (see theorem 1.3.3.15(1) of [Lad]).
When U = #, and when (U, %) € J\™"™" is induced by x = (%, i\]) as above,
the formal completion of N!* along the union of all strata Z[(@ 5 ; labeled by

equivalence classes [(<I> (5 ,p)] with underlying Z;; equal to Z ) for some § € G(A®)

is
An,U,E i gUg_lﬁP(w(L) + Aoo E(g — q)(z hg) (5 /F(i)(z hg))

g

where the indices g and h run over P( +(A°°)\G(m (AOO)/U and

Z

LU QML) L (%) /(gUg ™ 0 P (A®)),

respectively, in this paper (see section .
These identifications are all Hecke equivariant (see theorem 1.3.3.15(4) of [Lad]).
If k € K%, y, then the canonical morphism

N, — M?-l
extends to a canonical log smooth morphism
tor tor
N — My,

(see theorem 1.3.3.15(2) of [Lad]). When U = H and U’ = H, and when (U,X) €
T and (U7, A) € T are induced by & = (H,S) and (H, X), respectively, we
have

(U,%) = (U, A)

(see section in this paper) and the above morphism is the log smooth morphism
A?U),z — Xnua

in this paper (see section . These morphisms and identifications are equivariant
with G(A*>) — G(A>) (see proposition 1.3.3.15(4) of [Lad).
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B.8. Automorphic bundles in characteristic zero. Since the maximal isotropic
submodule Vj of L ®; C on which hg(z) acts by 1 ® z is isomorphic to (F ®g C)"
as an I’ ®gp C-module, we can take Fj = F = Q and Ly = F" in the beginning of
section 1.4.1 of [Lad], and define

Mo(R) := GLog,r(Lg (1) ©g R) x Gu(R)

for each Q-algebra R. (See definition 6.2 of [La2] and definition 1.4.1.1 of [Lad]. We
will not need the other groups Go(R) and Py(R) in this paper.) This can be canoni-
cally identified with the group L, (,)(R) in this paper (see section , by matching
GLog,r(Ly (1) ®g R) with Ly, () 1in(R), and by matching G, (R) with Ly, () herm (R).
Let H be any neat open compact subgroup of G(Z), so that My is defined over
Spec Q as in section [B.I Then the tautological abelian scheme A over My defines a
locally free sheaf
@X/MH = 629}4/MH
(where e4 denotes the identity section), which is the
Qn,U

in this paper (see section , with U = H. We can similarly define Lie'. /My Lhe
action of G(A™) on {My }4 is defined by respecting their tautological abelian schemes
up to canonical Q*-isogenies, which induces actions of G(A>) on {Liej s, }» and
{Lie}iv m,, }# covering the one on {My}4, which are compatible with the isomor-
phisms
A" @ZN/MH(U — @X/MH

induced by the tautological polarizations A\ : A — AY. Here the formal Tate twist
is induced by the one on de Rham homology, realized by tensor products with Z(1)
over Z. Therefore, the corresponding Hecke action must be twisted by the similitude
character v, which corresponds to the tensor product with

Znu = Ox, . ([IVl)

in this paper (see section [3.4.1)).

Let ¥ be a compatible collection of admissible projective smooth rational polyhe-

dral cone decompositions for My, so that M;‘Zfz is defined over SpecQ as in section

. Then the tautological semi-abelian scheme G over M';f[fz defines a locally free
sheaf

Vv . x0l
Lieg g, = €a8amyr,
(where e denotes the identity section), which is the
Qn,U,A

in this paper (see section , with U = H, and with A induced by ¥ as in section
B.5| We can similarly define Lie) Mg where GV denotes the tautological ‘dual

semi-abelian scheme’ over M7’y extending A". (Note that dual semi-abelian schemes
only make sense as such extensions.) The action of G(A>) on {M{'s} . x) is defined
by respecting their tautological semi-abelian schemes up to canonical Q*-isogenies,
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which induces actions of G(A>) on {Lie/, /M%_(Zfz}(y’g) and {Lie/. /Mgg’rz}(;q,g) covering

the one on {M%gfz (#,%), which are compatible with the isomorphisms

* T,V I PN
AT @GV/M%E(D — @G/Mgi’fg

induced by the tautological polarizations A : G — GY. Here the formal Tate twist
requires (as before) the Hecke action to be twisted by the similitude character v,
which corresponds to the tensor product with the dual of

Envs = Ox,ux (V)

in this paper (see section |5.4)).
Then we have the principal My-bundle

En, = _ISOH1(9®Z@JMH ((@XV/MH(D? ﬁMH<]‘))7 (Ls/(l) ®q ﬁMH’ ﬁMH<]‘)))7

which is an My-torsor over My, (see definition 1.4.1.5 and lemma 1.4.1.7 of [Lad]),
which canonically extends (as an My-torsor) to a principal My-bundle

ity = Tsomos, g, (Lieg gy, (1), Gunige, (1)), (L (1) € Oun,, Ourr, (1)

over M’y (see (1.4.2.7) and lemma 1.4.2.8 of [Lad]). These are the
v and  &EFp

in this paper (see sections and [5.4), with U = H, and with A induced by X as
in section

For each Q-algebra R, we denote by Repyp(My) the category of R-modules with
algebraic actions of My ®q R (see definition 1.4.1.8 of [Lad]). Then we also define,
for each W € Repr(My) that is locally free of finite rank as an R-module, the
automorphic bundle

EMO,R(W) = (SMO ®Q R) X(MO®QR) W

over My ®qR (see definition 1.4.1.9 of [Lad]), which extends to the canonical extension
EGin (V) o= (E5i @ R) x (ool 1y

and the subcanonical extension

Ei pW) = ESi (W) D0, T s

over Myy" ®q R (see definition 1.4.2.9 of [Lad]), where Sp_,,  is the Oy -ideal

defining the boundary divisor Dex := My — My, (with its canonical reduced
subscheme structure). These are the vector bundles

can sub
SU’p’ U7A7p7 and 5U7A7P

in this paper (see sections and p.4), with U = H and W, = W. The bundles
Enmo,r(W) and EY (W) admit compatible actions of G(A>) (see proposition 1.4.3.1
of [Lad]), which are compatible with the compatible actions of G,,(A*) on &y, and

{F'A p» covering the ones on their respective base schemes.
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B.9. Total objects in mixed characteristics. For each open compact subgroup
H of G(Z) whose image H? under the canonical homomorphism G(Z) — G(ZP) is
neat, which implies, a fortiori, that H is also neat, we have a normal scheme

My,
which is quasi-projective and flat over §0 = Spec Op,,(p) = SpecZ,) and satisfies

My, ®7Q = My, (see proposition 2.2.1.1 in [Lad]). This is simply the normalization of
My, over the auxiliary (Siegel) moduli My, over Spec O, .. (» = Spec Z,) defined
by the auxiliary integral PEL datum

(Oauxu Kaux, Lauxu < Tyt >aux7 hO,aux) = (Z7 Id, L7 < Tyt >7 h0)7

forgetting the actions of O = Op, for any neat open compact subgroup Haux of

A

Gaux(Z) (defined by the above auxiliary integral PEL datum) containing the image

of # under the canonical homomorphism G(Z) — Gau(Z) (see lemma 2.1.1.18 of
[Lad] for the existence of Hauy)-

Similarly, we have a normal scheme
I\_/l’ﬁin
which is projective and flat over SpecZ, and satisfies M%jn ®z Q = MY and

contains |\7|H as an open fiberwise dense subscheme (see propositions 2.2.1.2 and
2.2.1.7, and corollary 2.2.1.15, in [La4]). The scheme M%™ is the

X
in this paper with U = H, and the special fiber
M’ﬁin Rz IFp
is the

——min

Xn,U7

in this paper (see section .
The projective scheme M%™ is equipped with an ample invertible sheaf

WM%in

(see proposition 2.2.1.2 in [Lad]). (Since (-, -) is self-dual, we can take a; = 1,
as =0, ap =1, and @ = 1 in lemmas 2.1.1.1 and 2.1.2.35 of [La4].) This is the

wu
in this paper (see section . We have a section
Hassey € HY(M™" @, F,, wgg’;” ®zF,)
(see corollary 6.3.1.7 of [Lad]), which is the
Hassey € HO(Yizl,w?(p_l))
in this paper (see section , whose vanishing and nonvanishing loci are

(M%in ®Z ]Fp)non—ord and (M%in ®Z Fp)full—ord
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(see definition 6.3.2.1 of [Lad]), which are the
72?}711_0“1 and X:ll; Xii[r]l,n—ord,

respectively, in this paper (see section .

The collections {My, }z, {M5™}4y, {wMg;in}% and {Hassey, }y admit compatible
actions of G(A>*?) x G(Z,) (see proposition 2.2.3.1 and corollary 6.3.1.8 of [Lad]).

While the reader might be interested in knowing more about My, and M%™, we
emphasize that we need to know almost nothing about them in this paper. What
we really need to know in detail are their ordinary loci (or more precisely just their

multiplicative-type ordinary loci, rather than the whole ( |\7I£in ®z F,)ord ag above),

which we will explain below.

B.10. Ordinary loci of Shimura varieties. To define the ordinary loci I\7I3jd in
[Lad], which will be compared with the Xsrgp(N N, for suitable choices of H and

UP(Ny, N3), we consider the maximal totally isotropic filtration
0=D'cD’cD'=L®;Z,
(see lemma 3.2.2.1 of [Ladl) given by
D’ =v" N (L®;7Z,).

Since (-, -} is self-dual, the dual filtration D# in lemma 3.2.2.4 of [La4] can be iden-
tified with D, and the induced inclusions ¢3 : Gry — Grp, and ¢y ' : Gry! — Gr;i
(again, see lemma 3.2.2.4 of [Lad]) are isomorphisms. Moreover, the group Sp in
theorem 3.4.1.9 of [Lad] is torsion free because it can be identified with S(O%,,) in
this paper (see section , and hence the invariant 7 in definition 3.4.2.1 of [La4]
is just zero under the assumptions of this paper.

Then we define the following groups, for each Z,-algebra R (see definition 3.2.2.7
of [Ladl):

ord(py . J (9:7) € GLog,r(L ®z R) X Gu(R) | _ o+
Pro(R) = {( r) € G(R). g(D@g, R) =D g, R — Lo
ord L ( ) S GLO@ZR(GI'D ®Z R) X G (R)
M () = { (g7, gy) = {z,9), Yo,y € Gry @3, R = Lo (R);
Ug(R) = ker(Grp : PY(R) — Mg (R)) = Ny, (n)(R),
and
Ug' ™ (R) := ker(Gry ' : P(R) — GLog,r(G1y' ®2,R)) = Py m)(R).
Then G(A>®?) x Pg4(Z,) = G, (A>)"* in the notation of this paper.
For all integers 0 < r and 0 < r; < rg, we set (see definition 3.2.2.8 of [Lad]):
(1) Upo(p") = (G(Zp) — G(Z/p’“Z))_l(Pﬁri(Zi/p"Z)) = Up(0,7).
2) Uh07) = (G(Z,) = G/ Z) US|y D) = Uylr),
(3) Uy (p") = (G(Z,) — G(Z/p"Z)) " (U3 (Z/p"Z)).
(4) plo( ") = Upa (p™) U0 (p7°) = Up(r1,70)
(5) uord< ") = ker(Mgrd(Zp) - Mgrd(Z/pTZ)) = Up(r)n,(n) x (1 +pTZp>X'



274 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

An open compact subgroup #H, of G(Q,) is said to be of standard form and of depth
r in the sense of definition 3.2.2.9 of [Lad] if

U (p") C Hy C Upo(p')-

In this case we define H9™ to be the unique open compact subgroup of Mg'(Z,) such
that H;;rd/uord(pr) = Hp/biﬁa{l(p") (see definition 3.3.3.4 of [Lad]).

The theory in [Lad] is developed for open compact subgroups #H of G(Z) of the
form H = HPH,, where H? is a neat open compact subgroup of G(Zp), and where H,
is an open compact subgroup of G(Z,) of standard form. In this paper, we will only
need H of the form UP(Ny, Ny), which satisfies the above requirement with H? = U?
and H, = Uy10(p™",p™*). In this case, since v(H,) = ZX and rp, = 0, the invariant
r4 in definition 3.4.2.1 of [Lad] is just zero. Then we have a smooth quasi-projective
scheme

Mgz

over Sy = Spec Op, (») = Spec Zy), which satisfies |\7|2fd ®7Q = My and can be canon-
ically embedded as an open subscheme of |\7IH (see theorem 3.4.2.5 and proposition
3.4.6.3 of [Lad]). Note that, in theorem 3.4.2.5 of [Lad], I\7I§’_fd is defined as a normal-
ization of the base change from Spec Zy) to Spec (O, ) [(prx]) of a naive moduli i\'/i;)_zd
over Spec Z, (see definition 3.4.1.1 and theorem 3.4.1.9 of [Lad]), but since Fy = Q,
rp = 0, and ry4y = 0, the base change has no effect, and the normalization merely
singles out the correct components satisfying the condition on Lie algebra. Hence,
|\7|§’_fd coincides with the moduli problem

Xsfgp(Nl,Ng)
in this paper (see section [3.1.1)), with UP(Ny, No) = H (that is, with UP = H?,
Ny =ry, and Ny = 7g). (See remark 3.4.2.8 of [Lad] for the comparison between the
definition using isomorphism classes of abelian schemes with additional structures
in [Lad], and the definition of ngp( N1No) using prime-to-p quasi-isogeny classes in
this paper, and for the extension of the definition of I\7I§’{rd to allow H = HPH, for all
open compact subgroups H? of G(ZP). Again, since the pairing (-, -) is self-dual,
the consideration of dual objects in [Lad] can be suppressed, although they were
clarifying when developing the general theory.)
The formal completion of M3/4 = Xs’rgp(NhNQ) (with UP(Ny, Ny) = H) along

7 or ~ ord

MHd ®z Fp = Xn,UP(Nl)
is denoted

g = X80,

(see definition 3.4.4.2 of [Lad]). Their independence of Ny = ¢ is explained in
corollary 3.4.4.4 of [Lad].

The collection {M%d}y indexed by neat open compact subgroups H of G(A>)
of the form considered above admits compatible actions (see proposition 3.4.4.1 of
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[Ladl]) of G(A**) x Pgrd(Z,) and of the element of P34(Q,) C G(Q,) correspond-
ing to ¢, € Lm(n),herm((@p) in this paper (see section under the identification
between G(Q,) and G,,(Q,), which are compatible with the action of G, (A>)°d on
{Xgrgp( N1.No) FUP(N1,Ny)- (In fact, proposition 3.4.4.1 of [Lad] gives the actions of many
more elements, but we omit them because they are not needed in this paper.) While
these actions are given by quasi-finite morphisms which are often not finite, the in-
duced morphisms on the p-adic completions are always finite (see corollary 3.4.4.3 of
[Ladl). The element of Pgr4(Q,) corresponding to ¢, is a typical example of an ele-
ment of U, type in definition 3.3.6.1 of [Lad], which induces the composite of absolute
Frobenius and forgetful morphisms in characteristic p (see corollary 3.4.4.6 of [Lad]).

B.11. Ordinary cusp labels. Let H be any open compact subgroup of G(Z) as
above. We say that a cusp label (Zy, ®y, 0%) is ordinary (see definition 3.2.3.8 of
[Lad]) if Z4 contains an element Z that is compatible with the filtration D in the sense
that

0CZo®;Z,CDCZRy2Ly,CLRy7L,
(see definition 3.2.3.1 of [La4]). Then we have an induced filtration D_; on Gr*; ®,7Z,
given by
0=0', c D’ :=D"/(Z_5 ®;Z,) CD | = Gr*, ®;Z,.
For any such Z, and for each Z,-algebra R, we define the following quotients of
subgroups of P;(R) (see definition 3.2.3.9 of [Lad]):
(1) PZp(R) = Pz(R) N PF(R).
(2) Pys(R) := P'z(f) NPy(R).
(3) PYgp(R) =Py (R)/Uzz(R).
(4) P‘;LrgD( ) is the subgroup of elements of Gy, z(R) preserving the filtration D_
induced by D on Gr?* | ®,Z,.
(5) Pipn(R) = Pgy ' (R)/Ua(R) = Pgo(R).

We have, for example,

Pz(i,l) (A ) X POrd (ZP) = Prj,(i) (Aoo)ord,x

7(4,1)
in the notation of this paper (see section . (In this paper, all intersections with
Pyd(Z,) = P;(n) (Z,) at the factors at p are denoted by the superscript “4*.) By

definition, as g varies in G(A), the filtration Z(»9) is compatible with D if and only
if g c G(Aoo,p) X Pz(i,1)<@p)Pgrd(@p).

Now suppose H = HPH,, where H? is an open compact subgroup of G(A>?)
and H, = U,10(p™,p") for some integers 0 < 7 < ry. The H-orbits Z%’g) of
z(9) that contains a filtration compatible with D are parameterised by the image of

G(A®P) X Pyin (Q,)PT(Q,) in Pyuny (A®)\G(A>®)/H. As in section , this image

is in bijection with the double coset space

(P (A7) x PHEL) 1(Zy))\(G(A™T) x PY(Zy))/(H? x (H, N Py (Z,))),
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which is the double coset space
PJ@) (Aoo)ord,x\Gn(Aoo)ord,X/Up<N1)

in this paper (see, for example, section [5.1), with UP(Ny, N2) = H and with UP(N;)
denoting the intersection of UP(Ny, Ny) with G,,(A°)°"4* . The ordinary cusp labels
[(Z3g, Py, 031)] for My with underlying Zy equal to Z%’g) for some g € G(A>®P) x
Pgd(Z,) are parameterised by the double coset space

(Gl (i) ¢ (Pay (A7) 5 P (Z))\(G(A™) x Pyr(Z,))

/(M x (H, NPy (Z,)),

and the forgetful map sending [(Z3, P, 0% )] to Zy can be identified with the canonical
map from this double coset space to

(Pain) (A%F) x Pyl 5(Zp) \(GA™P) x PR(Z,))/(HP x (Hy N P(Z,))),

z(&1) p

whose fiber above the double coset of g € G(A®?) x Pg™4(Z,) can be identified with
G ot (Zp)\G) g0 (AP X Zy) [ (gHg e

1,z(%,1)

This last double coset space is the index set of
ord,f
n,(0),(gUPg1NP" . (A=P))(N1)

2

= H Spec Z(p)

Ln,(i),lin(Z(p))\Ln,(i),lin(Aoo)Drd’X/(gUpgilmP;:(i) (Aoo,p))(Nl)
in this paper (see section {4.1f), with UP(Ny, Ny) = H.

B.12. Partial minimal compactifications of ordinary PEL moduli. For each
H = HPH,, where HP is a neat open compact subgroup of G(A*”"), and where
Hy, =U,10(p™,p™) for some integers 0 < r; < ry, there is a normal scheme

\ nord, min
MH

quasi-projective and flat over Spec Z ), with geometrically normal fibers, which con-
tains M3}4 as an open fiberwise dense subscheme and can be canonically embedded
as an open subscheme of M, called the partial minimal compactification of M3,

whose characteristic zero pull-back Mgid’min ®7Q is an open subscheme of M%™ which
can be identified with the union of the strata Zs,, s,) indexed by ordinary cusp
labels (see theorem 6.2.1.1 and proposition 6.2.1.6 of [La4]). The union

ord, min min
M, UMy
(by gluing along their common open subscheme described above) is the
Xé?glp(Nl,Ng)

in this paper (see section , with UP(Ny, Ny) = H. The collection {Mgd’min}}[
admits compatible actions of G(A>?) x Pg(Z,) and of the element of Pg4(Q,)
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corresponding to ¢, (see proposition 6.2.2.1 of [Lad]), which are compatible with the
action of Gp(A) on {X1, v v, Jurvian)-

The partial minimal compactification |\7|3id’min admits a stratification by locally
closed subschemes

\qord,min ord
N I R 1 1 E 55 520

[(P,09)] =0 g
where [(Py, 63 )] runs over ordinary cusp labels for My and g runs over
(G g6 (Zay) % (Phany (A%P) x P, (Z,))\(G(A™) x Pg(Z,))
/(HP x (H, N Py(Z,)))

(see theorem 6.2.1.1(4) of [Lad]). If H = UP(NNy, Ny), this matches
Zord
H Z[(q)(l 9) 5

(where the indices g are as above) with the subscheme

H ord,f
n,(i),(gUPg= NP} . (A%P))(N1,Nz2)

n,(l)(
g€P+ Aoo)ord,x\Gn(Aoo)ord,X/Up(Nl)

()(

of GOXT?HUjpTJI\I,l Ny (see section , where

ord,f

n7(7/)7(gUPg*1r“|P;:(Z)(

_ Zord
- H Z[(cbsi’hg) §101

heLn,(i),lin(Z(p))\Ln,(i),lin(AOO)Ord'x/(gUpgilmP,:: i

A®:P))(N1,N2)

Each Z‘[J({g% 5, 1S the quotient M%d’z” of

\qord, Py~ pjord
Ny = Wi,

by I's,,, which is isomorphic to ngg where Hg, ,o is as in section [B.4| (see

@7

lemmas 5.2.4.1 and 5.2.4.5 of [Lad]). Here MOrd and |\7|$id _» are analogues of

hZ

M2d defined by an integral PEL datum (O,*, L%, (-, -)Z, hZ) deﬁmng My, and
MHG“, »» which is associated with a representative Z of Zy that is compatlble with

D, and by the filtration D_; on L* @z Z, = Gr*, ®,Z, determined by D as above (see

definition 1.2.1.15 and lemma 5.2.4.1 of [Lad]). If we let UP/ (resp. UlY) denote the

image of gUPg™' N P+ iy (A%P) in Ly, ) (A%P) (resp. Ly, (i),1im(A°?)), then under the
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identifications

ord,f o . ord,+
n,(i),Ug’/(NLNQ) = Ln,(z),hn(Z(p)>\ n,(i),Ug’/(Nl,Nz)
= Ly (i)in(Zp)) \

ord D,/
( H &, n,(4),(UE' NGy (A%°:P))(N1,N2) )/U
heLn,(i),lin(Aoo)ord’X/(Ugylan,(i),lin(Aoo’p))(Nl)

- I

heLn,(i),lin(Z(p))\Ln (2), lin(Aoo)ord,x /Ug 1lm(N1)

((Ln,(i),lin(z(p) (hUg’hn}f )(V1 ))\Xor(d) (UP' NG i (A p))(Nl,NQ))
of section

- ord.®L0h9)
e the term Xor(d) (U2 0G5 (A=) (N1,N3) indexed by h is identified with M, 4P ;

e the group Ly, (i1 (Zgy)) N (RUZE A7) (Ny) is identified with T ing;
H

g,lin
e and the term

(L, tin(Z) N (WUgiinh™ Y (NOWNXE 0minavom) (va.N)

z(i:hg)

is identified with Mzd’ H
Similarly, under the identification

ord,+ _ H ord
n,(4),U5" (N1,N2) n,(3),(UP' NGy i (A%P)) (N1, N2)?
RE Ly, (3),1in (A%®)rd:X /UL (N1 )

O i-hg)
the term Xor(d) (PG (A 9)) (N1, Na) indexed by h is identified with M, 0%,

identifications are Hecke equlvarlant

If H = UP(Ny, Ny), then the formal completion of MOrd min oy Xsrg;?]lvi Ny along

. These

ord, min

\nord, min ~ 3 ords
My @2 Fp = X0 vy

is denoted
yyyord,min ~, p~ord,min
m/H xn,Up (N1)

(see definition 3.4.4.2 of [Lad]). Their independence of Ny = ¢ is explained in
corollary 6.2.2.8 and example 3.4.4.5 of [Lad]. For the Hecke actions on these formal
schemes, see corollaries 6.2.2.7, 6.2.2.8, and 6.2.2.9 of [Lad].

B.13. Partial toroidal compactifications of ordinary PEL moduli. For each
representative (Zy, Py, d%) of an ordinary cusp label [(Zy, @3, 0%)] for My, there is
a torsor

~ord pord, Py
Cayy 6, — My

of an abelian scheme
~ord 8Py pord, P4
C<I>'H 5’;.[ M’)—[ Y

this abelian scheme is Q*-isogenous to Hom, (X, B), and in fact its Z(Xp j-isogeny class
(i.e. prime-to-p quasi-isogeny class) can be described explicitly (see lemma 5.2.4.7
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and propositions 5.2.4.11 and 5.2.4.13 of [Lad]). We obtain an isomorphic abelian
scheme torsor if we replace (Zy, Py, 67,) with another representative, but its universal
property depends on this choice of representative.

If UP' again denotes gU”g~" N Pn+,(i) (A>?) then the map

ord,+ o H A( ),ord
= /
n,(4),U5" (N1,N2) RELy, (i) 1in (A%°)ord X /UG (N1) ¥ n—i,(hgUPg= h=1NP, (;(A%P))(N1,Na2)
d
o ‘7+ y 20 = Hh L (Ao ord,x /P (N Xord. D,/ 0o
’I’L,(’L),Ug’ (Nl,NQ) € n,(2), lm ) ’ / g ( 1) n,(1)7(Ug mPn,(z)(A 7p))(N1,N2)

in this paper (see sections [.1] and [1.2)) with UP(Ny, No) = H is identified with
Ford
e, g umayenas ug o) Colinn 5

(i,hg)
= ord,®
H oo ord, X 2 I\/IOr H .
heLn (3), lln A ) ’ /Ug (Nl) H

These maps are equivariant with compatible actions of Py,q) (A>P) x ngflg) (Z,) and

of the element of PY{{ ) 5(Qp) corresponding to . (See proposition 5.2.4.25 of [Lad].)

(Since our pairing (-, -) is perfect, the universal property of é‘%ﬁéy in proposition
5.2.4.13 of [Lad] can be simplified by suppressing the dual objects. This universal

property then agrees with that of An fr((:LgUpg LA 1Py g5y (4°7)) (N1, N2) in section of

this paper.)
For each representative (Zs;, ®3;,0%) of an ordinary cusp label [(Zy, ®y, d3)] for

My, there is a torsor

—ord ~ord
b0, — C.

under the pull-back of the same split torus Eg,, over Spec Z as before (see section ;
and see lemma 5.2.4.26 and proposition 5.2.4.30 of [Lad]). We obtain an isomorphic
torus torsor if we replace (Z3, Py, d3) with another representative, but its universal

property depends on this choice of representative. For a fixed (Z, ®,J), the collection

{:%rg 55}y, admits compatible actions of Py(A>7P) x Py (Z,) and of the element
VA )

of ngg (Qp) corresponding to ¢, such that the morphisms
—ord ~ord
:%H’5H — C‘%H,

are equivariant with
PL(A™P) x PYy(Z,) = Giz(A™P) X P1zp(Z,)

and with the compatible actions of the elements corresponding to g, (see proposition
5.2.4.41 of [Lad]).

The torus
ord ord,+
’S 1), U (N1) — Y n,(2),UL" (N1)
in this paper (see section W1th UP(Ny, Ny) = H is identified with
rord
H Ecpgjhf’),(sy — H Spec Zy).

hEL, (i) 1in (A%)ord: X /UD (N7) RE Ly, (3) 1in (A%®)rd: % /UL (N1)
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* ord,+ ord,+ =0 ord,+ >0
Moreover, the sheaves X*(S° U (N )) «(S? DU N )) , and X,(S° )Up,)R are
identified with
H S(I)g.i[hg) 9 H Pq)g.i[hg) 9
hELy, (i) 1in (A%)0rd X /UL (N1) hELy, (i) 1in (A%)0rd X /UL (N1)
and
+
H Pq)g_it,hgﬂ
hELy, (i) 1in (A%)0rd X /UL (N1)
. d
respectively. The Sor )JrUp, ()~ toTsor
rd,+ _ H T(z ),ord
n,(i),UP" (N1,No) RE Ly, (i) 1in (M%) X /UL (N1) ' n—i,(hgUPg=h=1NP, (;)(A%))(N1,N2)
ord,+ _ H , A(z),ord
n,(3),UL"(N1,N2) RELy (i) 1in (A%°)ord X /UG (N1) ¥ n—i,(hgUPg=Th=1NP, (;(A%P))(N1,Na2)
is identified with
Sord
HheLn,(i),lin(Aw)ord’X/Ug’l(Nl) <1>(‘ h9) 5.,

!

]—[hEL ,(2), lm(Aoo)ord ></va I(Nl O<I>(1 hg) 6

These maps are equivariant with the compatible actions of P, 4 (A*P) x ngld q/> (Z,)
and of the elements corresponding to ¢,. (See proposition 5.2.4.41 of [La4].)

Consider any compatible collection
2 = {Se, @b

of admissible projective smooth rational polyhedral cone decompositions for |\7|°rd,
where each g, is a 'y, -admissible projective smooth rational polyhedral cone de-
composition of Pg,,, and where the indices [(®y, dy )| are ordinary cusp labels for
My, as in definitions 5.1.3.1 and 5.1.3.3 of [Lad]. Any compatible collection X for My
induces a compatible collection ¥°'¢ for |\7|‘;{rd by restricting to the indices given by
ordinary cusp labels, and conversely any compatible collection $°¢ for |\7|§’jd extends
to a compatible collection ¥ for My (see proposition 5.1.3.4 of [Lad]). Each such ¥4
considered in [Lad] induces a pair

(Up<N1)7 A)

in Jtrerd (with UP(Ny, Ny) = H) in section of this paper, because, in order
to define (UP(N;),A) as in section [5.2] it suffices to define the admissible cone de-

.. ord,+ =0 oo\ord, X __
composition A(g), for X, (S (@ (gUrg P, )(Aw’p))(Nl))R , for each g € G,,(A>) > =

G(A>P) x Pg4(Z,), which can be taken to be the pull-back of the subcollection
{6, H@s.6,)) Of 2 indexed by the cusp labels (4, 6% )] with underlying Z3 equal

to Zg’g). In fact, Jf°"° is exactly the set of such induced pairs (as UP(Ny, No) = H
varies).
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Each Xg,, defines an affine toroidal embedding

:ord —ord
—ord

_ = _ —ord _ —ord
SR L Y TP3,01, 80, U =0, 09 <U) - H = ®34,094,0
o€y, 0€XND,,
over Cg™ 5 . Rather confusingly =3¢ 5 (o) (in the notation of [Lad]) is what in this
Zord

—ord
Py ,09,0

By 5y is what in this paper we would

paper we Would have denoted = and =

:Ol‘d
Zord : = .
have denoted 0,=g, 5. S, . The formal completion of SIS along the union of

the o-strata u%rg 5.0 for all o € X, such that o NPy # () is denoted
Yord Yord
%%TH#SH - :{%rH:tSH,EéH

(see (4.2.2.4), (5.2.4.32), (5.2.4.33), and lemma 5.2.4.38 of [Lad]).
For a fixed g € G(A*P) x Pgr4(Z,), the schemes

rd,+ ord,+
N — ]
n,(),U2" (N1,N2),A(9)o An,(n,vg”’(zvl,fvz)

of this paper (see section are identified with

—ord

= (ih ~ord
H olih9) 5, 7 H Cq,(z ho) 5.
hELy, (i) 1in (A%)0rd X /UL (N1) RELy, (i) 1in (A2®)rdX /U (N1)
rd,+,A . . .
Moreover, 7'O (0 (N1.N2), Ao is identified with
yrord
H x@%’hg)ﬁq{
heLn,(i),lin(1%00)01%{’>< /Ug’l(Nl)
and ’7'°rd’h ” is identified with
2’ (N1,N2),A(g)o
yoord _ ord
H (%@E}i’hg) (;H/]‘_‘(I),(:L’hg)) - H ( Py, 5H/F¢'H)
h€ L, (i) 1in (Z(p)) \L'm, (i) 1in (A%°) 74X /UF (N1) [(®34,6%)]

where the second disjoint union runs over all ordinary cusp labels [(®3,dy)] with
underlying Zy equal to Z%’g). (Again U = H.)

For each X4 as above (and each H as above; see the beginning of section ,
we have a smooth quasi-projective scheme

pord,tor
M Eord

over Spec Z, which contains M%d as an open fiberwise dense subscheme, and is

called a partial toroidal compactification of I\7I$j{d. Its characteristic zero pull-back

dt . .
MOr o @z Q is an open subscheme of MYy, for any ¥ extending ¥, which can

be 1dent1ﬁed with the union of the strata Zs, s, indexed by equivalence classes
whose underlying cusp labels [(®4, d3 )] are ordinary (see theorems 5.2.1.1 and 6.2.3.1
and remark 5.2.1.5 of |[Lad]). The union

d,t
Mor OOIC“1 U Mtor

T
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(by gluing along their common open subscheme described above) is the

X m(Ny M),
in this paper (see section 5.3), with UP(Ny, Ny) = H and with (U?P(Ny, Np), A) € Jt°
induced by X as in section [B.5 In this case, the (UP(N;), A°d) € Jtorord induced by
(UP(Ny, No), A) is induced by the ¥°"¢ induced by ¥. The collection {M;ifz’ifﬁ}(%zord)
admits compatible actions of G(A>?) x Pg4(Z,) and of the element of PJ4(Q,)

corresponding to ¢, (see proposition 5.2.2.2 of [Lad]), which are compatible with the
action of Gn(AOO)Ord on {Xn7Up(N17N2)’A}(UP(N17N2)7A).

The partial toroidal compactification ng‘;ﬂoﬁ admits a stratification by locally
closed subschemes
jord,tor ~ord
MH,zord - H Z([j(r{mﬁma)]
[(q)'Hv(S'HvO')]

(see theorem 5.2.1.1(2) of [Lad]) indexed by equivalence classes [(®,d3,0)] as in
definition 1.2.2.10 of |[Lad] whose underlying cusp labels [(®4, d3 )] are ordinary. Each

.
ord —ord

stratum Z’K% 53,0y 18 canonically isomorphic to Zg7 5, ,, and the formal completion

of ijdzt:’g along the union of the strata Z‘[)(rgﬂﬁ%a)] labeled by equivalence classes

(P4, 03, 0)] with the same underlying ordinary cusp label [(®y, d%)] is canonically
isomorphic to X33 5 /Te, (see lemma 5.2.4.38 of [Ladl).
When UP(Ny, No) = H, and when (UP(N;), Ad) € Ftrerd is induced by Yo

as above, the formal completion of M:C;EOZ along the union of all strata Z’ﬁrg% 520.0)]

labeled by equivalence classes [(®y, 03, 0)] with underlying Z3 equal to Zg_i[’g ) for some
g € G(A®P) x Pgd(Z,) is

rd,g,A ord,A
H n,(i),(gUpg—lﬂP:;(i)(Aoovp))(N1,N2),A(g)0 C n,UP(N1,N2),Ai
9T ) (A)ord X\ G (A22)ord % /U ()

: : . : A .
in this paper, whose union with Xn7Up(N17N2)’A7i is

ord, A\
n,UP(N1,N2),Ai

(see section . It can be identified with
yord
H H(%cb%hg),éﬂ/régi’hg))’
g h
where g runs over P:(z) (A>2)ord >\ ) (A%)ord> /JP(N7) and h runs over

Lo 0 (Zip))\ L 0 (A) /(U™ 11 P (A2)) (V).

These identifications are all Hecke equivariant (see proposition 5.2.4.41 of [Lad]).

The formal completion of I\_/I);’_Edzto?f1 along

pord,tor
M’)LLEord ®Z ]Fp

is denoted

—

ord,tor
9)/tf,l_[,zord



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 283

n [Lad] (see definition 3.4.4.2). When UP(Ny, No) = H, and when (UP(N;),A) €
Jtorerd induced by $°¢ as above, these are denoted YZTUP(NI)A and %g‘f[d]p(m), A
respectively, in this paper (see section . (Their independence of Ny = r¢ is

explained in corollary 5.2.2.4 of [Lad].) For the Hecke actions on these formal schemes,
see corollaries 5.2.2.3, 5.2.2.4, and 5.2.2.5 of [La4].

B.14. Ordinary loci of Kuga families. Recall the choice of ) = O} in section
, and the associated algebraic groups. For a Z,-algebra R, we set

Py(R)
to be the pre-image of PY4(R) under the homomorphism G(R) — G(R). This is

PT(LT'(?L)JF(R) in the notation of this paper. Thus,

G(A™?) x PR(Z,) = G (A%).
For all integers 0 < r and 0 < r; < rg, we set:
(1) Upo(p") = (G(2 %ﬁ&ﬂﬂ@ﬂ@?@m%DZ%QHW-
(2) Upa(p") = Up(r,7)n
(3) UL (p") = ker(v : Uy (p7) = (Z/r'L)").
<e%wwwwe%ﬂwn%mm:%mmwi
(The first and third of these definitions are consistent with definition 7.1.1.2 of [La4].)

An open compact subgroup ?:[\p C @(Qp) is said to be of standard form and of depth
rif

><:><:>

Z/{;’T(pr) CHy, CU,0(P")
(see definition 7.1.1.2 of [Lad]).

The theory in [La4] is developed for open compact subgroups H of G( ) of the form
H=Hr Hp, where H? is a neat open compact subgroup of G( ), and where 7—[ is an
open compact subgroup of G( Z,) of standard form. In this paper, we will only need
7-[ of the form U” (Nl, Ns), which satisfies the above requirement with HP = UP and
7-1, L{pﬂ,o( N pN2). Then rg. =0 and H satisfies conditions 7.1.1.4 and 7.1.1.5 of
[Lad]. To each 7—[ as above with image H = Hg in G(Z), [Lad] attached a generalized
ordinary Kuga family

N’ord N Mg_;d
(see definition 7.1.3.2 of [Ladl). Its characteristic zero pull-back is a generalized Kuga

family N — My, as in section|B.6l Since () = OF, it is the scheme denoted An Upor]él N2)

in this paper. The generalized ordinary Kuga family attached to HG X HU is denoted

njord,grp  qord
N — M3,

and is a Kuga family as in definition 7.1.3.1 of [Lad]. It is an abelian scheme and,
since () = OF, it is Q*-isogenous to the m-fold fiber product of the universal abelian

scheme over |\7|f:§d. Its characteristic zero pull-back is a Kuga family N&" — My as
G
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in section . The generalized ordinary Kuga family Nerd I\_/I'%rd is a torsor for
Nord,grp N Mp}id.

To study these schemes and their compactification [Lad] again realizes them in a
non-canonical way inside the boundary of a larger Shimura variety. We will continue
to use the notation of [B.6] We consider the maximal totally isotropic filtration

0=D'cD’=((Z2®;%,)®D) CD ' =L®y7%,
of L ®z Z, (see the beginning of section 7.1.1 of [Lad]). We have
D° = V") 0 (L @y Zy).
We define (see definition 7.1.1.22 of [Lad]):
(1) PY(R) := Py(R) N PIY(R).

pord,/ e D or N(m)1+
(2) PYY/(R) := Py(R) N Pga(R) = PP

For any such 7/-[\, we can always find some
H=HP x U,10(p™,p"?) C G(Z)
with HP neat such that H = ﬁ@ (see section MD and
i, s, = Tlg, % Ho.
(Then rg = 0.) In this case, the abelian scheme torsor

—ord = ord,iﬁ —ord ,Eﬁ
-~ - ~ ~ ~
Ce o, My =My

depends only on H (but not on the auxiliary choice of 7:2) and equals the above
generalized ordinary Kuga family N4 — M4 attached to H.

B.15. Partial toroidal compactifications of ordinary loci of Kuga families.
Let us fix the choice of some (Z, @, §) as in section . Then the bijection described
at the start of section restricts to a bijection between the following two sets:

(1) The fully symplectlc admissible filtrations Z of L ®7 Z compatible with D such
thatOCZ QCZ QCZ 1CZ 1CL®ZZ
(2) The fully symplectic admissible filtrations Z of L ®z7Z compatible with D such
that Z_9 = 2,2/2,2.
(Recall that the notation ~ will always mean objects related to such a filtration 2)
For ecach Z as above, and for each Z,-algebra R, we define the following quotients
of subgroups of P5(R) (see definition 7.1.1.27 of [Lad]):
(1) PgS(R) = (PF5(R) NP3(R))/Uyz(R).
(2) By (R) = BYY(R) /Ty (R).
(3) POt (R) = Py () /Uy 5(R).
(4)

(
4) P4 (R) = Pom‘ (R)/U,3(R) = P _(R).

h,Z,D 1,Z,D h,Z,D
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(5) P"¢ (R) denotes the subgroup of elements of CA},L 7(R) = Gpz(R) which pre-

h,Z,D
serve D_; =D C CGr?, ©,7, = Gi? | ®,7Z,. Thus P’ (R) = P4 (R).

h,Z,D h,Z,D

When Z = 2 in which case Z = Z(0+m1) = 70D we have, for example,

Pi(i,l) (A ) X POE 1 D(Z ) Pé;r?z))’“‘ (AOO)ord,x

in the notation of this paper (see section [1.2)).
The filtration Z9 is compatible with D if and only if

g € G(A™P) x PS4, (Q,)PFY(Q,),
where ﬁord(@p) pord 5(Q)-

1,Z,D
Now suppose H is an open compact subgroup H of G( ) of the form H = HPH,,

where HP is a neat open compact subgroup of G(Zp) and where 7:[\ Z:l\p 1o(p™, p™)
for some integers 0 < ry < rg. The H-orbits Z( 19) containing a filtration com-
patible with D are parameterised by the image of G(AOOP) ng?1>(Qp)Pgrd(Qp) in

P‘Z’ffil) (A*N\G(A®)/H. As in section , this set is in bijection with the double coset
space

(Pyin (A7) x Py L(Z,))\(G(A®P) x PFU(Z,))/(H? x (H, N PF(Z,))),
which is the double coset space

P(m)ﬂr (Aoo)ord,X\Gglm) (Aoo>ord,></Up(Nl)

n,(3)
in this paper (see, for example, section , with UP(Ny, No) = H. It maps isomor-
phically to

P,j’(z) (Aoo>0rd,><\Gn<Aoo)ord,></Up<N1>.
The correspondence of cusp labels from section [B.7] sets up bijections between the
following sets (see lemmas 1.2.4.15 and 1.2.4.16, definitions 1.2.4.17 and 3.2.3.8, and
lemma 7.1.1.8 of [Lad]):

(1) Thfevor'dinary cusp labels [(Zﬁ, D, 57;)]~f0r M such that the stratum Z[(éﬁ’%
of M%m is contained in the closure of Z[@ P

(2) The H-orbits, [(Zg, &D O 7)), of equivalence classes of (Z, ®,0), where Z and
d are compatible Wlth Z and (ID as described in sectlon | and with D. We

call such an orbit an ordinary cusp label for (L, (-, -, ho, Z D).
(3) The ordinary cusp labels [(Z3;, Py, 03 )] for My,.

—ord —ord Zﬁ = ord,&;ﬁ = ord,zﬁ
The stratum Zy5 5y = , the finite étale cover My — My, the abelian
—ord —ord @ﬁ —ord,grp A—;ord,%ﬁ
scheme torsor C'g 5 — Mg and the abelian scheme Cg_5 — My depend
<I>H,6H H ) <I>H,5H H

(up to canonical isomorphism) only on the H-orbit of (Z,®,0) (see lemma 7.1.2.1 of
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[Lad]), and hence we shall denote them by

d<i> ord,Z

[o

or ord,d)ﬁ

5 5. —M
07

i)

Qn
)
)
)
=]
o,
Qn
HHC

My,

<
)
Z)l

9

respectively. For a fixed (Z, P, d), the morphisms

ord,&)

are equivariant with

Cra(A=P) x PYL(Z,) = G 4 (A%P) x P (Z,) = G 4 (™) x PYY (Z)

1,Z,D h,Z,D h,Z,D

and with the compatible actions of the elements corresponding to g, (see propositions
5.2.4.25 and 7.1.2.5 of [La4]).

The cusp labels [(Z, &)ﬁ, 5@)] such that Z; = 2%@) for some g € CA}(A‘X’”’) X ﬁgfd(zp)
are parameterised by the double coset space
(G} g (Zy) X (P (A7) x P (Z,)\(GA™?) x PY(Z,))
J(H? x (H, N PF(Z,))),

and the forgetful map sending [(Z, Cfﬁ, 57;)] to Z can be identified with the canonical
map from this double coset space to

~

(Paen (A7) x PYit, o (Zp))\(G(A™P) x PE(Z,))/(H? x (H, NP3 (Z,))
whose fiber above the double coset of § € G(A®?) x Pgrd (Z,) can be identified with

G g6 (Z@))\@Lza,n(A“’p x Zp)/(GHG Ve

lz(l 1)

(See section [B.7| for the definition of G’
index set of

This last double coset space is the

lq)(z 1)° )

y m)70rd7h
n.(0),(gUPg NPT (a00P)) (V)

= H Spec Zy)
LD, B y\LLD) 3 (A%2)r% [ (gUPg=1PT T (A500)) (N1)
in this paper (see section , with g = § and UP(Ny, Ny) = H.
If UP(N;,Ny) = H is a neat open compact subgroup of G m)(AOO) = G(A>) as
above, if g = § € GVV(A®)* = G(A®?) x Pyd(Z,) and if UP' = gUPg~' N
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Prgm (A*), then the maps

(m),ord,+ o H (i+m),ord
n,(i),U5" (N1,N2) hGL("Z) i (A%)0T X JUE (N7) n—i,(hUé’"h*lﬂPT(erz) (A%:P))(N1,Na)
d ,+ d
X m),or _ m Xor
n,(i),U§" (N1,N2) HheLi,(i),lm(Am)"‘d’X/Ué”/(l\h) n—@(hUg”’hflmPgZ?) (A%:P))(Ny,Ny)
X m), ord b

n,(2),U, g (N1,N2)

in this paper (see sections and are identified with

HheL<m)

Ny (AT JUZ (N1) ™ @707

1
HheL(m)

Aoo)ord,x /Ug’/(Nl)

!

(2), lln(

HhGL z)hn(Z(P))\ (Aoe)ord X /U (Ny)

n, 7,) lin

%

For each representative (Zﬁ, @ﬁ, 6ﬁ) of an ordinary cusp label [(Zg, (fﬁ, Sﬁ)] as above,
there is a torsor

Q.

—ord

=0
=0
=
= C’
—d

:E>

under the pull-back of the same spli torus E&,ﬁ over Spec Z with character group

/S\i’;q as before (see section |B.7; and see proposition 7.1.2.6 of [Lad]). We obtain an

isomorphic torus torsor if we replace (Zﬁ, éﬁ, Sﬁ) with another representative, but
its universal property depends on this choice of representative.
The torus
S(m ),ord,+ (m),ord,+

(),Ug" (N1) - yn,(i)ng"(Nl)

in this paper (see section with UP(Ny, N3) = H is identified with

H A&)%,hm — H Spec Zy)

BELT)) (A7) /U (V1) BELT) i (A0 /U (V1)

Moreover, the sheaves X*(ngnz)oéf,fz )), X*(Siﬁzjfég,jfzjvl))io, and X, (S 7?3)0;; ;N ))>0
are identified with

H Sgine), H P, §Lir9)
H

(As=)ordx /U (Ny) RELUT) 1y (A2)0rX [T (N )

p+
H Pé(i,hgw
#H

(Bo2)ord JUR (V1)

(m)
hEL ,(2),lin

and

(m)
heL{™)
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d
respectively. The S Oép,t M) -torsor
(m),ord,+ o H (i+m),ord
n,(i),Ug" (N1,N2) BELY ) i (A2)ord JUDY (N1) n—i,(hgUPg=1h=1NPL") (4°97))(N1,No)
d,+ (i+m),ord
AT = . Al
(),UF (N1,Na) Wrertm, | amportox jupr iy n—i(hgUrg=1h=1NP1) (A=) (N1,Na)

is identified with

HheL(m)

=& hg)
i () U () ) 8

1

(Aoo)ord,x/Ung’(Nl) ‘i)% ha) Sﬁ

Q)

HheL“”’

n,(),lin

These maps are equivariant with Py (A%?) x Por?g) D(Zp) and with the compatible

actions of the elements corresponding to g, (see proposition 1.3.2.67 of [Lad]).
In lemma 7.1.1.9 of [Lad], we have introduced an ad hoc definition of a compatible
collection

Sord o
Y = {Zéﬁ}[(éﬁ,éﬁ)]

of admissible projective smooth rational polyhedral cone decompositions, where each
Zég isa Féﬁ-admissible projective smooth rational polyhedral cone decomposition of
f)‘i)g’ and where the indices are ordinary cusp labels [(&)ﬁ, 57_7)] In [Lad], we allow ﬁp

to be all subgroups of @( Z,) of standard form (which is more general than just of the
form Llp 1o(p™, p™) for some integers 0 < r; < 1), and the set of pairs k = (H, Sord)
with Hg C H is denoted KO’Cd *. the subset of Kord * consisting of k = (ﬁ, f]ord)
with Hg = H is denoted Kgc;f, and the subset of KOIrd -+ consisting of & = (H, Sord)
with Hg = H and H = H ?—[ﬁ is denoted Kordl (see deﬁnitions 7.1.1.7 and 7.1.1.11
of [Lad]). For ? = 0, +, or ++, any pair £ = (H,3) in K{) 5 introduced earlier in
section [B.7 such that 7 is of the form allowed here induces a pair (H, iord) in Kgi[ :
and conversely any pair in Kg%_’f extends to a pair in K?Qﬂ-l (see proposition 7.1.1.21

of [Lad]). For any compatible collection X of admissible projective smooth rational
polyhedral cone decompositions for MO”d and for 7 = (), +, ++, the subset of KOrd !
consisting of kK = (’H, Sord) such that Sord ig compatible with X' in the sense that
each p € iéﬁ is mapped into some o € Xg,, (see condition 7.1.1.17 and definition
7.1.1.19 of [Ladl) is denoted Korc;_zzord This notion of compatibility agrees with the
one in this paper (see section

Each such r = (%, 3°) in Kord " induces a pair

(Up(N1)7 Z)
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in g{m)tererd (with UP(Ny, Ny) = 7:[\) in sectionof this paper, because, in order to
define (UP(N;),X) as in section [5.2] it suffices to define the admissible cone decom-

L. (m),ord,+ >0 (m) r pcovord,x __
position X(g)o for Xu(S, () ormgmtnptm +(am) & » 07 €ach g € G (AT)0 =

@(AO‘W’) X ?gfd(Zp), which can be taken to be the pull-back of the subcollection
{Eéﬁ}[ b5 of ¥4 indexed by the ordinary cusp labels [(&)A b 5)] with underly-

),tor,ord .

ing 2 equal to Z ( 9 In fact, T is exactly the set of such induced pairs (as

UP(Ny, Ny) = H varles). (As before, it is hard to explicitly describe the set T
when m > 0, because they are induced by auxiliary choices of compatible collections
yord for MO‘”d Nevertheless, this is unnecessary for our purpose.)

),tor,ord

Each E deﬁnes an affine toroidal embedding

—ord = = = —ord
Bopbn 7 Begsy = Bepins,. = U Segsy ()= L Zeq000
pGEq)ﬁ pEE&)ﬁ
—ord Eord
over Céﬁ,&;{‘ The formal completion of Eéﬁ,&;{,i% along the union of the p-strata
—ord N - o~ )
Eéﬁ’gﬁﬁ for all p € E(i)ﬁ such that pN Pgﬁ # () is denoted
—ord —ord
Xo 5, = x‘iﬁﬂsﬁiéﬁ

(see (7.1.2.12), (7.1.2.13), (7.1.2.14), and (7.1.2.16) of [Lad]). The schemes

(m),ord,+ (m),ord,+
7;, 1),US"’ (N1,N2),2(g)o — A n,(1),UL"’ (N1,N2)

of this paper (see section [4.4]) are identified with

—ord —ord
Zglihe) x —> H Clgliha) 5 .
H (I’ﬁ ,5,;_7 (I)';’.Z ,5,)_7
hEL(Wz)) hn(Aoo)ord,X/Ugv/(Nl) heL(”’Z)) hn(Aoo)oI'd,X/Ugv’(Nl)
;ord,+,A .. . .
Moreover, g (m)ord. is identified with

n,(i),U5" (N1,N2),5(g)o
—ord

X giha) ¢
H ‘I’ﬁ g 757-7

hEL(m) (AOO)Ord’X/Ug’/(Nl)

,(4),lin

and T m)#;r;i,ﬂ( ]Cl) oo 18 identified with

—ord =
11 (%ghw,sﬁ/%g,hw): T % 5,/Ts

REL{™) @) \LLT), i (Ao2)rdx JUB (Ny) (CFR)
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(i.9)
#H
for a fixed § in G(A®?) x P$d(Z,) corresponding to g € G (A®)d* (Again
H — Up<N1,N2).)

For each k = (H,X°) € KOQrng“, we have a smooth quasi-projective scheme

where the second disjoint union is over cusp labels with underlying Zﬁ equal to Z

Nord,tor
K

containing Nord (of section , which we will henceforth write as I\Tgrd to empha-
size the dependence on H) as an open fiberwise dense subscheme. The scheme
Nordter s called a partial toroidal compactification of N9 (see theorem 7.1.4.1 of
[Ladl). Tts characteristic zero fiber No'4*" @, Q is an open subscheme of N%* for any
K =(H,X) e Kgg{Aextending k= (H,Xm) € Kggfﬂ which is identified with the
union of the strata Z[(‘i)g, 500 indexed by equivalence classes [(®g,05, )] whose un-

derlying cusp labels [(i)ﬁ, Sﬁ)] are ordinary (see theorem 7.1.4.1(6) of [Lad]). When
UP(Ny, Ny) = H, and when (UP(Ny, ), %) € T s induced by K = (1,3) as

in section [B.7] the partial toroidal compactification
Njord Nord,
NOd y NOrd-tor (y N
(by gluing along their common open subscheme described above) is the

(m),ord (m),ord
A (N Na) T A n (v Vo) 5

in this paper (see section [5.3). In this case, the (UP(N;), X)) € F{™ % induced
by (UP(Ny, Ny),Y) is induced by the k = (ﬁ, iord) induced by &' = (7—7,5\3) The
partial toroidal compactifications Ngfd — Nﬁrd’tor U N are compatible with the ac-
tions of G(A®?) x ﬁgrd(Zp) and of the element of ?gfd(@p) corresponding to ¢, (see
theorem 7.1.4.1, (4) and (6), of [Lad]), and they are compatible with the actions of

G (A>)ord on the partial toroidal compactifications Af;nU)’po(r;\i,h Na) Af;nU);o(r;\i,h Na)5-

The partial toroidal compactification Nfgdvtor admits a stratification by locally
closed subschemes

—ord

njord,tor __ oL
Nz = T Zgagapm

(see theorem 7.1.4.1(1) of [Lad]) indexed by equivalence classes [(éﬁ,gﬁ,ﬁ)] as in
lemma 1.2.4.42 of [Lad] whose underlying cusp labels [((f)ﬁ, 5@)] are ordinary. Each

—ord —ord

stratum Z[(&,ﬁj ) 1s canonically isomorphic to Eéﬁ’gﬁ’ﬁ, and the formal completion

H
—ord

of Nzrd’tor along the union of the strata Z[(i’,;,g,q,ﬁ)} labeled by equivalence classes

[(i)ﬁ, Sﬁ, p)] with the same underlying ordinary cusp label [(éﬁ, Sﬁ)] is canonically
—=ord

isomorphic to X5 _ 5 /T3 _ (see theorem 7.1.4.1(1) of [Ladl).

H
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When UP(Ny, Na) = #, and when (UP(N,), %) € Jimtererd s induced by k=

( Eord) as above, the formal completion of Nzrd’tor along the union of all strata
ord vy o

Z((s,5, 7 labeled by equivalence classes (5,04, p)] with underlying Z;; equal to
2( ") for some § € G(A®P) x Pord(Zp) is

(m),ord,A ~ m) ord,g,A ~ = )

= £ (i,hg) ¥ v (i

An UP(N1,N2),%,i | | ),(gUPg~ 1ﬂP(T?>)+(Aoo’p))(Nl,Nz),Z(g)o | | | | (%q)’(g 9)761_7/1—‘(1)%&9))7
g h

where the indices g and h run over Péz))’Jr(Aoo)ord’X\G%m) (A>)ord > /TTP( Ny, Ny) and

L hn(Z(P))\Ln 0, i (A)"EX /UP!(Ny), respectively, in this paper (see section .

If K € Kg(;f;rd, then the canonical morphism

njord  qord
NP — M3,
extends to a canonical log smooth morphism

_’ord,tor \qord,tor
NK/ M’}.[ Yord

(see theorem 7.1.4.1(2) of [La4]). When UP(Ny, Ny) = H and (U')P(N], N}) = H, and
When (UP(N1, N»), %) € T and ((U")P(N, N3), A) € J" are induced by some
= (H,3) and (7, 2) extending x = (H, £°) and (H, £°'), respectively, we have
(UP(N1, Ny), ) = ((U')P(N], Ng), &)
(see section in this paper) and the union of the above morphism with
N > Mg
(see section [B.7)) is the log smooth morphism
( ) OI‘d OI‘d
An,UP(Nl,Ng),E — Xn,( ")P(N{,N3),A

in this paper (see section .
These identifications are all Hecke equivariant (see theorem 7.1.4.1(4) of [Lad]).

The formal completion of Nzrd’tor along

Nzrd,tor ®gz F

p
is denoted
g’tord,tor
n [Lad] (see definition 3.4.4.2). When UP(Ny, Ny) = ﬁ, and when (UP(Ny),%) €
j’rg mitererd s induced by k = (H, 59), these are the

—(m),ord
A un(ny) s

and

ord
Q['n UP(N1),%>
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respectively, in this paper (see section . (Their independence of Ny = r¢ is
explained in theorem 7.1.4.1(4h) of [La4].) For the Hecke actions on these formal
schemes, see theorem 7.1.4.1, (4g)—(4j), of [Lad].

B.16. Automorphic bundles in mixed characteristics. We first recall how some
of the notation of [La4] specializes in our case. In the beginning of section 8.1.1 of
[Lad], we can take:

(1) Ry = p)andR():Z
(2) Grpg = GrD# 0= (’)"7 F(p With its canonical O @z Z)-module structure, with
bpo - Gr 5 Groy

Then we have

D#.0 given by the identity morphism.

Grp ) := Homp, (Grp,
and, for each Z,)-algebra R,
MRS (R) := GLog,r(Gryg @z, R) X Gu(R) = GLog,r(Cry o ®z,, R) X Gu(R),

which is canonically isomorphic to the one in definition 8.1.1.1 of [La4] because of
the simpler setting here. (We will not need the other groups Gg'¢(R) and P§'§(R) in
this paper.) This can be canonically identified with the group L, (»)(R) in this paper
(see section . If R is a Q-algebra, then MgT(R) = My(R) (see section .

Let ‘H be any open compact subgroup of G(Z) of the form H = HPH,, where
‘H? is a neat open compact subgroup of G(Zp), and where H, = Uy, 10(p™,p™) for

~ a—1 n
D# oaRO) = (DlﬁoFﬂ(p)/Z(p)) ;

some integers 0 < r; < rg, so that l\7|§’jd and Mﬁd’min are defined over Spec Z,) as in

sections |B.10| and |B.12|. Then the tautological abelian scheme A over M%d defines a
locally free sheaf

Y —
LleA/Mg;d =i Q!

(where e4 denotes the identity section), which is the

A/Mold

o (v M)
in this paper (see section [3.4.3)), with UP(Ny, No) = H. We can similarly define

Lie', g The action of G(A®P) x PJ4(Z,) (resp. of the element of Pg(Q,)

corresponding to ¢,) on {Mgﬁd}ﬁ is defined by respecting their tautological abelian

schemes up to canonical Z(Xp)—isogenies (resp. Q*-isogenies). Therefore, such an action

induces actions on {@Z‘ g }4 and {Lie' /MH}H covering the one on {M%d}w which
are compatible with the isomorphisms

A Lie 3 Lie"

AV/Mord<1) A/Mord

induced by the tautological polarizations X\ : A — AY. Here the formal Tate twist
requires (as before) the Hecke action to be twisted by the similitude character v,
which corresponds to the tensor product with

=nt = Oxora (IIV]])
in this paper (see section |3.4.3]).
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Let X° be a compatible collection of admissible projective smooth rational poly-

hedral cone decompositions for M2, so that Mgidx’tofz is defined over SpecZ,) as in

section [B.13] Then the tautological semi-abelian scheme G over M;J{rdz’tsfi defines a
locally free sheaf

Liev —ord,tor - — e* Ql jord,t
G/Mﬂ’iord G G/M;);X’;ooril

(where e denotes the identity section), which is

ord

Tl,U,A | '\‘/’Iord,tor
Hyzord

in this paper (see section , with UP(Ny, Ny) = H, and with A induced by any

extension Y of ¥° as in section [B.13, We can similarly define Lieév JRford-ter where
#,sord

GV denotes the tautological dual semi-abelian scheme over I\7I;’id2’f§§ extending AV.
The action of G(A>®?) x Pg4(Z,) (resp. of the element of P34(Q,) corresponding

to ¢,) on {M(;(;E)Orfl}(yygord) is defined by respecting their tautological semi-abelian

schemes up to canonical Z(Xp)—isogenies (resp. Q~-isogenies). Therefore, such an

action induces actions on {Lie/, Jgeritor }psera) and {Lie/, Jigerdor (3, 0r) COVering
H, #,zord

ssord sor

the one on {M?;_Edilz(iz}(H’Eord), which are compatible with the isomorphisms
)\* : Lie\/ d,tor (1) :> @\/ d,tor

\ /NAOT \/or
G /MrHyzord G/Mﬂyzord

induced by the tautological polarizations A : G — GV. Here the formal Tate twist
requires (as before) the Hecke action to be twisted by the similitude character v,
which corresponds to the tensor product with the dual of
—ord
:‘SL,U,A = Oxgjg‘,’A(HVH)
in this paper (see section .
Then we have the principal Mgfg—bundle
cord :
g]?/[gfg = —Isomo®zﬁmoﬂrd ((EXV/M%d (1)7 ﬁm%d(l))7 (Grg,o ®Z(p) ﬁmgid7 ﬁl\_/‘l,oéd (1)))7
which is an MgT-torsor over l\7|3jd (see definition 8.1.2.4 and lemma 8.1.2.6 of [Lad]),
which canonically extends (as an Mgfg—torsor) to a principal M‘D’fg—bundle

sord,can |

RV 0
1080620 na0or (L0 s, (1) Opiraser, (1)): (Groo D O O, (1))

over M;i‘;tfﬁ (see (8.1.3.11) and lemma 8.1.3.12 of [Lad]). These are the restrictions

(to |\7|3jd and l\_/l);’_idzifz, respectively) of the

ord ord,can
Eup(ny N,y and 5Up(N1,N2),A

in this paper (see sections and [5.4), with UP(Ny, No) = H, and with A induced
by some extension ¥ of 3°¢ as in section [B.13]
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For each Z,)-algebra R, we denote by Rep R(Mgf{}) the category of R-modules with
algebraic actions of Mg’ ®z,,, I (see definition 8.1.2.7 of [Lad]). Then we also define,

for each W € Repp(MpY) that is locally free of finite rank as an R-module, the
automorphic bundle

—

ord .__ (gord (Mgfg’®z R)
5Mgf617R(W) . ((C:Mgf(()i ®Z<p) R) X (p) W

over Mg ®z,, I (see definition 8.1.2.8 of [Lad]), which extends to the canonical

extension
— — ord
gord,can(W) — ((S-ord,can ®Z( : R) X(MD’O ®Z(p) R)
3

ord ord
MD,O R MD,O

w

and the subcanonical extension

g_‘ord,sub(W) — g’ord,can(W) ®ﬁ’m0rd’tor jﬁg(r}d

ord ord
Mg'd R MgId R 1
H,ord

over |\7|;)id’t°r ®z,,, R (see definition 8.1.3.13 of [Lad]), where F5,.q is the Ofora.cor -ideal

d
?Eor 'H720rd

d,t v . . .
g — M3 (with its canonical reduced

defining the boundary divisor D := MZ; o
subscheme structure). These are restrictions of the vector bundles

ord ord,can ord,sub
gUp(Nl’Nz)’p’ gUp(vaNQ)vAvp’ and gUp(leNQ)zAvp

in this paper (see sections and [5.4), with UP(Ny, No) = H, and with A in-

—

duced by some extension ¥ of X9 as in section |B.13l The bundles gf/[rid R(W)
D,0°

and 51(\’;;(;8;(1/{/) admit compatible actions of G(A*?) x Py4(Z,) (see proposition
8.1.4.1 of [Lad]), which are compatible with the compatible actions of G, (A%)ord:*
on 5;}2(1( NiNy),p and 582(1(’]%?]\,2)7 A, Covering the ones on their respective base schemes.
The base extensions of these bundles from Z,) to Q are canonically isomorphic to
restrictions of the corresponding bundles introduced in section [B.§]

Beyond the ordinary loci, we still have the tautological abelian scheme A and the
principal polarization X:AS AY over My (see proposition 2.2.1.1 of [Lad]). Hence,

we can still define the principal bundle
8Mgf§ = Isﬂ(ﬂ@ZtﬁMH ((@Z}\//MH (1)7 ﬁl\_iIH (1>>7 (Grg,o ®Z(p) ﬁI\7IH7 ﬁMH (1)))

(see (8.3.1.2) and lemma 8.3.1.4 of [Lad]), for any H, and accordingly the automorphic
bundle

fMgr€7R(W) = (gMgrg ®Z<p) R) X(Mgf(?@Z(p)R) W

over My (see definition 8.3.2.1 of [Lad]), for any W € Rep R(MZ) that is locally free
of finite rank as an R-module.

For simplicity, assume that R is just Z,). Then we can still define some canonical
and subcanonical extensions

—

Scan,min (W) and gsub,min (W)

ord ord
Mpi§, R Mpi§ . R
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min

over M3, which are @gmn-torsion free coherent sheaves extending SMgrg r(W), whose
H N b

pull-backs to M%™ (resp. Mﬁd’min) are canonically isomorphic to the pushforwards
from My, (resp. M;jdztfﬂ) (for any ¥ inducing ¥°'9) of the corresponding canonical
and subcanonical extensions for the automorphic bundle associated with W ®z Q
(resp. W). (See definition 8.3.5.1, lemma 8.3.5.2, corollary 8.3.5.4, lemma 8.3.5.7,
and corollary 8.3.5.8 of [La4].) The above Sﬁifljl;(W) is the
D,0
sub
SUP(NI,N2)7P
in lemma 5.5 of this paper, with UP(Ny, N2) = H, with R = Z,, and with W, = W.
Such coherent sheaves admit compatible actions of G(A*?) x G(Z,,) (see proposition
8.3.6.5 of [Lad]), and the identifications in this paragraph are all Hecke equivariant.
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