VANISHING THEOREMS FOR COHERENT AUTOMORPHIC
COHOMOLOGY

KAI-WEN LAN

ABSTRACT. We consider the coherent cohomology of toroidal compactifica-
tions of locally symmetric varieties (such as Shimura varieties) with coefficients
in the canonical and subcanonical extensions of automorphic vector bundles,
and give explicit conditions for them to vanish in certain degrees. We also
provide algorithms for determining all such degrees in practice.
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1. INTRODUCTION

The coherent cohomology of toroidal compactifications of locally symmetric va-
rieties such as Shimura varieties, with coefficients in the so-called canonical and
subcanonical extensions of automorphic (vector) bundles, has played important
roles in the study of arithmetic properties of automorphic representations. (See
[21] for an overview.) A fundamental question in such a study is to know in which
degrees the cohomology groups are nonzero, or to rule out unnecessary complica-
tion by showing that all but some explicitly predictable degrees must be zero—this
is the question of vanishing that we would like to address in this article.

When the locally symmetric varieties in question are compact, and when the
coherent cohomology in question contributes to the Hodge graded pieces of the de
Rham cohomology of automorphic local systems, the cohomology classes can be
represented by harmonic forms which are directly related to automorphic forms,
and there are rather general vanishing results due to Faltings in [I3] and Vogan
and Zuckerman in [5I]. One of the most useful results is that, when the weight
of the local system in question is regular, the corresponding de Rham cohomology
is concentrated in the middle degree, and there is a similar result for the coherent
cohomology contributing to the Hodge graded pieces of such de Rham cohomol-
ogy. (Already in the compact case, there are coherent cohomology of automorphic
bundles which might not contribute to any de Rham cohomology.)

However, when the locally symmetric varieties in question are not necessarily
compact, our understanding is much less complete. The method of harmonic forms
only gives information about the L? cohomology, which is in general not sufficient
for the whole de Rham cohomology (or the compactly supported one, by duality),
let alone the coherent cohomology that might not contribute to the Hodge graded
pieces of any de Rham cohomology. (Here the coherent cohomology is defined over
the toroidal compactifications as above, while the de Rham cohomology can also be
defined over the toroidal compactifications using the de Rham complexes with inte-
gral connections with log poles along the boundary divisors.) Fortunately, thanks
to Franke’s results in [I5], one can still study the (whole) de Rham cohomology
using Eisenstein series and their residues, and it was shown by Li and Schwermer
in [38] that, in the adelic setting, when the weight of the local system in question is
regular, the corresponding de Rham cohomology vanishes below the middle degree,
the compactly supported de Rham cohomology vanishes above the middle degree,
and hence the interior cohomology, namely the image of the compactly supported
cohomology in the usual cohomology, is concentrated in the middle degree. (Con-
sequently, there are similar results for the coherent cohomology contributing to the
Hodge graded pieces of such de Rham cohomology.)

Unfortunately, the techniques in [I5] have not yet been generalized to also cover
the case of coherent cohomology of canonical or subcanonical extensions of auto-
morphic bundles of noncohomological weights, in the sense that the corresponding
cohomology groups do not contribute to the Hodge graded pieces of the de Rham
cohomology of any automorphic local system. (The representations of such nonco-
homological weights are characterized by having dual representations with irregular
Harish-Chandra parameters.) To the best of our knowledge, it is still not known
whether the coherent cohomology classes of such noncohomological weights are al-
ways represented by Eisenstein series and their residues. In this regard, the study
in [37] of coherent cohomology of toroidal compactifications of PEL-type Shimura
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varieties in mixed characteristics provides nontrivial and new vanishing results for
the coherent cohomology even in characteristic zero. In fact, the results such as [37,
Thm. 8.13 and 8.23] (which are over the complex numbers) were new (although we
were not fully aware of that at the time the results were published), and they still
have not yet been reproved using techniques based on automorphic forms.

On the other hand, since the methods in [37] require the existence of good
mixed characteristics models not only for the Shimura varieties and their toroidal
compactifications (as in [32]), but also for the geometric families of abelian schemes
and their toroidal compactifications (as in [31]) involved in the method, they have
serious limitations. While we can imagine that the methods work very similarly
for abelian-type Shimura varieties, we do not know how to extend them to more
general cases. Note that there are Shimura varieties unrelated to exceptional groups
which can still fail to be of abelian type—there are many such Shimura varieties, as
explained in [41], associated with even orthogonal groups. Also, although we still
know very little about Shimura varieties associated with exceptional groups, the
theory feels incomplete and unsatisfactory if we cannot say anything about them.

Fortunately, the recent work by Suh (see [50]) allows us to extend the methods in
[37] to arbitrary locally symmetric varieties considered in, e.g., [3] and [1], including
even Shimura varieties associated with exceptional groups, and including even the
noncongruence arithmetic group quotients of Hermitian symmetric domains. The
key point is to replace the vanishing theorems in the first three sections of [37] (which
were based on techniques in positive characteristics developed in [I1], [25], [27], [12],
and [43]) with a rather general vanishing theorem for mixed Hodge modules in [50]
(which, however, is based on complex-analytic techniques in [44], which have no
useful counterparts in positive characteristics yet).

While it might seem unsurprising that new vanishing theorems for automorphic
cohomology are available once some new vanishing theorem for mixed Hodge mod-
ules as in [50] is known, we have been quite happily surprised by what (and how
much) we could readily deduce from the latter, thanks to some pleasant facts in
the combinatorics of root systems. For example, we have obtained a new method
for reproving most of the Hermitian case of Li and Schwermer’s vanishing theorem
for the de Rham cohomology of local systems of regular weights, which is free of
the consideration of automorphic forms, and hence is not reliant on the results of
[15]. (Though we cannot say anything about the more general non-Hermitian cases
also covered by their theorem.) Moreover, we have also obtained new vanishing
results for coherent automorphic cohomology of low weights (not contributing to
the Hodge graded pieces of the de Rham cohomology of local systems of regular
weights), and we have found efficient algorithms for determining the degrees of
vanishing in practice, in all possible (Hermitian) cases.

Here is an outline of the article. In Section[2] we review the necessary background
materials for stating and proving the main results, concerning locally symmetric
varieties and their toroidal and minimal compactifications, automorphic bundles
and their canonical and subcanonical extensions, and the dual Bernstein—Gelfand—
Gelfand (BGG) complexes. In Section [3] we describe the automorphic line bundles
of what we call positive parallel weights, whose canonical extensions over toroidal
compactifications associated with projective and smooth cone decompositions are
semiample and satisfy a condition due to Esnault and Viehweg (so that the line
bundles are, in particular, nef and big). We classify all such positive parallel
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weights, and give concrete descriptions of them in all cases. In Section [d] we state
and prove most of our main results concerning the vanishing of coherent and de
Rham cohomology, generalizing those in [36] and [37] (when specialized to the case
over complex numbers), with byproducts giving new proofs of certain results in
[33]. To help the reader understand our results, we also include some illustrative
examples of low ranks. In Section [5] we explain our algorithms for determining the
degrees of vanishing in all circumstances, and provide many explicit examples.

This article is written for people who would like to understand and use our
vanishing results, and our judgement is that many of them will be number theorists
or algebraic geometers rather than experienced representation theorists. (Some of
the choices of conventions and notations might not be so natural for representation
theorists, but they are made because of historical or practical reasons related to the
geometric constructions or their number-theoretic applications.) Hence, while our
arguments concerning roots and weights might be rather elementary and naive, we
will still spell out most of the details, for the sake of clarity and readability. But we
do not consider such efforts as merely expository—they are helpful for presenting
our algorithms for determining the degrees of vanishing in all circumstances.

2. BACKGROUND MATERIALS

2.1. Locally symmetric varieties. Let G be a reductive algebraic group over Q
such that G(R) acts transitively on H, a finite disjoint union of Hermitian symmetric
domains. Let hy be a fixed choice of a point of H, so that H = G(R)hg, and let Hg
denote the connected component of hgy, which is a Hermitian symmetric domain by
assumption. For expositional simplicity, suppose that the maximal Q-anisotropic
R-split subtorus Z of the center Z of G is trivial (cf. [22] (1.1.7.3)]). (Otherwise, we
shall assume instead that all representations we consider have trivial restrictions to
Z; cf. [22) Rem. in (1.2)].)

Let Gg denote the derived group of the connected component G° of the identity
of G, which is a connected semisimple algebraic group over Q (see 47, Cor. 2.2.8
and 8.1.6(ii)]). Suppose Ho 2 Go(R)/Ky for some maximal compact subgroup Ky
of Go(R), which can be identified with the stabilizer of hy in Go(R). Then there
exists a parabolic subgroup Py of Goc = Go % C, with a Levi subgroup My which

can be identified with the complexification of Ky (via the identification of Go ¢
with the complexification of Gor = Go ® R), such that Ky = Po(C)NGo(R) and
Q

the Borel embedding Hy < HY is given by Go(R)/Ko — Go(C)/Po(C). (See, e.g.,
[23, Ch. VI, Sec. 7], [l Ch. III, Sec. 2.1] and [40, Sec. IIL.1].) Let us denote
by GO the simply-connected covering of Gg, by KO the _preimage of Ky in Go( ),
by Po the preimage of Py in Gocc = G0®(C and by Mo the preimage of My in

PO. For simplicity, suppose that Hy — HB/ (necessarily uniquely) extends to a
G(R)-equivariant embedding H = G(R)/K < HY := G(C)/P(C), where P is the
parabolic subgroup of Gg = G° %(C (uniquely) extending Py, with a Levi subgroup

M (uniquely) extending My, and where K := P(C) N G(R) extends Kj.

Suppose X is a complex analytic manifold such that there exist finitely many
neat arithmetic subgroups I'; of G(Q) stabilizing Hy and ¢g; € G(R) such that
X 2 [1((g:Tsg; ")\(g:Ho)) = [1(I'\\Ho). By an explanation similar to that in [30,

7
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Sec. 2.5], based on [6, Thm. 5.1], this is the case when X = G(Q)\(H x G(A>))/H
for some neat open compact subgroup H of G(A*). (However, we also allow
more general X.) By [3], X has the structure of a (possibly disconnected) quasi-
projective variety, embedded in its minimal compactification X™* = ] (Fi\Ho)min,

(]

the latter being a projective normal variety. By [I] (see also [2]), for suitable
choices of projective and smooth cone decompositions X;’s, the quasi-projective
variety X admits a projective smooth toroidal compactification X** =[] (I’i\HO)tEO;r
1
whose boundary D := (X* — X),q (with its reduced structure) is a simple normal
crossings divisor, which is equipped with a canonical proper surjective morphism
§ . Xtor _y Xmin’

2.2. Automorphic bundles and canonical extensions. For each finite-
dimensional algebraic representation W of P, in which case we write
W € Repe(P), we define a vector bundle W over H as the pullback under the
embedding H — HY = G(C)/P(C) of the analytification of the equivariant
quotient (G¢ x W)/P over G¢/P. For each 4, the left action of gifigi_l on g;Hp
lifts to an action on the restriction of W to g;Hg, and the disjoint union of such
restrictions descends to a (holomorphic) automorphic bundle over X, which we still
abusively denote by W. Such a construction is functorial, exact, and compatible
with tensor products and duals. We shall abusively denote the associated sheaves
of sections by the same symbols.

For each finite-dimensional algebraic representation W of M, in which case we
write W € Repe(M), we view it as an object of Repg(P) via the canonical ho-
momorphism P — M, and define W over H and over X as above. By [42] Main
Thm. 3.1], W admits a canonical extension W over X**. Then we also define
Wb . — W (=D), where D is as above. Then it follows from GAGA [45] that
W, W and WS are all algebraic. By algebraizing extensions among them, the
same assertion also holds for automorphic bundles and their canonical and sub-
canonical extensions associated with finite-dimensional algebraic representations of
P.

For each finite-dimensional algebraic representation V' of G¢, in which case we
write V' € Repe(Ge), we view it as an object of Repg(P) via the canonical homo-
morphism P — G¢, and define V over H and over X as above. Compared with
the construction for W € Repc(P), the action of G¢ (or rather its Lie algebra)
on V allows us to equip V with an integrable connection V : V. — Kg@ Q)l(/(c.

X

As explained in [20, Sec. 4] (see also [40] and [21]), (V,V) admits a canoni-
cal extension (V" V™) over X' in the sense of [10], where V" : V" —
ver @ Q}(mr/c(log D) is an integrable connection with log poles along D, with

wtor
unipotent monodromy, by [I, Ch. III, Sec. 5, Main Thm. I and its proof] (and there-
fore with nilpotent residues, by [28, Sec. VI and VII]). We also define the subcanon-
ical extension (V5P V*uP) by VSUP .= V" (_D) and by setting V" to be the con-
nection (also with log poles along D) canonically induced by V", Then we have
the (log) de Rham complexes DR*(V**") := (V™" ® Q5. c(logD), V") and

Oior
DR®(VS"P) := (vsuP @ or s (log D), Vsu). These (log) de Rham complexes
xtor

admit Hodge filtrations, which we denote by F, given by the filtration on V' induced
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by the action of the unipotent radical U of P, with associated Kodaira—Spencer
complexes Grf (DR®* (V")) and Gr* (DR®(V*"?)) thanks to Griffiths transversality.

2.3. Dual BGG complexes. We shall denote by ®¢., ®wm, etc the roots of Gg,
M, etc, respectively; and by Xgq., XM, etc the weights of G¢, M, etc, respectively.
We shall fix the choice of a Borel subgroup B of Gg such that B C P and such that
By = BN M is a Borel subgroup of M, and fix a maximal torus T of B such that
T C M C P is also a maximal torus of Gg. Then the choice of B determines the
subsets of positive roots <I>+C and ‘b&, and of dominant weights ch and Xf\'/[.

When W is an irreducible representation of highest weight v € XK/I, we write
W =W,, W =W,, etc. Similarly, when G is connected and V is an irreducible
representation of highest weight u € ch, we write V=V, V.=V . etc. When G
is not connected, we will abusively denote by V[, any irreducible representation of
Gc whose restriction to Gg decomposes into a sum of irreducible representations
Vi, for all 1/ in some multiset [p] of dominant weights of G&. The justification for
this is that the geometric structures of the resulted (V,;, V) and their canonical
and subcanonical extensions only depend on the weights ' in [u], but not on the
structure of V], as a representation of G¢. This terminology is not ideal, but suffices
in many naturally occurring cases such as representations of orthogonal groups.

Definition 2.1. We say that a root oo € @, is compact if o € Py, otherwise
we say it is noncompact. We shall denote the set of noncompact roots by @g@,
and denote the positive noncompact roots by <I>1\G/[(£+. We extend these notions and
notations to the corresponding coroots in the obvious ways.

As usual, let pg. :==3 > pand py:=3 Y. v denote the half-sums of posi-
nedd, ved;
tive roots, and let p™ := pa. — pum. Let U denote (as above) the unipotent radical
of P. Let g (resp. p, resp. u) denote the Lie algebra of G¢ (resp. P, resp. U). Essen-
tially by definition, u is dual to g/p as representations of M, and the weight of the
top exterior power AP uis 20M = 3~ a. Then, for d := dime(X) = dim¢(H),
ae@élg'

we have Q;l(/c = /\tOp Q)l(/(c = EQva Q;i(tor/(c(log D) = 752&3 and le(tor/(c = EZL;K/I
Let Wq, and Wy denote the Weyl groups of G¢ and M with respect to the com-
mon maximal torus T, which allows us to identify Wy as a subgroup of Wg,.
In addition to the natural action of Wg,. on Xg,., there is also the dot action
w-p = w(p+pae) — Pae, for all w € Wg,, and p € Xg,.. Let WM denote the subset
of Wg,. consisting of elements w such that w(XEC) C X

Lemma 2.2. For every a € ®yp, we have (pM, ") = 0.
Proof. This is because (pg.,a") =1 = (pu,a") for every simple o in ®5;. O
Lemma 2.3. For every a € <I>1\G/IC’+, we have (p™M, ") > 0.

Proof. We may and we shall replace G¢ with the C-simple factors of (N}O,c, and
assume that there is a unique simple ag € @gf (because the assertion is trivial
when M =P = G¢). If a € <I>I(\}/IC’+, then oV is the sum of some positive compact

coroots and ray for some integer 7 > 1. On the other hand, while 2pM = Y~ «
acdyt
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is the weight of the top exterior power AP u, it is a positive multiple sz of the
fundamental weight @ (which is characterized by the property that (wo, o) =1
and (wg,a¥) = 0 for all simple a € ®3;). Therefore, by Lemma [2.2] we have
(MM, a") =r(pM, ) = 1rs > 0, as desired. O
Proposition 2.4 (Faltings). For each irreducible representation V), of Gc, and
for 7 = can or sub, there is an F-filtered complex BGG'((V[#]) ), with trivial dif-
ferentials on F-graded pieces, such that
Gre(BGG (VL)) = @ (@ (Wy,))
rBeC W) e (e (V)
as Oxzor-modules, together with a canonical quasi-isomorphic embedding

GI‘F(BGG.(( [M]))) — GI‘F(DR.((V[N]) ))
(of complezes of Oxsor-modules) between F-graded pieces.

Proof. This follows from the construction of dual Bernstein—Gelfand—Gelfand
(BGG) complexes in [13, Sec. 3 and 7]. (See also [5] and [14, Ch. VI, Sec. 5].) O

Corollary 2.5. For each irreducible representation Vi, of G¢, and for 7 = can or
sub, we have a decomposition

Hi (xtor,GrF(DR.((KﬁL])v))) ~ e Hl I(w) (Xtor (W\/ )7)

G )
weWM [(w)=a ‘' €[u]

whose left-hand side is the so-called Hodge cohomology (giving the Ei page of the
Hodge spectral sequence for the de Rham cohomology H® (X", DR'((V[M])’ ))) and
whose right-hand side is a direct sum of coherent cohomology.

Proof. This is an immediate consequence of Proposition O
Corollary 2.5 provides the justification for the following:

Definition 2.6. We say that v € X1\+/1 is cohomological (for the de Rham and
Hodge cohomology) if there exist some (necessarily unique) p = u(v) € XEC and

w=uw(v) € WM such that W, = W,

w-
3. POSITIVE PARALLEL WEIGHTS
1. Ampleness.

Definition 3.1. We say that v € Xf(/[ is positive parallel if W, is one-

dimensional and if, for each Q-simple factor of Gg that is noncompact at oo,

the pullbacks of v and pM to the corresponding factor of Xl'\t/[ are equal up to
0

multiplication by a positive (rational) number.

Lemma 3.2. [fv € X[& is positive parallel as in Deﬁnition then the automor-
phic bundle W, over X is an ample line bundle, and the canonical extension W™
over X% is a semiample line bundle, and there exists some integer N > 1 such that

can ~v

WD = (W)@ N descends to an ample line bundle wy,, over X™in,

Proof. We may and we shall replace X with its finitely many connected components
(9:Tig; )\ (giHo) = T';\Ho, replace G with Go, replace H with Ho, and replace each
arithmetic subgroup I; of G(Q) with a neat finite index normal subgroup of its
preimage in Go(Q). Accordingly, we shall replace X™® and Xt with (I';\H)™™
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and (Fi\H)tZO;, respectively, and replace each ¥; with a projective and smooth
refinement. (By Zariski’s main theorem, for each finite index normal subgroup T
of I';, the canonical morphism (I';\H)™" — (I';\H)™" between projective normal
varieties is finite and induces an isomorphism (T;\T;)\(T;\H)™" = (T;\H)™™.)

Since G = Gg is connected, semisimple, and simply-connected, it factorizes as
a product G = [ G, of its Q-simple factors, which induces a factorization M =

jedJ
[T M;. (We shall denote similar factorizations over J by subscripts j € J, without
jeJ
explicitly introducing the other notations.) For each j € J, let T'; denote the image
of I under the canonical homomorphism G — Gj, so that I' is of finite index in
T = [] Tj, and so that we have a finite morphism
j€J
(3.3) X=T\H= [[X;
jed

with X; =T;\H; for all j € J, which extends to a finite morphism

(3.4) xmin s T xmin
s

with X;?“i“ = (E—\Hj)min for all j € J. Up to replacing the cone decomposition for
Xt with a further refinement (which we assume to be still projective and smooth),
we may assume that (3.3)) extends to a proper morphism

tor tor
(3.5) Xt — T xS
jeJ

with some noncanonical choices of toroidal compactifications X5 = (I';\H j)tor for
all j € J (provided that the cone decomposition for X% is finer than the pullback
of the product cone decomposition for [] X;-OY), which is compatible with .
jeJ
For each j € J, let v; € Xf\—/[j denote the factor of v corresponding to the factor
M; of M. By assumption, there exist integers N > 1 and INV; > 1, for all j € J,
such that Nv; = N;(2pMi), and so that WRS over X* is the pullback under

can ~Y d i or 1
q; of RS, & RO, (log D;))® N over ngx; , where d; = dime(X;) =

dime(X5") and D; = (X" — X;)rea (with its reduced structure) for each j € J.

By HE2, Prop. 3.4 b)], each Qi{o, /C(log D) over X' is semiample and descends

to an ample line bundle w; over X?in. Since l) is finite, this shows that WS
is semiample and descends to an ample line bundle wy, over X™™ which is the
pullback of the ample line bundle X w;g Ni over 11 X;nin, as desired. ([l
J JjeJ
Lemma 3.6 (cf. [35, property (5) preceding (2.1)] and [37, Prop. 4.2(5)]). Under
the assumption that X' =[] (I‘Z-\HO);:r for some projective smooth cone decompo-
- ;

sitions ;, there exists an effective Cartier divisor D' on X' such that D], = D
and such that Oxior(—D') is relatively ample over X™ wvia the canonical proper
surjective morphism f : Xtor _y Xmin,
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Proof. By the results in [T, Ch. IV, Sec. 2], there exists some coherent Oymin-ideal
J such that X' = NBI/(X™"), the normalization of the blowup of X™i" at 7,
and such that the pullback of J to X' is a line bundle isomorphic to Oxor(D’) for
some effective Cartier divisor D’ as in the statement of the lemma. O

Proposition 3.7 (cf. [35, (2.1)] and [37, (4.5)]). There exists an effective Cartier
divisor D' on X** such that D 4 = D, and such that, for any positive parallel weight
v € X3; (see Definition , there exists some integer Ny such that WS (=D’) is
ample for all N > Ny.

Proof. Combine Lemmas [3.2] and O
3.2. Positive parallel weights of smallest sizes.

Theorem 3.8. For each a € ®g., which necessarily comes from some C-simple
factor of Go c, we have

{0}, if & € @y (i.e., compact as in Definition [2.1));
€ ¢ {0,1}, if the factor is not of types B or C;

{0,1,2}, in all cases;
where hY is the dual Coxeter number (cf. [26, Sec. 6.1]) of the C-simple factor
of CN}OVC from where oV comes, which can be given explicitly as

(2pM, ")

(3.9) ‘ =

n+1, if av comes from a C-simple factor of type A,;
2n — 1, if " comes from a C-simple factor of type By;

n+1, if ¥ comes from a C-simple factor of type C,;

(3.10) hY = i ,
2n — 2, if oV comes from a C-simple factor of type D,;
12, if &V comes from a C-simple factor of type Eg;
18, if @V comes from a C-simple factor of type E;.

Proof. Note that the assertion is only about the Lie algebras of G¢, P, and M
(with some choices of B and T as above). Without loss of generality, we may and
we shall replace G¢ with the C-simple factors of GO,C, and assume that there is a
unique simple ag € @gﬁf (because the assertion to prove is trivial when a € ®y,
by Lemma . By the classification of Hermitian symmetric domains (see, e.g.,
[23, Ch. X, Sec. 6, Table V]), we know that ayp is a long root, and that (o, o) =3
cannot happen for any o € ®g.. As explained in the proof of Lemma 20M is a
positive multiple of the fundamental weight wy dual to «g, and it suffices to show
that

(3.11) (20M,a) = hY,

because oy appears in the expression of a noncompact coroot a¥ with multiplicity
at most two when Gg is of types B or C, and at most one otherwise.

This can be easily checked in all cases by explicit calculations (cf. Section
below)—Indeed, this was how we observed the truth of this theorem. Nevertheless,
we shall present a more conceptual argument, which we learned from Zhiwei Yun.

Let 6 denote the highest root of G¢, and let 8V denote the corresponding coroot.
Essentially by definition, since (pg., ") = 1 for every positive simple root «, we
have Y = 1+ (pg.,0"). Since 6 is the highest root, it is the only root o € <I>EC
such that (a,0Y) = 2. Since (2pg.,0Y) = 2(hY — 1), there are exactly 2(hY — 2)
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(necessarily positive) roots o € @gc such that (a,0Y) = 1. Since ag and 6 are both
long roots, they are in the same orbit of Wg.. Therefore, it is also true that there
are exactly 2(h" — 2) roots a € P, such that (o, a) = 1.

Suppose a € ®q, satisfies (o, af) = 1. Then (o + ag,ay) = 3, which forces
a+ay € Pg.. By [A7, Lem. 9.1.3], it follows that a — g € Pg,., but a— 20y € P,
Then we have two cases: (i) a € @y and (o, ) = 15 or (i) a € <I>1\G/IL1+, in which
case we have 3 = a—ap € Py satisfying —3 € &y and (—f, af ) = 1. Since the two
cases have the same number of roots, there are h¥ — 2 of them in each case. Thus,
2oM, o) = (g, ) + S (o) =2+ (hY —2) = hY, as desired. O

« in case (ii)
Remark 3.12. We learned from Xinwen Zhu that the assertion in Theorem [3.§ that
2pM,aV) . . v . . : :
~=~—= is an integer for all coroots a* of G¢ is a special case of deeper investi-
gations in [4] Sec. 4.6] and [52], Sec. 6.3] concerning Schubert subvarieties of affine
Grassmannians. (The Gg/P considered here corresponds to Schubert subvarieties
associated with minuscule cocharacters.)

Corollary 3.13. Up to replacing G with (~}0 (and replacing M etc with 1\7[0 etc,
accordingly), there exists a positive parallel weight vy € X1\+/[ (as in Deﬁnition
such that, for each coroot oV of Gg¢, which necessarily comes from some C-simple
factor of Go c, we have

0, if a € @y (i.e., compact as in Definition [2.1);
(3.14) |(ve,aY)| << 1, if the factor is not of types B or C;

2, in all cases.

Such a vy is characterized by the property that its pullback to each C-simple factor
of Go,c s the fundamental weight wo dual to the unique simple o € <I>1(\;/IC’+ (see
Definition [2.1)) from that C-simple factor, when «q exists, or is zero otherwise.

Proof. We may and we shall replace G with Go (and replace M etc with Mo etc,
accordingly), so that we have a factorization G = [] G; into its Q-simple factors,
jedJ
which induces a factorization M = [ Mj;, as in the proof of Lemma Then we
jeJ
can write pM = (oM7) ¢, and it suffices to take vy = (7% (2p™));cs, where hy is
J
the dual Coxeter number of any of the C-simple factors of G;, by Theorem and
its proof. (The upshot is that the multiple ;%v depends only on the Q-simple factor
J

G, but not on its further factorization into a product of C-simple factors.) (]

3.3. Explicit descriptions in all cases. For our main results to be stated in Sec-
tion [ to be practically useful, it is desirable to have explicit descriptions of positive
parallel weights of G¢ in all cases. For this purpose, by Definition [3.1] it suffices
to describe the pullback of such weights to the Q-simple factors of Ggc. Hence,
we may and we shall assume that G¢ is Q-simple, and decomposes as a product
Gc = [] G, of its C-simple factors, so that we have corresponding decompositions

veYT
P H P,, M = H M, XGC = H XGU, XM = H XMU, da = H ‘PGU, etc.
veY veY veY veY veY

Thanks to the classification of Hermitian symmetric domains (see, e.g., [23, Ch. X,
Sec. 6, Table V]), we only have to investigate the following six cases. (Readers who
are not interested can skip these and move on to the next section.)
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3.3.1. Type A. Suppose that the root systems {®¢, },er are all simple of type A,
for some integer n. For each v € T, let us embed ®¢, into (Re)* C R**!, where
e=(1,1,...,1) has all its entries equal to 1, by taking the roots to be e; — e;, for
1 <45 <n+1with i # j, where e; and e; are the i-th and j-th standard basis
vectors of R™*!, with the Killing form induced by the standard inner product of
R+, (By the r-th standard basis vector e,., we mean the vector with the r-th entry
being 1 and all other entries being 0.) For each root o = e; — e, the corresponding
coroot is @ = e; — e;. Up to a change of coordinates, we shall assume that

(3.15) DL ={ei—e;:1<i<j<n+1}

with positive simple roots given by «; = e; —e;41 for 1 <4 < n, and that P,, (when
M, # G,) is determined by the condition that «,, & Py, for some 1 < r, < n.
Then

(3.16) of =fei—e;:1<i<j<ryorr, <i<j<n+1},

whose elements are all perpendicular to the fundamental weight

(3.17) wy, =e1+--+e., =—(er 11+ -+ent1) (mod Ze),
while
(3.18) oyt ={ei—eji1<i<r,<j<n+1}

Note that #CDEU = In(n+1), #@ﬁu = 2(ro — Dry+ 2(n—ry)(n — 1y + 1), and

#(1)1(\;4:,+ =ry(n —r, + 1), where the first one is the sum of the latter two. Hence,

(3.19) PG, = %(n,n—Q,...,Q—n, —n),
(3.20) oM, :%(rv—l,rv—37...,1—rv;n—rv,n—rv—2,...7rv—n),
and
M= pa, — pu,
:%(n—rv—|—1,n—7“v+1,...,n—rv—l—l;—rv,—rv,...,—rv)
(3.21) :%(n+1,n+1,...,n+1;0,0,...,0) (mod Ze)
:%(070,...70;—71—1,—71—1,...7—n—1) (mod Ze)

=2Hw,  (mod Ze),
where the semicolons are after the r,-th entries. Since the highest root is
(3.22) 0=e1—ent1=a1+az+ - +an,
so that 8¥ = e; — e, 11 as well, we have
(3.23) h =1+ (pa,,0")=n+1.
Consequently, for each coroot a" of G, we have

(2p™v,0Y)

(3.24) ‘ hv

_{1, if 0V = +(e; —e;) with 1 <i<r, <j<n+1;

0, otherwise.

(In particular, we have reconfirmed Theorem for all simple factors of type A.)
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Lemma 3.25. In this case, v = (Vy)ver € X1\+/[ is positive parallel if and only if
there exists k € Z>1 such that, for each v € T, either M, = G, and v, = 0, or
M, # G, and

(3.26) vy = kwy, = (k,k,...,k;0,0,...,0) (mod Ze)
(where the semicolon is after the r,-th entry).

3.3.2. Type B. Suppose that the root systems {®¢q, },er are all simple of type B,
for some integer n. For each v € T, let us embed ®¢, in R™ by taking the roots to
be +e; + e; (allowing all four possibilities of signs) and +e; for 1 < 4,5 < n with
i # j, where e; and e; are i-th and j-th standard basis vectors of R”, with the Killing
form induced by the standard inner product of R"™. For each root oo = +e; +¢;
(resp. +e;), the corresponding coroot is a¥ = +e; te; (resp. £2¢;). Up to a change
of coordinates, we shall assume that

(3.27) @gv:{61-:&6]-:1§i<j§n}u{ei:1§i§n},

with positive simple roots given by o; = ¢; — e;41 for 1 <i < n and «,, = ¢,, and
that P, (when M,, # G,) is determined by the condition that oy & Py, . Then

(3.28) of ={eitej:1<i<j<n}uU{e;:1<i<n},
whose elements are all perpendicular to the fundamental weight
(3.29) w1 =e; = (1,0,0,...,0),

while

(3.30) <I>1(\}/I:’Jr ={e1fej:1<j<ntU{er}

Note that #@év =n?, #@ﬁv = (n —1)% and #(PI\GA;U7+ = 2n — 1, where the first
one is the sum of the latter two. Hence,

(3.31) PG, =3(2n—1,2n—3,...,3,1),

(3.32) pm, = 2(0;2n—3,...,3,1),

and

(3.33) oM = pa, — pm, = 3(2n —1;0,0,...,0) = 21y,
Since the highest root is

(3.34) 0=e1+e=a1+2as+ -+ 2a,,

so that 8 = e; + ey as well, we have

(3.35) hY =1+ (pg,,0") =2n—1.

Consequently, for each coroot a" of G, we have
2, if oV = 42eq;
=91, ifa¥=d2e e withl<j<mn

0, otherwise.

(3.36)

(2pM, )
h\/

(In particular, we have reconfirmed Theorem for all simple factors of type B.)

Lemma 3.37. In this case, v = (Vy)ver € X1\+/[ is positive parallel if and only if
there exists k € Z>1 such that, for each v € T, either M, = G, and v, = 0, or
M, # G, and

(3.38) vy = kwy = (k;0,0,...,0).
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3.3.3. Type C. Suppose that the root systems {®¢g,  },ex are all simple of type C,,
for some integer n. For each v € T, let us embed ®¢, in R™ by taking the roots to
be te; £ e; (allowing all four possibilities of signs) and +2e; for 1 <4, j < n with
i # j, where e; and e; are ¢-th and j-th standard basis vectors of R", with the Killing
form induced by the standard inner product of R"™. For each root o = +e; +¢;
(resp. £2¢;), the corresponding coroot is @ = +e; £ e; (resp. £e;). Up to a change
of coordinates, we shall assume that

(3.39) <I>Jév:{eiiej:1§i<j§n}U{2€i:1§i§n},

with positive simple roots given by a; = e; —e;41 for 1 <1¢ < n and «,, = 2e,, and
that P, (when M,, # G,) is determined by the condition that «,, & ®p;,. Then

(3.40) oY ={ei—ej:1<i<j<n},

whose elements are all perpendicular to the fundamental weight
(3.41) wp=€1+e+--+e,=(1,1,...,1),
while the positive noncompact roots are

(3.42) oyt ={e;+eji1<i<j<n}U{2e:1<i<n}

Note that #®f = n?, #&f; = in(n—1), and #LI)I\G/[:7+ = in(n+ 1), where the
first one is the sum of the latter two. Hence,

(3.43) pe, = m,n—1,...,2,1),

(3.44) oM, =2(n—1,n—3,...,1—n),

and

(3.45) P =pa, —pm, =s(n+Ln+1,...,n+1)="Hg,.

Since the highest root is

(3.46) 0 =2e, =201 +2a0+ -+ 20,1+ an,
so that 8 = e, we have

(3.47) h =1+ (pa,,0")=n+1
Consequently, for each coroot " of G, we have

2, ifa¥ ==(e;+e) withl <i<j<n
, if &V = +e; with 1 <4 <

0, otherwise.

(3.48)

—_

(2pMv,aY)
h\/

(In particular, we have reconfirmed Theorem [3.8] for all simple factors of type C.)

Lemma 3.49. In this case, v = (Vy)ver € X1\+/[ is positive parallel if and only if
there exists k € Z>1 such that, for each v € T, either M, = G, and v, = 0, or
M, # G, and

(3.50) vy = ko = (k, k., k,....k).
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3.3.4. Type D. Suppose that the root systems {®¢,  },ex are all simple of type D,
for some integer n > 4. (The case with n = 3 can be considered as the case Asz.) For
each v € T, let us embed ®g, in R™ by taking the roots to be fe; +e; (allowing all
four possibilities of signs) for 1 <4, j < n with i # j, where e; and e; are i-th and
j-th standard basis vectors of R™, with the Killing form induced by the standard
inner product of R™. For each root a as above, the corresponding coroot oV is
exactly the same vector in R”. Up to a change of coordinates, we shall assume that

(3.51) oL ={eite;:1<i<j<n},

with positive simple roots given by o; = ¢; —e; 1 for 1 <i < nand oy, = e,_1 + €y,
and that P, (when M,, # G, ) is determined by the condition that «,.,6 & @y, for
exactly one index r, in {1,n — 1,n}. The two cases r, = n —1 and r, = n are
essentially the same, up to a change of sign in the n-th coordinate. Hence, for
simplicity, we shall omit the case ay,—1 & Pn,, -

Suppose a; ¢ ®yp,. (We shall say that we are in the case of type DX.) Then

(3.52) of ={eite;:1<i<j<n}
which are all perpendicular to the fundamental weight
(3.53) w1 =e; = (1,0,0,...,0),
while

(3.54) oyt ={er ke 1<j<n}

Note that #&& =n(n—1), #&f; = (n—1)(n—2), and #&5"" = 2n—2, where
the first one is the sum of the latter two. Hence,

(3.55) pc, =(n—1,n-2/...,1,0),
(3.56) o, =(0;n—2,n-3,...,1,0),
and
(3.57) oMY = pa, —pu, = (n—1;0,0,...,0) = (n — 1)w;.
Since the highest root is
(3.58) 0=e1+ex=ay+2as+ -+ 20,2+ n_1+ ay,
so that 8 = e; + ey as well, we have
(3.59) h =1+ (pa,,0") =2n—2.
Consequently, for each coroot " of G, we have

(2pMv,aY)|  J1, ifa¥ =te; +e; with1 <j<mn;

(3.60) ‘

hY B {0, otherwise.

Suppose a,, ¢ ®r,. (We shall say that we are in the case of type DE.) Then

(3.61) ofy, =f{ei—ej:1<i<j<nl,
whose elements are all perpendicular to the fundamental weight
(3.62) @ = tertertoten) = (510,
while

(3.63) oyt ={e;+ej1<i<j<n}

[
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Note that #fbgv =n(n—1), #‘Iﬂv =1n(n—1), and #@1(\;4:’+ = 1n(n—1), where

the first one is the sum of the latter two. Hence,

(3.64) pac, =(n—1,n-2/...,1,0),

(3.65) pm, = 2(n—1,n—3,...,1—n),

and

(3.66) M =pa, —pm, =s(n—1n—1,...,n—1) = 22g,.

Consequently, for each coroot a" of G, we have
'(2pM“,av) 1, ifaY =f(ej+ej) with1 <i < j<my

3.67 =
( ) hY {0, otherwise.

(In particular, we have reconfirmed Theorem for all simple factors of type D.)

Lemma 3.68. In this case, v = (Vy)ver € Xf/[ is positive parallel if and only if
there exists k € Z>y such that, for each v € T, either M, = G, and v, = 0, or
M, # G, and

kwlz k;0,07...,0), ifa1:61—62€(I>Mv;
(369) vy = kw1 = (57 ga SRR %7_5)7 ifa,1=ep1—en g CI)MU;
kwn:(gvga"'agag)v ifan:€7z—1+€n¢¢)Mv~

3.3.5. Type Eg. Suppose that the root systems {®g_ },er are all simple of type
Eg. For each v € T, let us embed ®¢, in R® by taking the 72 roots to be all 40
possibilities of te; £ e; (allowing all four possibilities of signs) with 1 < i < j <5,
where e; and e; are i-th and j-th standard basis vectors of R® as usual, together with
all 32 possibilities of (:I:%7 :I:%, :I:%7 i%, :I:%7 :I:?) with an odd number of positive
signs, with the Killing form induced by the standard inner product of R®. For each
root o as above, the corresponding coroot o is exactly the same vector in R%. Up
to a change of coordinates, we shall assume that
470 DL ={e;te;:1<i<j<5}
(3.70) U{(i%,i%,i%i%,i%,—i—?) with an odd number of +’s },
with positive simple roots given by a3 = e; — es, ag = €3 — e3, ag = e3 — ey,
aqg = eq4 —e5, ay = e4 + e5, and ag = (—%,—%,—%,—%,—%,@), and that P,
(when M,, # G,) is determined by the condition that «,, & @y, for exactly one
index 7, in {1,6}. While the two cases are essentially the same, they are quite
different for explicit calculations. Hence, we shall still treat them separately.
Suppose a; & Py, Then

of =feite;:1<i<j<5}

u{(—3, +1, :i:%,:l:%;l:%,—i—@) with an odd number of +’s }
whose elements are all perpendicular to the fundamental weight
(3.72) @ = (1,0,0,0,0, %),

while

(3.71)

(3.73) Oyt ={ertej 1< j <5}
. U{(+3, +3, +3, i;i%,—%@) with an odd number of +’s }.
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Note that #CDJ(SU = 36, #(bf{dv = 1248 =20, and #(1)1(\;4:,,+ = 848 = 16, where the
first one is the sum of the latter two. Hence,

(3.74) pa, = (4,3,2,1,0,4V/3),

(3.75) o, = (—2;3,2,1,0,2V/3),

and

(3.76) M = pa, — pm, = (6;0,0,0,0,2v3) = 6.

Since the highest root is

(3.77) 0=(33%4 1, -1, @) = a1 + 202 + 3a3 + 204 + 205 + g,
so that 0¥ = (1,1 1 1 1 ¥3) a5 well, we have

(3.78) Y =1+ (pa,,0") = 12.

Consequently, for each coroot ¥ of G, we have

v

1, ifa¥ ==xe; te; withl<j <5
: _ 1 1 1 1 1 V3
(2va av) 1, lf O[v = (i§7i§,i§,i§7i§7i7)
(3.79) ‘hv7 = with an odd number of +’s and

with the first sign equal to the last sign;

0, otherwise.

Suppose ag & Pnp,. Then

(3.80) of ={eite;:1<i<j<5}
which are all perpendicular to the fundamental weight
(381) wWe = (05070707()’ %)a
while

(3.82)  @yv T ={(xd,£1, £, £1 £ +¥3) with an odd number of +s }.

Note that #@EU = 36, #@ﬁ” = 20, and #@g/{:’Jr = 16, where the first one is the
sum of the latter two. Hence,

(3.83) pa, = (4,3,2,1,0,4V/3),

(384) oM, = (473a27 17070)7

and

(3.85) oMo = pa. — pa, = (0,0,0,0,0;4v/3) = 6c06.

Consequently, for each coroot ¥ of G, we have
1, ifa¥ = (i1 +1 +1 +1 4+5)

(3.86) = with an odd number of +s;

‘ (2pMv,aY)
h\/

0, otherwise.

(In particular, we have reconfirmed Theorem for all simple factors of type Eg.)
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Lemma 3.87. In this case, v = (Vy)ver € X1\+/[ is positive parallel if and only if
there exists k € Z>1 such that, for each v € T, either M, = G, and v, = 0, or
M, # G, and

(3.88)

kowoy = (k,0,0,0,0,3k), if ay = e — eg & Do, ;

kg = (0,0,0,0,0, 22k), ifag= (-1, -1, -1, -1 1 Byga, .

Vy =

3.3.6. Type E7. Suppose that the root systems {®g, },er are all simple of type
E;. For each v € T, let us embed ®¢, in R” by taking the 126 roots to be all 60
possibilities of +e; & e; (allowing all four possibilities of signs) with 1 < ¢ < j <6,
where ¢; and e; are i-th and j-th standard basis vectors of R” as usual, together
with all 64 possibilities of (+4,+3, 41, +1 +1 +1 +¥2) with an even number of
+1’s and the 2 possibilities of (0,0,0,0,0,0,£v/2), with the Killing form induced
by the standard inner product of R”. For each root a as above, the corresponding
coroot a is exactly the same vector in R7. Up to a change of coordinates, we shall
assume that
(3.89) g, =feste;:1<i<j<6}
. Uf{(+3,+1, 1, +1 +1 ié,%)WIth an even number of +3’s },
with positive simple roots given by a1 = e; — €3, as = €3 — €3, ag = €3 — ey,
11 1 1 _1 42 )

1
ay=e4—e5, 05 =e5— €5, g = €5+ €, and ar = (=5, =5, —5, ~ 5~ 3 "3 5

and that P, (when M,, # G,) is determined by the condition that oy & ®yg, . Then
of =feite;:1<i<j<6}

(3.90) .
U{(—%,+3,+£3, +1 +1 +£1 ¥2) with an even number of +3’s }

2172
whose elements are all perpendicular to the fundamental weight
(3.91) w1 = (1,0,0,0,0,0, L2),
while
oyt ={er£ej 1< j <6}
(3.92) U{(3,+3, 43, +1,+1 +
u{(oooooof)}.

Note that #®% = 63, #®); = 20+ 16 = 36, and #@Mv* 10+ 16 + 1 = 27,
where the first one is the sum of the latter two. Hence,

i, i) with an even number of +3’s }

(3.93) pa, = (5,4,3,2,1,0, 1072),

(3.94) o, = (—4:4,3,2,1,0,4v/2),

and

(3.95) M = pa, — pa, = (9;0,0,0,0,0, 2Y2) = 9.

Since the highest root is

(3.96)  6=1(0,0,0,0,0,0,v2) = a1 + 203 + 3as + day + 2a5 + 3ag + 2a7,
so that 8 = (0,0,0,0,0,0,v/2) as well, we have

(3.97) hY =1+ (pg,,0") = 18.
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\Y

Consequently, for each coroot a¥ of G, we have

1, ifa¥ ==+e; e with 1 < j <6;
1, ifa¥ =(xd,+1, +1 +1 41 41 492

= with an even number of —i—%’s and

(3.98) ‘W’O‘v)

hV

with the first sign equal to the last sign;
0, otherwise.

(In particular, we have reconfirmed Theorem for all simple factors of type E7.)

Lemma 3.99. In this case, v = (Vy)ver € X1\+/[ is positive parallel if and only if
there exists k € Z>1 such that, for each v € T, either M, = G, and v, = 0, or
M, # G, and

(3.100) Ve = ke = (k,0,0,0,0,0, L2k).

4. MAIN RESULTS
4.1. Vanishing of coherent cohomology. Let d := dim¢(X) = dim¢(H).

Theorem 4.1 (cf. [36, Thm. 8.7 and 8.20] and [37, Thm. 8.13 and 8.23]). Let
v € Xj;. With the terminologies in Definitions and we have:

(1) If there ezists a positive parallel weight v_ such that v+v_ is cohomological,
then H'(X*r, W) = 0 for every i < d — l(w(v +v_)).

(2) If there exists a positive parallel weight vy such that v—v4 is cohomological,
then H (X', W5'°) = 0 for every i > d — l(w(v — vy)).

(3) If there exist positive parallel weights vy and v_ such that v—vy and v+v_
are both cohomological, then the interior cohomology

Hiint (Xtor7wlcjan) — image(Hi(Xtor,Eiub) N Hz‘ (Xtor’wlclan)) -0

for everyi & [d—lw(v+v-)),d—l(wlv—rvy))].

For these assertions to hold, we may replace X and X% with their connected
components T';\Ho and (Fi\HO)tEO:, respectively, replace G with Go, replace H with
Ho, replace each T'; with a neat finite index normal subgroup of its preimage in
GO(Q), and replace each ¥; with a projective and smooth refinement, so that all
weights of I\N/IO and éo,c can be used for defining automorphic bundles, and so that we
may take vy and v_ here to be the same v, as in Corollary . (The replacement
of X; with a refinement does not change the coherent cohomology, as usual, by the
arguments in [29, Ch. I, Sec. 3, especially p. 44, Cor. 2].)

The proof of Theorem will be given below, after stating Theorem

Remark 4.2. Theorem [4.1] generalizes the previously known results in [35], [36], and
[37] in PEL-type cases over C, which were based on techniques developed in positive
characteristics in [I1], [25], [27], [12], and [43]. (In the Siegel case, similar results
also based on techniques developed in positive characteristics were independently
discovered in [48] and [49], although the methods there depended on special results
that are only available in the Siegel case in the literature.) Our proof of Theorem
[41] will be based on a rather general vanishing theorem for mixed Hodge modules,
recently proved in [50], which is based on Saito’s theory in [44] which is complex an-
alytic in nature and have not yet been generalized to positive characteristics. In any
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case, the rather geometric proofs of Theorem [4.1] and its predecessors have the ad-
vantage of not using any techniques based on automorphic forms, and hence do not
depend on the as-yet-still-unanswered question of whether cohomology groups like
Hi(Xtor W) and H (X', W5") are represented by automorphic forms (which
cannot be deduced from the results of [I5] when v is not cohomological in the sense
of Definition . To the best of our knowledge, Theorem is not covered by
obvious generalizations of other considerations in the literature.

Theorem 4.3 (Suh; see [50]). Suppose D' is an effective Cartier divisor on X"
such that Dl 4 = D, and L is a semiample line bundle such that there exists an
integer Ng > 1 such that L2N(—D’) is ample for all N > Ny. Then, for any
irreducible representation Vi, of Ge as in Section we have:

(1) H (X'r, 71 @ Grf(DR*((V},))™))) = 0 for every i < d.

Oyior
(2) H (X', L ﬁ;gt)or GrF(DR°((Z[VM])S“b))) =0 for every i > d.
Proof. Since any L as in the statement of the theorem is nef and big, and since
the local system associated with (KEL]7V) has unipotent monodromy (by [I, Ch.
ITI, Sec. 5, Main Thm. I and its proof] and the explanation in [37, Sec. 6.1]), the
assertions of the theorem follow from the vanishing results of [50] for canonical
extensions of polarized variations of Hodge structures. (Il

Remark 4.4. When X' is a union of connected components of the complex fiber
of some toroidal compactification of a PEL-type Shimura variety (as in [32] Thm.
6.4.1.1 and 7.3.3.4]), Theoremfollows from [36], Cor. 6.2] and [37, Prop. 7.21],
which were based on [25] Cor. 4.16] and [37, Thm. 3.24], respectively. It seems
plausible that the methods there (using geometry in good mixed characteristics)
can be extended to cover all abelian-type cases, although they have not been carried
out yet (as far as we know).

Proof of Theorem A1l By Propositions [2.4] and [37] the two vanishing statements
in Theorem H imply the following two, for all u € ch and all w € WM:
(1) Hi~lw)(Xtor pyear 2 (Way.)5) = 0 for every i < d.

xtor

(2) H—Hw) (Xter, e ﬁf?m (W, )™P) = 0 for every i > d.

Since p and w are arbitrary, these imply the first two vanishing statements in
Theorem and hence also the third. (This is the same argument as in [37, Sec.
7.3 and 7.4].) The last paragraph of Theorem is self-explanatory. O

4.2. Higher direct images and higher Koecher’s principle.

Theorem 4.5 (cf. [33, Thm. 3.9 and Rem. 10.1; see also Rem. 3.10]). For every
v € X{;, we have R 4. Effb =0 for all i > 0.

Proof. By the same method as in [34], by of Theorem [4.1} it suffices to show
that the analogue of [34, Prop. 2.6] is true, which we can reformulate as follows:
By definition of positive parallel weights in Definition [3.1} it suffices to note that
there exists some integer Ny (depending on v) such that (v + Np™M aVv) > 0 for
all a € (IJEC and all N > Np. This is because, if o € ®};, then (r,a¥) > 0 and
(p™M,aV) =0 by Lemma otherwise a € @gﬁ and (pM,a") > 0 by Lemma
and therefore it suffices to take No > —(v,a")/(p™M, ") for all such a. O
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Remark 4.6. While Theorem [£.5] is not new, the proof based on Theorem [£.1] sug-
gests an intriguing relation between vanishing results in rather different contexts.

Theorem 4.7 (higher Koecher’s principle; cf. [33, Thm. 2.5 and Rem. 10.1]). Let

v € Xy Let 5 : X — X gnd ™0 X — Xm0 denote the canonical morphisms,

and let cx := codim(X™" — X, XY Then the canonical morphism

(4.8) R' § W™ — Rijminyy

induced by 7*°F is an isomorphism for all i < cx — 1, and is injective for i = cx — 1.
Consequently, by the Leray spectral sequence [I7, Ch. II, Thm. 4.17.1], for each

open subset U of X™" the canonical restriction morphism

(4.9) H($71(0), W) — H((5™™)~1(U), W)

is bijective (resp. injective) for all i < ex — 1 (resp. i = ¢cx —1). (When i = 0,
U = X" and cx > 1, this is the usual Koecher’s principle.)

The analogous statements are true if we replace all varieties and sheaves with
their complex analytifications (with sections represented by holomorphic functions).

Proof. As explained in [33, Rem. 10.1], the same methods as in [33], Sec. 3-8] also
work here. Nevertheless, by the same method based on Serre duality as in [33, Sec.
8], we have a short-cut by using Theorem here (with its proof based on Theorem
instead of [33, Thm. 3.9] there. (Then the reduction of the complex analytic
assertion to the algebraic one follows from the same steps as in [33, Sec. 3], based
on [I8, VIII, Prop. 3.2], [I9, XII, Prop. 2.1], and [46, Thm. A, A’, and B].) a

4.3. Vanishing of de Rham cohomology.

Theorem 4.10 (cf. [36, Thm. 8.16] and [37, Thm. 8.18]). For each irreducible
representation Vi, of Gc such that every p’ € [u] is sufficiently regular in the
sense that, for each positive coroot oV of Gg, which necessarily comes from some
C-simple factor of éo,@ we have (see Deﬁm'tion:

0, if the factor is compact in that its roots are all compact;
(4.11) (¢/,aY) > <1, if the factor is not compact and not of types B or C;
2, if the factor is not compact but is of types B or C.

Then we have:

(1) Hig(X, Vi) := H{(XP , DR*((V,,)*") = 0 for every i < d.

(]
(2) Hig X,V }) = H (X, DR*((V,))™") = 0 for every i > d.
(3) HgR7int(X,KfiL]) = image(HéRﬁ(X,KEL]) — HQR(X7KE;4)) = 0 for every
i #d.

Proof. We may and we shall perform the replacements as in the last paragraph of
Theorem u so that all weights of My and Gg ¢ can be used for defining automor-
phic bundles. By using Hodge spectral sequences, and by Corollary it suffices
to show that, for all w € WM and all z/ € [u], we have:

(1) HZHw) (Xtor (W ,)em) =0 for every i < d.

(2) HZH)(Xtor (W ,)5P) =0 for every i > d.
By Theorem it suffices to show that there exists a positive parallel weight
vy as in Definition such that, for all w € W™ and all 4/ € [u], the weights
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w- (W tvy)=w- (4 £wt(ry)) in Xy are of the form w - p/] for some weights
plf in X&  (cf. Definition , or (equivalently) such that

(4.12) (W £ (vy),a%) = 0

for all simple «a € <I>Jé Since every u' € [u] satisfies 1) it suffices to show that
there exists a positive parallel weight v such that, for all w € WM and all simple
a € @gc, where a comes from some C-simple factor of Gy ¢, we have

0, if the factor is compact;
(4.13) l(w™(vy),a)| < {1, if the factor is not of types B or C;

2, in all cases.

Equivalently, it suffices to show that there exists a positive parallel weight v} such
that, for all w € WM and all (not necessarily positive simple) o € ®¢,., where «
comes from some C-simple factor of Go ¢, we have

0, if the factor is compact;
(4.14) |(v4,a")] < <1, if the factor is not of types B or C;
2, in all cases.

Then the existence of such a v follows from Corollary as desired. (This is
the same argument as in the proofs of [36, Thm. 8.16] and [37, Thm. 8.18].) O

Remark 4.15. When none of the simple factors of éo’@ is of types B or C, the suffi-
cient regularity condition in Theorem is no stronger than the usual regularity
condition. In particular, even in PEL-type cases, Theorem slightly improves
[36, Thm. 8.16] and [37, Thm. 8.18] (when there are some factors of type D).

Remark 4.16. When X is compact, the simplest proof of Theorem m (assuming
only that every u' € [u] is regular) is in [I3] Sec. 5, Cor. of Thm. 7], by using
C*>-resolutions of vector bundles and harmonic forms. It also follows from the
more powerful results of [51], which also work for non-Hermitian locally symmetric
spaces. When X is noncompact, by using mixed Hodge theory as in [14, Ch. VI, Sec.
5] and [22, Cor. 4.2.3] to show that Faltings’s dual BGG spectral sequences as in
Proposition degenerate, in the adelic setting, Theorem m (assuming only that
every p' € [u] is regular) also follows from [38, Cor. 5.6]. Nevertheless, our proof
of Theorem here is based on Theorem H (see Remark and the rather
combinatorial Theorem which are logically independent of the consideration of
automorphic forms as in [38, Cor. 5.6].

4.4. IMustrative examples of low ranks. To better understand Theorem
(and implicitly, also Theorem , let us include some illustrative examples of
low ranks (which can be practically plotted in two dimensions), although they have
already shown up in the results in the PEL-type case in [36] and [37]. (Nevertheless,
they provide examples of the results of [36] and [37] even for torsion coefficients,
which might be of some independent interest.)

Ezample 4.17 (Siegel modular threefolds). Let us adopt the notation system in Sec-
tion [3:3:3] with n = 2. Then the vanishing given by Theorem .| can be visualized
as follows: (The positive parallel weights are of the form k(1,1) for k € Z>1.)
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The four chambers whose walls are formed by (partially) dotted half-lines, with
vertices at (0,0), (2,0), (3,1), and (3,3), are the chambers for cohomological
weights. (Note that we have Q... c(logD) = WG, Qe c(logD) = W),
Qf(m/(c(log D) = W{5h,, and Q;”(m/(c(log D) = W(3%,. In this case, all the elements
in WM happen to have different lengths.) The seven regions with boundaries given
by dashed line segments and half-lines, which are marked in their interiors by in-
tervals [a, b] or rather [a] = [a,a], are the regions (including their boundaries) for
weights v = (kq, ko) with coordinates (k1, k2) such that:

(1) Hi(Xr W) =0 for all i < a;
(2) Hi(X¥r, W5P) =0 for all 4 > b; and
(3) HI (X9 W) = 0 for all i ¢ [a, b].

The two weights (3,1) and (4,1) denoted as A means [a,b] = [0,2] in the above
sense; the two weights (2,0) and (2,—1) denoted as V means [a,b] = [1,3] in
the above sense; and the nine weights denoted as o means [a, b] = [0, 3], which are
unfortunately useless because they provide no information concerning the vanishing
for the coherent cohomology of threefolds. The weights denoted by e are the weights
appearing in the Hodge cohomology as in Corollary for those [u] for which the
sufficiently regularity condition in Theorem [£.10] holds. The weights denoted by
m and O are the other ones such that Theorem [£.] implies that the corresponding
interior cohomology is concentrated in just one degree for each of them. The two
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colors m and o are used for regular and irregular weights, respectively. For the
weights denoted by x, which are along the half-lines starting from (3,—2) and
(5,0) in the direction of (1,—1), they are regular and the corresponding interior
cohomology is also concentrated in just one degree, by [38] Cor. 5.6] and [22, Cor.
4.2.3]. But our method fails to detect such stronger vanishing. This is a defect of
our method when there are factors of types B and C.

Ezample 4.18 (Hilbert modular surfaces). Suppose (~}0 is isomorphic to the restric-
tion of scalar Resp g SLa for some real quadratic extension F' of Q. Let us adopt
the notation system in Section with n = 1, but with the root system dou-
bled because there are two C-simple factors in the same Q-simple factor. Then the
vanishing given by Theorem can be visualized as follows: (The positive parallel
weights are of the form k(1,1) for k € Z>1.)

o: [0,2] (useless)
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The four chambers whose walls are formed by (partially) dotted half-lines, with ver-
tices at (0,0), (2,0), (0,2), and (2, 2), are the chambers for cohomological weights.
(Note that we have Qg(w,./c(log D) = W50 Q)l(tor/(c(log D) = W5l ® WG, and
Qim /C(log D) = 7‘5;“2) In this case, two of the elements in WM have the same
length.) The eight regions with boundaries given by dashed line segments and half-
lines, which are marked in their interiors by intervals [a,b] or rather [a] = [a,al,
have a similar meaning as in Example The thirteen weights denoted as o
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means [a,b] = [0,2], which are unfortunately useless because they provide no in-
formation concerning the vanishing for the coherent cohomology of surfaces. The
weights denoted by e, which are all the regular ones, have a similar meaning as in
Example although we have no weights here that should be denoted by m, O, or
x. Note that, while (Resp,q SL2)c = SLa ¢ x SLa,c when F is totally real quadratic
over Q, the vanishing results are not the Kiinneth products (in the obvious sense,
by summing up the vanishing degrees) of the corresponding ones for SLy. (We will
see similar phenomena in Examples [5.31} [5.38] |5.41] and [5.49| below.)

Ezample 4.19 (Picard modular surfaces). Let us adopt the notation system in Sec-
tion with n = 2 and r» = 1. For simplicity, we shall plot any weight (k1, ko, k3)
mod (1,1,1) as (k1 — k3, k2 — k3). Then the vanishing given by Theorem [4.1| can be
visualized as follows: (Up to a multiple of (1,1,1), and up to writing any weight
(k1, ko, k3) mod (1,1,1) as (k1 — ks, k2 — k3) as above, the positive parallel weights
are of the form k(1,1) for k € Z>1. Of course, the following figure has “wrong
angles” because it is a projection.)

2
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The three chambers whose walls are formed by (partially) dotted half-lines,
with vertices at (0,0), (2,1), and (3,3), are the chambers for cohomological
weights. (Note that we have Qg(m,./(c(log D) = 7‘(8‘{6), Q)laor/(c(log D) = 7?;“1),
and Q)Q(m,/(c(log D) = 7&?‘3) In this case, again, all elements in W™ happen to
have different lengths.) The five regions with boundaries given by dashed line
segments and half-lines, which are marked in their interiors by intervals [a,b] or
rather [a] = [a,a], have a similar meaning as in Example The five weights
denoted as o means [a,b] = [0,2], which are unfortunately useless because they
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provide no information concerning the vanishing for the coherent cohomology of
surfaces. The weights denoted by e, which are all the regular ones, have a similar
meaning as in Example We also have the weights denoted by o, which are
irregular, but Theorem implies that the corresponding interior cohomology is
still concentrated in just one degree for each of them. We have no weights here
that should be denoted by m or x as in Example [£.17]

5. ALGORITHMS FOR DETERMINING DEGREES OF VANISHING

In this section, we record some explicit algorithms for determining the degrees
of vanishing in Theorem which are important for practical applications. Given
any weight v € XK/I, we need to find positive parallel weights v and v_ such that
v+ vy and v+ v_ are both cohomological, and such that the interval [d — I(w(v +
v_)),d—I(w(r—ry))] is as short as possible. Since the definition of positive parallel
weights depends only on the pullback of the weight to the Q-simple factors of C~}0,
since the dimension d of Hg is the length of the longest element in W™, and since
the length of any w € W, is the sum of the lengths of the pullbacks of w to the
C-simple factors of CN}(LC, we may assume that G is semisimple and Q-simple, and
that G is connected and simply connected. (That is, we shall first compute the
vanishing degrees over the Q-simple factors of C~}0, and sum them up afterwards.)

In what follows, for each v € Xﬁ, each of our algorithms will produce an in-
terval [d~,d"], which have the same meaning as the intervals in Example
(1) Hi(Xtor, Wean) = 0 for all i < d—; (ii) H*(X*", WS"™P) = 0 for all i > d*t; and
(iii) HE, (Xr, W) =0 for all i ¢ [d—,d*]. (As explained above, if there are more
than one Q-simple factors, the ends of the intervals need to be summed up.)

We shall adopt the notation system as in Section [3.3] with an additional v in
the beginning of the subscripts, such as o, 1,00,2,..., for each v € T, indicating
the C-simple factor to which the objects belong.

The overall strategy can be summarized as follows. Suppose v € XIJ(/I, which is
of the form v = (v,)yer, where v, € Xl\Jr/[U forallve ™.

Step 1. Switch from v to the dual representation weight, namely the weight A =
(Ao)ver € X1\+/[ such that W, = WY'. (The methods for writing down such
dual weights will be explained in Section [5.1| below.)

S

Step 2. For each integer s € Z, consider \(®) = (Ay”),cy with
(5.1) A = Ay + pa, + 50,0,

where w, ¢ is the fundamental weight dual to the simple positive root ag
such that ag & P, (We set w, 0 to be zero if no such o exists, which is
the case when M,, =P, = G,.)

Step 3. For each v € T, we say that /\q(f) is regular if it does not lie on the walls
of the Weyl chambers of the weights of Xg, . We say that A\(¥) = ()\gf))ver
is regular if )\Ef) is regular for all v € T. (This is equivalent to saying that
M) — pa. = w - p for some w € WM and p € X*C; cf. Definition )

) (s)

To each regular weight )\Sf , we attach the unique weight k' in the same

Weyl chamber that is the conjugation of pg, by some element wq(f) in WM,
Then we define

(5.2) 15 = 1(w))
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and
(5.3) A =d, —1{,
where
(5.4) d, = dime(G,) — dime(Py) = &(dime(G,) - dime(M,)).

(The methods for effectively determining the regularity of )\Ef) and the
corresponding value of Zq(]s) will be explained in Section m below.)

Step 4. Compute with s = 1,2,... and take s; to be first value of such an s such
that \(5+) = (,\Sf”)uer is regular. Similarly, compute with s = —1, -2, ...
and take s_ to be the first value of such an s such that \6-) = ()\E,S‘))Uey
is regular. Then we define

(5.5) dti=der) = 3 dl)
veY
and
(5.6) d”=de) =) "dl),
veYT

The resulted interval [d~,d "] is what we want.

Remark 5.7. The strategy we present here also apply to the results in [36] and [37],
provided that the weights are p-small in the senses required there, except that for
factors of type D (which is necessarily of type D for some n), we need to shift by
2w, 0 = (1,1,...,1) instead of w, o = (%, %, cel, %), because this is the smallest
positive parallel weight allowed in the context of [36] and [37].

5.1. Dual weights. While the general principle is simple—take the longest Weyl
element wy of Wy, , and map v, € Xf{/IU to A\, = —wo(v)—let us nevertheless spell
out the explicit changes of coordinates using the notation system in Section [3.3

5.1.1. Type A. Suppose we are in the context of Section [3.3.1] with

some 7, such that 1 < r, < n,. Then we map the weight v, =
(VU,17VU,2>~-~7Vv,'rv;VU,TU+17VU,TU+27"~aVv,nv+1) in XMU to >\v =
(_Vv,rva_Vv,rv—la--~7_1/1)71;_Vv,n,u-ﬁ-la_Vv,nvw-w_Vva-H)- When no 7,

exists, in which case Xy, = X, , we apply this recipe with r, = 0 or n,, + 1.

5.1.2. Type B. Suppose we are in the context of Section[3.3.2} with 7, = 1. Then we
map the weight v, = (V13 V0,25 -+ Von,) I Xp, 10 Ay = (—Vu, 1502, -+ -5 Vong ),
changing only the sign of the first entry v, ;. When no 7, exists, in which case
XM, = X@a,, we have \, = v, with exactly the same entries.

5.1.3. Type C. Suppose we are in the context of Section [3.3.3] with
ry, = n,. Then we map the weight v, = (Vu1,V2,---,Von,) I Xum, to
Ao = (—Vonys —Vong—1,- -y —Vo1). When no r,, exists, in which case Xy, = Xq,,,
we have \, = v,,, with exactly the same entries, as in the type B case above.
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5.1.4. Type D. Suppose we are in the context of Section [3.3.4] with n, > 4 and
ry =1, ny — 1, or n,,. If r, = 1, then we map the weight v, = (Vy, 10,2, -+, Von,)
in Xy, to Ay = (=0 13025+ -+, Yoy —1, (—1)™ 1wy, ), where the sign of the first
entry v, is changed as in the type B case above, and where the sign of the last
entry v, n, is changed exactly when n,, is even. If 7, = n,, — 1, then we map the
weight v, = (U1, Y02y -+, Voony, ) I XMy, 10 Ap = (Vony s —Vong—1s- -« 3 —Vu,2, Vu,1),
which differ from the type C case above by the signs at the first and the n,-th
terms. If r, = n,, then we map the weight v, = (Vu1,V0.2,---sVon,) I X,
to Ay = (—Vuny, —Vony—1s---» —Vu,1) as in the type C case above. When no r,
exists, in which case Xy, = Xg,, we map the weight v, = (Vy1,V,2,- .-, Vo, ) t0
Uy = (U1, V0,25 - - s Vony—15 (—1)" Uy ., ), Where the sign of the last entry v, is
changed exactly when n,, is odd.

5.1.5. Type Eg. Suppose we are in the context of Section with r, = 1 or 6.
Then we map the weight v, in Xy, to the weight A\, = 1, T,, (as row vectors),
where

V3

-3 0 0 0 o0 -—-¥% 1000 0 0
0o 3 1 & -+ 0 0100 0 O
(58) T, = 0 % %—2% { 0 0010 0 O
‘ “_05—%%?0‘”000100
0o -4 3 3 3 0O 0000 -1 0
-5 0 0 o0 o 1 0000 0 -1

depending on whether 7, =1 or 6. In both cases, T, maps @, o to —w,o. On the
orthogonal complement of @, o, it swaps the two roots a,, 2 and ay, 4 (resp. ay 4
and «,, 5) in the first (resp. second) case, while preserving each of the other roots.
When no r,, exists, in which case Xy, = X¢,,, we map the weight v, to the weight
Ao = Uy, T, with

L0 0 o0 0 ¥
0 1 1 1 1 0
PO S S T B
(5.9) =1, &t 2 2 _t 4|
% % 2 2
% : "2 "3 3 0
5o 0 o0 0 1

which swaps the pair of roots «,, ; and «, g, and also the pair of roots «, 2 and
0, 5, while preserving each of o, 3 and ay, 4.

5.1.6. Type E7. Suppose we are in the context of Section with r, = 1. Similar
to the type Eg case above, we map the weight v, in Xy, to the weight A\, = v, Ty,
where

B SO
-1 10 0o o 0o £
2 2 2
0 0 % % 3 5 0
(5.10) T, = 0 o I I 1 9
0 0 i_l 1 _i 0
0 0 % % 21 12 0
2 T2 T2 2
~¥Z2 2 g 0 0 0 0
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Again, this matrix T3, maps the fundamental weight @, ¢ to —w, 0. On the orthog-
onal complement of @, g, it swaps the pair of roots a,, 2 and o, 7, and also the pair
of roots a, 3 and o, ¢, while preserving each of a,, 4 and «,, 5. When no r,, exists,
in which case Xy, = Xg,,, we have A\, = v, as in the type B and C cases above.

5.2. Regularity and Weyl lengths. In this subsection, we shall assume that
M, # G, and so that WM is nontrivial and some 7, exists. (Otherwise we can

just set ZS)S) =0 and de) = 0 in the contexts of || and )

5.2.1. Type A. Suppose we are in the context of Section Then )\( ) =
Aig,-- A1
, we sort out the values

()\ffl, /\E}SQ, . )\ffn 41) is regular if and only if all the values )\
s)

v,1
are mutually distinct from each others. For each regular )\5,
of {Asz}lggnvﬂ in increasing order such that

(s) (é) ()
(5.11) At i <Ay, < <Ay
Then we define
(5.12) Rol == (- 1)

for 1 < j <n, +1, and define

(5.13) 1= (pa, — kP w0) = 3do — 3 &S =1td,+ > kD)

1<i<r, Ty <Et<ny,+1
where d, = ry(ny +1—7y) = > (M +2-24) =— > (ny,+2—29).
1<i<r, Ty <i<n,+1

(There is a unique wgs) e WMo mapping pg, = %(nwnv —2,...,2—ny,—ny) to
k) = (k 515)1, Cey “S;S,)nv+1)-) Therefore,

(5.14)

d) = d, — 1) = (p, +£$) @u0) = Sy + SfZ =gdu— Y, AL
1<i<r, ry<i<n,+1

5.2.2. Type B. Suppose we are in the context of Section [3.3.2 Then

A = (AS}SI,)\US%,... AS) ) is regular if and only if all the absolute values
\)\ |)\ | |)\U nv\ are nonzero and are mutually distinct from each others.

For each regular AY) we sort out the values of {|)‘U,i|}1SiSnu in increasing order
such that

(s) (s) (s)
(515) 0< |)\v 11| < |)\v,i2| < | Vylng, |
Then we define
(5.16) KJE;ZJ = sign()\gjzj) L2
for 1 < j < n,, and define
(5.17) 1) = (pa, — K, wu0) = dy — 551,

where d,, = 2n,, — 1. (There is a unique wff) e WMo mapping pg, = %(21% —
1,2n, — 3,...,3,1) to Ii(s) (k S ,nglev+1).) Therefore,

Ul’

(5.18) d¥) = dy — 19 = (pa, + £, @0 0) = Sdy + &5

U7
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5.2.3. Type C. Suppose we are in the context of Section [B.3:3 ~ Then
AP = ()\Q(J)l,)\gs)z,.. A&SZM) is regular if and only if all the absolute values

\)\(81| |)\(32|, cee |/\E,Snv\ are nonzero and are mutually distinct from each others.

For each regular A, we sort out the values of {|)\v,i|}1§¢§nu in increasing order
such that

(s)
(5.19) 0< PG, <MLL <o <A
Then we define
(5.20) kG = sign(AS) ) -j
for 1 < j < n,, and define
(5.21) 1) = Lpa, — kD m0) = H(do— 30 k1)),
1<i<n,
where d,, = tn,(n, +1) = Y (ny, +1—14). (There is a unique wl € Wg,
1<i<n,

mapping pg, = (Ny,ny — 1,...,2,1) to i) = (k E)s)l, ce HE}SLH)) Therefore,

(5:22) ) =dy 1 = Y(pa, + K0 00) = H(du+ Y (55)).
1<i<ng,

5.2.4. Type D. Suppose we are in the context of Section [3:3:4] Then

)\(S) = ()\E)S;)l,)\is%,...,)\gs;%v) is regular if and only if all the absolute values

\)\ |)\ 2|, . |/\U nu\ are mutually distinct from each others. For each regular

)\S’ , we sort out the values of {|)\(s).|}1<i<nu in increasing order such that

(5.23) ASLI< AL <o < IAS) L
Then we define
(5.24) k) = sign(AS) ) (5 — 1)
for 1 < j < n,, and define
(5.25) 1) = (pa, — £, @00) = 2do — (5, w0,0)
where
2n,, — 2, if r, =1;
(5.26) dy = %nv(nv —1)= > (ny—i), ifr,=mn,—1o0rn,;
1<i<n,—1

and where

55157)1, if r, =1;

(s) (% Z HE,SZ) - %/ﬁ()s,zzm ifr, =n, —1;

(5.27) (ke wu,0) = 1<iSmy 1 O

% > /@(jz, if 7y, = ny.

1<i<ng,

(There is a unique w e W, mapping pa, = (ny — 1,4 — 2,...,1,0) to RO
( 1(18)1? RS Kfq(js’)nv+1)-) Therefore,

(528) dE)S) =d, — lq()S) = (PGU + Hq()S)va,O) = %dv + (K:gf)vwv,o)'
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5.2.5. Type Eg. Suppose we are in the context of Section [3:3.5] It is known that
Wgq, and Wy, have orders 51840 and 1920, respectively, and so that WMo has
order 27. Also, it is known that d, = 1(78 — 46) = 16. Unlike in the classical
cases, it is not easy to describe all weights of the form wpg, = pg, +w -0 for some

w € WM which were the weights /<;§f) we explicitly wrote down, in terms of simple-
minded operations such as permutations or changes of signs. On the other hand,
since the weight space can be embedded in an ambient space of dimension only 6,
we can exhaust all 27 possibilities of wpg, (for w € W) by direct calculation,
without analyzing Wq, at all. Our calculations are summarized in Tables [1| and
(on pages and respectively), which correspond to the two cases of 7.

Consequently, A\ is regular if and only if the pairings between A and the 27

weights wpg, have a unique maximum at k(®) = um(f)

in which case we define lff) = l(wff)) by looking up the table (with the prescribed

Ty), and define dﬁf) =d, — 15,5) as in 1| Note that one can move between the

pa, for some wfjs) S WM”,

TABLE 1. {wpg, }wewno in the case of type Eg (with 7, = 1)

K =wpg, =pa, +w-0 l(w) | we WM

ko = (4,3,2,1,0,4v/3) 0 1

R1 = (374a2a 17074\/§) 1 w1 = 81

Ko = (2,4,3,1,0,4/3) 2 Wo = W1 So

k3 = (1,4,3,2,0,4V/3) 3 Wy = Wy S3

R4y = (Oa 4,3,2, _174\/3) 4 W4y = W3S5

K4y = (054?37 2a 134\/§) 4 Wy = W3S4

R5; ((;ag;gaga;:/;)\/g) 5 Ws; = W4;S6

ks = (—1,4,3,2,0,4v3 5 Ws,, = W4y, S5

Ry :(_%agagaga_%yg\/g) 6 We; = Ws5;54 = W51 S6
"{611 = (—2,4,3, 1,0 4 3) 6 U)GH = w51133

Ry :(_ga%a%a%7_%,%\/§) 7 Wy, = We;S3 = We;S6
Kty = (737 4,2,1,0, 4\/5) 7 Wty = WeyS2

kg, = (—3,5,4,1,0,4v/3) 8 wg, = wr, S5

K8 :(_%’%’%’%’_%7%\/@ 8 Wgy; = WryS2 = W1y S6
kg = (—4,3,2,1,0,44/3) 8 Weyy = Wy 81

Koy = (_47 )9 7074\/3) 9 Wo; = Wg;S2 = Wsy; S5
Koy = ((39’ ’271’13’5351;’5;\/\43)) 9 Wy = W81 = Wy 56
K10 =(—3,5:313:353 3 10 W10; = Wy9;S3

K10 = (_5’45 3,1,0, 3\;’) 10 W10y = W9, 51 = W9y S5
K11y = (_53 6; 2, ]-707 2 3) 11 W11y = W10;54

K11y = (_%agaga%a%ag\/g> 11 W11y = W10;S1 = W1041S3
K12, = (—6,5,2, 1,0,2\/\? 12 | wio, = w1, 51

K12y = (_674737 7172 3) 12 W12y = W11y 52
513—(—1*;,%’%,%,%,%\/@ 13 | wiz = w1252 = W12, 84
R14 = (—7,4, ,1,0, \/g) 14 W14 = W13S3

ks =(—2,2,3,3 1 13) |15 | wis = wisss

k16 = (=8,3,2,1,0,0) 16 | wig = w1556
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TABLE 2. {wpg, }wewMo in the case of type Eg (with r, = 6)

K =wpg, = pG, T w0 I(w) [we WY
ko = (4,3,2,1,0,4v/3) 0 1
51:(%a%aga%a%a% 3) 1 w1 = Se
R = (5747 3a 17 073\/3) 2 Wy = W1S5
53:(%73737%77%7% 3) 3 W3 = W2S3
Ky, = (6,4,3,2,—1,2v/3) 4 Wy, = W3Sy
K4y = (67 a27 1707 2\/§) 4 Wy = W3S4
H51:(%a%a%a%a_%a% 3) 5 Ws; = W4;S1
13953 173
K/511 :<?7§7§7§?_§)§\/§> 5 w511 :w41182
Rer = (67 5a 35 27 71a 3) 6 We; = WS4 = Ws;S1
Ren = ( 9 737 7(07 3) 6 Wey = Wsy; S3
S (1*2135, %7’ %5’ %3’ _1%’1%\/@ 7 Wty = We;S3 = Weyy S1
K :(Taﬁvﬁaﬁaﬁvi\/g) 7 Wty = Wey S5
Rg = (67 5,4, ].,070 8 Wg; = Wr;S2
Rgy = ( 74735 7070) 8 Wg;; = W S5 = Wiy S1
K8 (87 3,2,1, 70) 8 Wgyy; = Wty S6
Rop :(1*23,%7,%,%,% 7% 3) 9 W9, = Wg;S5 = Wg;S2
15 537 17 1
Koy :<77§7§7§7—§a—§ 3) 9 W9y, = Wgy;S6 = Wey;S1
K10, = (6,5,3,2,1,—V/3) 10 | wig, = wy, 53
K10y = (7,4,3,1,0,—v3) 10 W10, = W9 86 = W9 S2
K11y = (121137 %97 %57 %37 %17 —%3 3) |11 | wiy, = wio; 54
K1l = (7757575,5,*5 3) |11 W11 = W10;56 = W101;S3
K1z, = (6,4,3,2,1,—2V/3) 12 | wig, = w11, 86
K12, = (6,5,2,1,0,-2V/3) 12 | wizy = w1185
ks =(%,2,2,2,3,-3V3) 13 | wiz = w1285 = w1254
kg = (5,4,3,1,0,—3v/3) 14 | wig = wi3ss
H15:<%7%727%77%77% 3) 15 W15 = W14S52
ki = (4,3,2,1,0,—4v/3) 16 | wig = wiss1
two cases of r,, using the reflection
L0 0 o0 0 ¥
0 1 1 1 1 0
7 2 2 2
0 5 3 -3 -+ 0
(5.29) o I A 2t
S G T
% 3 77 T2 2 (1)
% 0 0 0 0 5

31

which swaps the pair of roots a,,; and a, ¢, and also the pair of roots a, 2 and
a5, while preserving each of ay, 3 and 4. (While the two cases are essentially
the same thanks to this reflection, the actual coordinates are rather different, and
hence we have still chosen to record the results in both cases. The case with r, = 1
has the advantage of being more similar to the type E; case below, while the case

with r, = 6 has the advantage that the weights of M,, are easier to work with.)
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TABLE 3. {wpg, }wewMo in the case of type E; (first half)

K = wpg, = pG, +w -0 l(w) [ we WM

ko = (5,4,3,2,1,0, 11v/2) 0 1

k1= (4,5,3,2,1,0,1/2) 1 wy = §1
K2:(375747271a0a177\/§) 2 Wy = W12

ks = (2,5,4,3,1,0,11/2) 3 w3 = WaSs3

ke = (1,5,4,3,2,0,1/2) 4 Wy = W3S4

K5y = (07574a3a27171727\/§) 5 Ws; = W4S5

K5y = (0,5,4,3,2,-1,11/2) 5 Wy, = W4S6

ke, = (—1,5,4,3,2,0,11/2) 6 We, = W, 56

K6y = (7%7 L21’ %a %a %71;\%/LS\E) 6 Wey; = Wsy; S7

:‘<L7I = (—2, 5,4, 3, 170, 5 2) 7 w7l = w6134

e =(—3:%5.5,5.3-3,8V2) |7 | wr, =we,ss

ks, = (—3,5,4,2,1,0,1v/2) 8 wg, = Wy, 83

K8y = (_37 17217 %a %a %’1;\%/7*8\/5) 8 wg;; = Wr;S4

Rg; = (747 5a 37 27 17 07 9 2) 9 W9; = Wg;S2

o = (-5, 5,52 °58V) |9 Jwo, = uns

Koy, = (—3,6,5,4,1,0,121/2) 9 W,y = Wy 56

k1o, = (—5,4,3,2,1,0, 11/2) 10 | wio, = wo, 81

K10y =(—%,%7%7%7%,—%,8\/§) 10 Wioy = W9, S7 = Wy, S2
k1o = (—4,6,5,3,1,0,121/2) 10 | wioy = W,y 83

K11y :(_%7%7%727%7_%78\/5) 11 Wi11; = W10;S7 = W10 51
K11y = (_576747 3a a07 % 2) 11 W11y = W101156 = W10 S2
K/ll[[[ = (7%31273?17213%?%?%77\/5) 11 wlln[ :w1011184

k12, = (—6,5,4,3,1,0,121/2) 12 | w1z, = w1186 = Wiy 51
K12 = (—%7 LQS? %, %, %, %, 7\@) 12 W12y = Wil1S4 = Wil S2
K/IQIH ( 5’ 77 67 27 17 07 %\/i) 12 w12111 = wllnl 85

kg, = (-5, 5.5,5,2,5,7V2) |13 | wis, = wig54 = wig,; 51
ki = (—6,7,4,3,2,1,2/2) 13 | wiz,; = w1283

Kz = (—6,7,5,2,1,0, 12/2) 13 | w13y = Wi2,85 = W12 52

5.2.6. Type E;. Suppose we are in the context of Section It is known that
Wg, and Wy, have orders 2903040 and 51840, respectively, and so that WM has
order 56. Also, it is known that d, = %(133 —79) = 27. Again, since the weight
space can be embedded in an ambient space of dimension only 7, we can exhaust
all 56 possibilities of wpg, (for w € WM“) by direct calculation, without analyzing
Wg, at all. Our calculations are summarized in Tables [3| and [4] (on pages 32| and

respectively). Consequently, )\5,8) is regular if and only if the pairings between

)\US) and the 56 weights wpg, have a unique maximum at k(%) = wf,s) pa, for some
wf,s) € WMv in which case we define lq(,s) = l(wq(f)) by looking up the tables, and

define d := d, — 1) as in l}

5.3. Examples. In this subsection, for simplicity, we shall drop the index v when
there is only one C-simple factor.

5.3.1. Type A. Let us continue with the setting of Section [5.2.1
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TABLE 4. {wpg, bwew™Mo in the case of type E7 (second half)

K =wpg, = pc, +w-0

l(w) | we WM

Kia, = (—7,6,4,3,2,1,2/2)
Flag = (=7,6,5,2,1,0, 2/2)

K15y = (_77 8,4,3,1,0, i

5

B
[}
Ut
=
Il
A~~~ A~
|
v
N
[VTE
N[Ot
N
N[
=
—

) )
15 17 7 5 3 1
K161 *( 53 921927999 *575
17 13 9 773
K17, —(—777757@5;5,5\/5
17 1

_ /1315 9 5 371
Kl = (—3,8,2,2 3°16\2)

K15 = (7%7 %7 %7 %a ga 336\/5)

14 W14; = W13,53 = W13, 51
14 | wigy = w1385 = W13 53
14 | wigyy = Wiz $1

15 | wis, = wig 82
15 w15H = ’LU14HS4
15 Wisyp = W14y51 = Wi4y;S3

16 | wie, = Wi5,S5 = W15, 52
16 W16 = Wis;S1
\/é) 16 W16 = Wis156
) 17 11)17I = w16154
mimn = (=50 55035 72,5V2) | 1T | wiry = wiense
2,1,0

2
K17t = (_8’9737 y 4y >% 2) 17 W17 = W16 S7
;‘6181 = (—9767 s a4, 1, ,%\/5) 18 wlgl = w17153
K18 = (7 ,7,4,3,2, 7%\&) 18 W1y = W17S2
K181 :( _19781;337927172» 2\1/531\/5) ig W1 = WirrS1
Kig; = (=%, 5,3,3:3: 73 W19 = W18;56 — W18;S3
K19 = (*%7 %» %a ga %a %a 4\@) 19 W19y = W18y 87 = W181S2
R20; = (—10, 7, 4, 3, 1, 0, %\/i) 20 W20; = W19;S57 = W19;;S3
Iigon = (—1 ,6, 5 O, ,—17 %\/i) 20 UJQOH = U/19154
K21y —(—%7%,%73,%,—%,3ﬂ) 21 Wa1; = W20;54
K21y Z(—%,%,%,%,%,—%ﬁﬁ) 21 Wa1y = W20y S5
Koo, = (—11,6,5,2,1,0, 2V/2) 22 | way = wa1,S6
HQQH = (—11, 6, ,2, —17 5\/5) 22 wggn = ’LU21HS7

) |23 | w23, = waz, S5 = Wazy, 86
24 w24I
25 UJ25I = U}24IS3
26 ’LUQGI = U)25I S92
27 11]27I = wgglsl

= W23;54

Ezample 5.30 (C-simple type Ay with r = 2). Suppose v = (3,2; —1), so that
A =X+ pa = (=2,-3,1) + (1,0, -1) = (~1,-3,0).

Let us represent the fundamental weight by wy = (1,1,0). Then [d~,d"] = [0, 1],
which is the same interval we have seen in Example (for the point there with
coordinates (4,3) = (3 — (—1),2 — (—1))), by calculations summarized as follows:

’ S ‘ A ‘ O] ‘ d0) ‘
1 | (0,-2,0) | not regular
2 | (1,-1,0) | (1,-1,0) [1+0=1

[-1](-2,-4,00] (0,-1,1) [1-1=0|

Ezample 5.31 (C-simple type As with = 2). Suppose v = (3,1;2, —2), so that

/\(0) = AJFPG = (71,73,2, *2) + (%’ %a 7%»7%) = (%vfgv %a 7%)
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Let us represent the fundamental weight by wg = (1,1,0,0). Then [d—,d"] = [1, 3]
by calculations summarized as follows:

5] N A0 ] a9
1 (%,—%,%,—%) not regular
2 (55_5757_5) (%3_%7%7_%) 2+1:3
—1](=%,-Z,2,-=0) ] not regular
-2 (_27_§7§7_2) (%3_%7%7_%) 2-1=1

Ezample 5.32 (two C-simple factors of type Ag in the same Q-simple factor). Sup-
pose the group is Q-simple but has two C-simple factors of Ag, which we denote
by v = 1 and 2, respectively. Suppose r; = 3 and ro = 2, so that d = d; + dy =
12 4+ 10 = 22. Suppose (v1,v2) = ((6,2,-5;2,0,0,—4), (2, —5;8,4,2,0,0)), so that
A =X+ (pa,, pe,) = ((5,-2,-6,4,0,0,-2), (5, -2,0,0, —2, —4, —8))
+((3,2,1,0,—-1,-2,-3),(3,2,1,0,—1,—-2,-3))
= ((8,0,—5,4,—1,—2,-5),(8,0,1,0, -3, -6, —11)).

Let us represent the fundamental weights by @i = (1,1,1;0,0,0,0) and ws =
(1,1,0,0,0,0,0). Then [d—,d"] = [3, 18] by calculations summarized as follows:

’ S \ NO) ‘ (5 ‘ 0 ‘
(((3111_34_3_;5—31—1?; not regular (2nd factor)
((10,2,-3,4,-1,-2,-5), ((3,1,—2,2,0,—-1,-3), _

- U2l dtm LY (3,2,1,0,—1,-2,—3)) 114+7=18
7,—1,—6,4,—1,—2,—5),
-1 E(E?,—l,1,0,—3,—6,_11)§ not regular (1st factor)
6,—2,—7,4,—1,—2,—5),
_9 (6,—2,1,0,—37—6,_11)3 not regular (1st factor)
5—3,—8,4,—1,—2,—5),
-3 E(zg,,23,1,0,71«;,76,711)g not regular (2nd factor)
4,74,79’47,1772’75 ,
—4 (((;,_—54,}{)(,)—43,_—167__219% not regular (1st factor)
-5 ( (( 23’,7_65’,}?1,7—4577—167:2@5))7 not regular (2nd factor)
T magaiginy | ok remler (nd facton
_7 (((01’,_—87’,}1()2,’—45,_—1237__2’2)%’ not regular (2nd factor)
-8 (0;,—8;,1701,:;—3—?7_%1))5’ not regular (2nd factor)
-9 (((i 1”:9’;,0,’,;731 61 ’1;)))7 not regular (1st factor)
((~2,-10,—14,4,—1,—2,-5),
~10 (((__??,_—1110,}%—43,__167__2195)) not regular (1st factor)
—11 | WIS A0y | not regular (2nd factor)
_19 | ((-4,-12,-16,4,-1,-2,-5), ((0,-2,-3,3,2,1,-1), _s_3
(4120001 )) (0.-3.3.2,1,—1-2))

If the two C-simple factors were not in the same Q-simple factor, then 1, =
(6,2,—5;2,0,0,—4) and v5 = (2,—5;8,4,2,0,0) would have defined the intervals
[5,8] and [8,10] on their respective factors (by similar calculations), whose end
points sum up to those of [13,18], which is much narrower than [3, 18].

5.3.2. Type B. Let us continue with the setting of Section [5.2.2
Ezample 5.33 (C-simple type Ba, with » = 1). Suppose v = (—2;3), so that
MO =X+ pe=(2.3)+(5,3) = (5. 5)-
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Then [d~,d"] = [2,3] by calculations summarized as follows:

S A [0 [ a9
(1 1GD[GI][5+5=3]
LG DG D5+5=2]

Ezample 5.34 (C-simple type Bs, with » = 1). Suppose v = (6;3,2), so that
/\(0) =A+ PG = (_673a2) + (%7 %7 %) = (_%’ %’ %)

Then [d~,d*] = [0,2] by calculations summarized as follows:
5T X | & [ d@ ]
1 (—%, %, %) not regular
2 (_53535) (_%7%7%) %—’__71:2
—1] (-=2,2,3) | not regular
=l IS OIEETEY

Ezample 5.35 (mixture of compact and noncompact C-simple factors of type By in
a Q-simple factor). Suppose the group is Q-simple but has two C-simple factors
of B4, which we denote by v = 1 and 2, respectively. Suppose that r; does not
exist (i.e., My = Gy), and that 7o = 1, so that d = dy + ds =0+ 7 = 7. Suppose
v=(r,r) =(4,2,1,1),(-2;3,2,1)), so that

A0 = A+ (pGl’sz) - ((472v 1, 1)7 (2a3a271)) + ((%’ g’ %7 %)7 (%a %, %,

NGCEEHNCE RS

)

N|—

Note that A(?) is not regular, and hence v is not cohomological in the sense of
Deﬁnition Then [d~,d"] = [6,7] by calculations summarized as follows:

’ S ‘ AG) ‘ k(9 ‘ d® ‘

Note that the first factor (for which r1 does not exist) contributes trivially to the
calculation of cohomological degrees. Such factors can be harmless omitted even
in general (cf. the beginning of Section . Also note that the associated locally
symmetric variety X is compact in this case. Even so, the coherent cohomology of
automorphic bundles with noncohomological weights (namely, not contributing to
the de Rham cohomology) might still be nonzero, although it is a subtle question
(which is unsolved in general) whether this is indeed the case.

5.3.3. Type C. Let us continue with the setting of Section [5.2.3
Ezample 5.36 (C-simple type Cy, with r = 2). Suppose v = (4, 1), so that

Then [d~,d"] = [0,2], which is the same interval we have seen in Example [4.17] by
calculations summarized as follows:

[s [ A& ] e [ d® ‘
1 | (2,—2) | not regular
2 | (3,-1) (2,-1) |[iB+1)=2
—1| (0,—4) | not regular
2| (15| (-1.-2) [31B8-8=0
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Ezample 5.37 (C-simple type Cs, with r = 3). Suppose v = (3,1, —7), so that
MO =\ 4 pg = (7,-1,-3) +(3,2,1) = (10,1, —2).
Then [d~,d"] = [3,5] by calculations summarized as follows:
(5] X0 [ «0 [ 4 ]
(1 ](a5L2,-1)] (3,2,-1) [5(6+4) =5]
—11| (9,0,—3) | not regular
—2 | (8,-1,-4) | (3,-1,-2) | £(6+0) =3

Ezample 5.38 (restriction of scalar of type Cg). Suppose the group is Q-simple but
has two C-simple factors of C,, which we denote by v = 1 and 2, respectively, such

that 1 = ro = 2. Suppose v = (v1,v2) = ((5,1), (—1,—2)), so that
A0 =2+ (PG1spa,) = ((—1,-5),(2,1)) + ((2,1),(2,1)) = ((1,—4), (4,2)).

Then [d~,d"] = [0,4] by calculations summarized as follows:

’ s ‘ NO) ‘ O] ‘ 4 ‘
’ 1 ‘ ((23_3)’(573)) ‘ ((1’_2)’(2’1)) ‘ %(6+2) =4 ‘
-1 ((0,-5),(3,1)) not regular (1st factor)
-2| ((—-1,-6),(2,0)) | not regular (2nd factor)
-3| ((—2,-7),(1,-1)) | not regular (2nd factor)
—4| ((-3,-8),(0,—2)) | not regular (2nd factor)
—5 | (-4, _9)’(_17_3)) ((_1’_2)7(_17_2)) %(6_6) =0

If the two C-simple factors were not in the same Q-simple factor, then v; = (5,1)
and vo = (—1, —2) would have defined the intervals [0, 1] and [3, 3] on their respec-
tive factors, whose end points sum up to those of [3,4], which is much narrower

than [0, 4].
5.3.4. Type D. Let us continue with the setting of Section [5.2.4
Ezample 5.39 (C-simple type D4 with r = 1; i.e., type D}). Suppose v = (1;2,2,0),

so that
A =N+ pa = (—1,2,2,0)+ (3,2,1,0) = (2,4,3,0).

Then [d~,d"] = [4, 6] by calculations summarized as follows:
ST 2 [ &@ [ d@ ]
1 1(3,4,3,0) | not regular
2 | (4,4,3,0) | not regular
( )
( )

3 1(5,4,3,0)| (3,2,1,0) |3+3=6
[—1](1,4,3,0) ] (1,3,2,0) [3+1=4]
Ezample 5.40 (C-simple type Dy with r = 4; ie., type DY). Suppose
v=(9,5,—2,-2), so that
MO = X4 pe = (2,2,-5,-9) + (3,2,1,0) = (5,4, —4, —9).

Then [d~,d"] = [1, 3] by calculations summarized as follows:
5] N RO ] 4]
-1] (2,2.-5,-2) | not regular
—2| (4,3,-5,-10) | (1,0,—2,-3) [3—-2=1
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Ezample 5.41 (mixture of the two types in a Q-simple factor). Suppose the group
is @-simple but has two C-simple factors of Dy, one being as in Example the
other being as in Example [5.40} which we denote by v = 1 and 2, respectively.
Suppose v = (v1,12) = ((1;2,2,0),(9,5,—2,—2)) (whose factors are exactly the
ones we have seen). Then A\(O) = ((2,4,3,0), (5,4, —4,—9)), and [d—,d*] = [3,9] by
calculations summarized as follows:

5 ] N | ) a0 ]
1 ((3,4,3,0), (12—1, %, —%7 —17)) not regular (1st factor)
2 ((4,4,3,0),(6,5,—3,-38)) not regular (1st factor)
3 | ((5,4,3,0), (42,4 -3 —18)) ((3,2,1,0),(2,1,0,-3)) |6+3=9
-1[ ((1,4,3,0),(3,%2.-3.-2)) not regular (2nd factor)
-2 ((0,4,3,0), (4,3,—5,—10)) not regular (1st factor)
-3 (( 154?370)’(%7%’_%’_%7)) ((_173a270)7(1a0a_27_3)) 6—-3=3

If the two C-simple factors were not in the same Q-simple factor, then 1, =
(1;2,2,0) and vy = (9,5, —2,—2) would have defined the intervals [4,6] and [1, 3]
on their respective factors, whose end points sum up to those of [5,9], which is
narrower than [3,9].

5.3.5. Type Eg. Let us continue with the setting of Section [5.2.5

Ezample 5.42 (C-simple type Eg with » = 1, cohomological weight). Suppose v =
(4;4,3,1,0,4/3), so that

MO =X\ 4+ pg = (—8,4,3,1,0,0) + (4,3,2,1,0,4V3) = (—4,7,5,2,0,4V3).

Note that A is regular, which pairs maximally with kg, in Table |1| (on page
30), and hence v is cohomological in the sense of Definition with w(v) = ws,

and u(v) = wg (O©) — pa = (3,5,4,1,—1,35). Then [@",d"] = [3,13] by
calculations summarized as follows:
5] ) | ) (410 =dv |

1 ](-3,7,5,2,0, ? 3) | not regular

2 1(-2,7,5,2,0, % 3) | not regular

3 | (~1,7,5,2,0,5v/3) not regular

4 |(-0,7,5,2,0, %\/g) not regular

5 | (1,7,5,2,0,27v/3) | kg in Table[l] | 16 —3 =13

-1 (-5,7,5,2,0, % 3) | not regular

-2 | (=6,7,5,2,0,22v/3) | not regular

-3 (~7,7,5,2,0,3V3) not regular

-4 (=8,7,5, 2,0,% 3) not regular

—5| (=9,7,5,2,0,2v/3) | k13 in Table[l]| 16 —13 =3

(Since d~ # d*, by Theorem or rather by its proof, u(v) cannot be regular.)

Ezample 5.43 (C-simple type Eg with » = 6, cohomological weight). Suppose v =
(11,8,3,2, —1;9v/3), so that

AO = X4 pg =(11,8,3,2,1,-9V3) + (4,3,2,1,0,4V3) = (15,11, 5,3, 1, —5V/3).

Note that A(9) is regular, which pairs maximally with K12, in Table 2| (on page,
and hence v is cohomological in the sense of Definition with w(v) = wia, and
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n(v) = wip A9) — pe = (5,4,3,0,0,6v/3). Then [d—,d*] = [3,5] by calculations

summarized as follows:

(s | G \ (5 [d—1® =d0 ]
1 |(15,11,5,3,1, —1/3) not regular
2 | (15,11,5,3,1, =4 /3) | K1y, in Tab1e|§| 16—11=5
-1 (15,11,5,3,1, — —7\/5) not regular
—2|(15,11,5,3,1, — Jf) k13 in Table[) | 16 —13=3

(Since d~ # d*, by Theorem or rather by its proof, () cannot be regular.)

Ezample 5.44 (C-simple type Eg with r = 6, noncohomological weight). Suppose
v =(3,1,1,0,0;/3), so that

A0 =X\ 4 pe =(3,1,1,0,0,—V3) + (4,3,2,1,0,4V3) = (7,4,3,1,0,3V3).

Note that A\(9) is not regular because there is no unique maximal pairing between
it and the weights in Table 2] and hence v is not cohomological in the sense of
Deﬁnition Then [d~,d"] = [10, 14] by calculations summarized as follows:

s | O ‘ ) [d—1® =d |
[ 1 [(7,4,3,1,0,21V/3) | Ky in Table2] | 16 —2=14 |
—-11 (7,4,3,1,0,£/3) not regular
-2 | (7,4,3,1,0,2v/3) | not regular
~3| (7,4,3,1,0,v3) | e, in Table2]| 16 -6 =10

Ezample 5.45 (mixture of the two types in a Q-simple factor). Suppose
the group is Q-simple but has two C-simple factors of Eg, which we denote
by v = 1 and 2, respectively, such that 1 = 1 and r, = 6. Suppose
v=(vi,1n) = ((0;3,2,1,0,8V3), (5,4,2,1,0; 10v/3)), so that
MO =X+ (pa,, pa,) = ((—12,3,2,1,0,4v3), (5,4,2,1,0, —10V/3))
+((4,3,2,1,0,4v/3),(4,3,2,1,0,4V3))
= ((—8,6,4,2,0,8V3),(9,7,4,2,0, —6v/3)).

Note that A(?) is not regular because of its second factor, and hence v is not coho-
mological in the sense of Definition (Nevertheless, the first factor is regular,
which pairs maximally with kg,;, in Table ) Then [d~,d*] = [9,10] by calculations
summarized as follows (where the two factors of each weight in the column of (%)
can be found in Tables 1] and [2] respectively, on pages [30| and [3

’ S ‘ NG ‘ #(5) ‘ d—16) = g ‘

[ 1 [((-7.6,4,2,0,3V3),(9,7.4,2,0,—FV3)) [ (ks m1a) | 3222 =10 |

[ —1]((—9,6,4,2,0,2V3),(9,7,4,2,0,—2V3)) | (ksy, k15) | 32—23=9 |

If the two C-simple factors were not in the same Q-simple factor, then vy, =
(0;3,2,1,0,8V3) and v5 = (5,4,2,1,0;10y/3) would have defined the intervals [8, 8]
and [1, 2] on their respective factors, whose end points sum up to the same interval
[9,10]. (This is certainly not always true, as we have seen in Examples

and See also Example below.)
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5.3.6. Type E7. Let us continue with the setting of Section [5.2.6]

Ezample 5.46 (C-simple type E; with » = 1, cohomological weight). Suppose v =
(10,10,9,7,4,0,261/2), so that
A =X+ pg = (-36,16,10,6,3, —1,0) + (5,4,3,2,1,0, 11 /2)
= (—31,20,13,8,4, -1, Tv/2).
Note that A(? is regular, which pairs maximally with
K21y = (7%; %7 %7 ga %7 7%7 3\/5)
in Table [4] (on page , and hence v is cohomological in the sense of Definition
with w(v) = way, and p(v) = wy;t (A) — pg = (9,8,6,3,2,0,17v/2). Then we
have [d~,d"] = [6,6] by calculations summarized as follows:
’ S ‘ NG ‘ k() ‘ 1) = g0 ‘
[ 1 [(-30,20,13,8,4,—1,9v2) | Koy, in Table Y| 27-21=6 |
| —1](-32,20,13,8,4,—1,8v/2) | kg1, in Table | 27-21=6 |

Indeed, this concentration in one degree follows more directly from the regularity
of u(v) (as a weight in XG , which can be checked more easily by pairings with
the simple positive roots @y 1,...,ay 7), and from Theorem [4.10) u without having
to compute A1) and A(=1) at all

Ezample 5.47 (C-simple type E7 with » = 1, cohomological weight). Suppose v =
(—14,8,3,2,1,0,1/2), so that
A =N+ pe =(2,4,3,2,1,0,11v2) + (5,4,3,2,1,0, 1Tv/2)
= (7,8,6,4,2,0,22/2).
Note that A is regular, which pairs maximally with x; in Table (on page
32), and hence v is cohomological in the sense of Definition with w(v) = wy

and p(v) = wit(A®) - pg = (3,3,3,2,1,0,11y/2). Then [d—,d*] = [25,27] by
calculations summarized as follows:

5] NG RO [d 1@ =d ]
1 |(8,8,6,4,2,0,20v/2) | not regular
2 | (9,8,6,4,2,0,41/3) | ko in Table§|| 27— 0 =27
—11(6,8,6,4,2,0,19v/2) | not regular
—2 | (5,8,6,4,2,0,3+/2) | ky in Table3]| 27 —2 =25

(Since d~ # d*, by Theorem or rather by its proof, () cannot be regular.)

Ezample 5.48 (C-simple type E7 with » = 1, noncohomological weight). Suppose
=(-17,5,5,2,1,0,3v/2), so that

A0 =X+ pe = (-2,4,4,3,2,1,6V2) + (5,4,3,2,1,0, 17v/2)
=(3,8,7,5,3,1, 22).

Note that A\(9) is not regular because there is no unique maximal pairing between
it and the weights in Tables [3|and |4l and hence v is not cohomological in the sense
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of Definition Then [d~,d"] = [23,24] by calculations summarized as follows:

s | A®) [ w0 \d_zs>—d<s |
| 1 [(4,8,7,5,3,1,15v2) | k3 in Table[3][ 27—3=24 |
[ —1](2,8,7,5,3,1,14v2) | Ky in Table[3[] 27—-4=23 |

Ezample 5.49 (restriction of scalar of type E7). Suppose the group is Q-simple but
has two C-simple factors of E7, which we denote by v =1 and 2, respectively, such
that r1 = ro = 1, and so that d = dy + d2 = 27 + 27 = 54. Suppose v = (v, 12),
where v, is the v in Example and where 15 is the v in Example so that

A0 = ((7,8,6,4,2,0,32v2),(3,8,7,5,3,1, 2v2)).

Then [d—, d*] = [28,52] by calculations summarized as follows (with the two factors
of each weight in the column of £(*) can be found in Tables [3| and :

(s | Q) [ & [d9]
1 ((8,8,6,4,2,0,20v/2), (4,8,7,5,3,1,15v/2)) not regular
2 ((9, 86420ﬂ )(58753,1,3—21 2)) | not regular
3 ((108642021\f)(68753115f)) (ko, ko) | 52
-1 (6,8,6,4,2,0,19v/2),(2,8,7,5,3,1,14v/2) not regular
-2 (586420£ )(18753127 2) not regular
-3 (

( )
( )
((4,8,6,4,2,0, 18f) (0,8,7,5 3,1,13\f)) not regular
(3,8,6,4,2,0, 35 2),(-1,8,7,5,3,1, % 25 2) not regular
(2, )
(1,
(

( (= )
-5 ((2,8,6,4,2,0, 17\[),( 2 8,7,5,&1,12\[) not regular
—6 | ((1,8,6,4,2,0,%/2),(-3,8,7,5,3,1,2+/2)) | not regular
~7 | ((0,8,6,4,2,0,16v/2),(—4,8,7,5,3,1,11y/2)) | not regular
-8 | ((~1,8,6,4,2,0,3/2),(-5,8,7,5,3,1,2L/2)) | not regular
-9 | ((-2,8,6,4,2,0, 15f),( 6,8,7,5,3,1,10v/2)) | not regular
—10 | ((-3,8,6,4,2,0,2V2), (- 7875371,129\f)) not regular
—11| ((—- 48642014f)( 88753,1,9f)) not regular
—12| ((-5,8,6,4,2,0,2v/2),(-9,8,7,5,3,1,1/2)) | not regular

(-

—13 | ((~—6,8,6,4,2,0, 13\/) (-10,8,7,5 3,1,8[)) not regular
—14 | ((—- 7,8,6,4,2,0,% 2),(—11,8,7,5,3,1,12v/2)) | (k10,,K16,) | 28

If the two C-simple factors were not in the same Q-simple factor, then the two
factors 11 = (7,8,6,4,2,0, 32—9 2) and v, = (3,8,7,5,3,1, 2—29 2) would have defined
the intervals [25,27] and [23,24] on their respective factors, whose end points sum
up to those of [48,51], which is much narrower than [28,52].
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